Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/ec/ecp_nistp256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/opensslconf.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <stdint.h>
40
# include <string.h>
41
# include <openssl/err.h>
42
# include "ec_lcl.h"
43
44
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
45
  /* even with gcc, the typedef won't work for 32-bit platforms */
46
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
47
                                 * platforms */
48
typedef __int128_t int128_t;
49
# else
50
#  error "Your compiler doesn't appear to support 128-bit integer types"
51
# endif
52
53
typedef uint8_t u8;
54
typedef uint32_t u32;
55
typedef uint64_t u64;
56
57
/*
58
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59
 * can serialise an element of this field into 32 bytes. We call this an
60
 * felem_bytearray.
61
 */
62
63
typedef u8 felem_bytearray[32];
64
65
/*
66
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67
 * values are big-endian.
68
 */
69
static const felem_bytearray nistp256_curve_params[5] = {
70
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
74
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
78
    {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
79
     0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80
     0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81
     0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
82
    {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83
     0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84
     0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85
     0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
86
    {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87
     0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88
     0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89
     0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
90
};
91
92
/*-
93
 * The representation of field elements.
94
 * ------------------------------------
95
 *
96
 * We represent field elements with either four 128-bit values, eight 128-bit
97
 * values, or four 64-bit values. The field element represented is:
98
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
99
 * or:
100
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
101
 *
102
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104
 * with the least significant bits of the next.
105
 *
106
 * A field element with four limbs is an 'felem'. One with eight limbs is a
107
 * 'longfelem'
108
 *
109
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110
 * values are used as intermediate values before multiplication.
111
 */
112
113
0
# define NLIMBS 4
114
115
typedef uint128_t limb;
116
typedef limb felem[NLIMBS];
117
typedef limb longfelem[NLIMBS * 2];
118
typedef u64 smallfelem[NLIMBS];
119
120
/* This is the value of the prime as four 64-bit words, little-endian. */
121
static const u64 kPrime[4] =
122
    { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
123
static const u64 bottom63bits = 0x7ffffffffffffffful;
124
125
/*
126
 * bin32_to_felem takes a little-endian byte array and converts it into felem
127
 * form. This assumes that the CPU is little-endian.
128
 */
129
static void bin32_to_felem(felem out, const u8 in[32])
130
0
{
131
0
    out[0] = *((u64 *)&in[0]);
132
0
    out[1] = *((u64 *)&in[8]);
133
0
    out[2] = *((u64 *)&in[16]);
134
0
    out[3] = *((u64 *)&in[24]);
135
0
}
136
137
/*
138
 * smallfelem_to_bin32 takes a smallfelem and serialises into a little
139
 * endian, 32 byte array. This assumes that the CPU is little-endian.
140
 */
141
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
142
0
{
143
0
    *((u64 *)&out[0]) = in[0];
144
0
    *((u64 *)&out[8]) = in[1];
145
0
    *((u64 *)&out[16]) = in[2];
146
0
    *((u64 *)&out[24]) = in[3];
147
0
}
148
149
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
150
static void flip_endian(u8 *out, const u8 *in, unsigned len)
151
0
{
152
0
    unsigned i;
153
0
    for (i = 0; i < len; ++i)
154
0
        out[i] = in[len - 1 - i];
155
0
}
156
157
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
158
static int BN_to_felem(felem out, const BIGNUM *bn)
159
0
{
160
0
    felem_bytearray b_in;
161
0
    felem_bytearray b_out;
162
0
    unsigned num_bytes;
163
0
164
0
    /* BN_bn2bin eats leading zeroes */
165
0
    memset(b_out, 0, sizeof(b_out));
166
0
    num_bytes = BN_num_bytes(bn);
167
0
    if (num_bytes > sizeof(b_out)) {
168
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
169
0
        return 0;
170
0
    }
171
0
    if (BN_is_negative(bn)) {
172
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
173
0
        return 0;
174
0
    }
175
0
    num_bytes = BN_bn2bin(bn, b_in);
176
0
    flip_endian(b_out, b_in, num_bytes);
177
0
    bin32_to_felem(out, b_out);
178
0
    return 1;
179
0
}
180
181
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
182
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
183
0
{
184
0
    felem_bytearray b_in, b_out;
185
0
    smallfelem_to_bin32(b_in, in);
186
0
    flip_endian(b_out, b_in, sizeof(b_out));
187
0
    return BN_bin2bn(b_out, sizeof(b_out), out);
188
0
}
189
190
/*-
191
 * Field operations
192
 * ----------------
193
 */
194
195
static void smallfelem_one(smallfelem out)
196
0
{
197
0
    out[0] = 1;
198
0
    out[1] = 0;
199
0
    out[2] = 0;
200
0
    out[3] = 0;
201
0
}
202
203
static void smallfelem_assign(smallfelem out, const smallfelem in)
204
0
{
205
0
    out[0] = in[0];
206
0
    out[1] = in[1];
207
0
    out[2] = in[2];
208
0
    out[3] = in[3];
209
0
}
210
211
static void felem_assign(felem out, const felem in)
212
0
{
213
0
    out[0] = in[0];
214
0
    out[1] = in[1];
215
0
    out[2] = in[2];
216
0
    out[3] = in[3];
217
0
}
218
219
/* felem_sum sets out = out + in. */
220
static void felem_sum(felem out, const felem in)
221
0
{
222
0
    out[0] += in[0];
223
0
    out[1] += in[1];
224
0
    out[2] += in[2];
225
0
    out[3] += in[3];
226
0
}
227
228
/* felem_small_sum sets out = out + in. */
229
static void felem_small_sum(felem out, const smallfelem in)
230
0
{
231
0
    out[0] += in[0];
232
0
    out[1] += in[1];
233
0
    out[2] += in[2];
234
0
    out[3] += in[3];
235
0
}
236
237
/* felem_scalar sets out = out * scalar */
238
static void felem_scalar(felem out, const u64 scalar)
239
0
{
240
0
    out[0] *= scalar;
241
0
    out[1] *= scalar;
242
0
    out[2] *= scalar;
243
0
    out[3] *= scalar;
244
0
}
245
246
/* longfelem_scalar sets out = out * scalar */
247
static void longfelem_scalar(longfelem out, const u64 scalar)
248
0
{
249
0
    out[0] *= scalar;
250
0
    out[1] *= scalar;
251
0
    out[2] *= scalar;
252
0
    out[3] *= scalar;
253
0
    out[4] *= scalar;
254
0
    out[5] *= scalar;
255
0
    out[6] *= scalar;
256
0
    out[7] *= scalar;
257
0
}
258
259
# define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
260
# define two105 (((limb)1) << 105)
261
# define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
262
263
/* zero105 is 0 mod p */
264
static const felem zero105 =
265
    { two105m41m9, two105, two105m41p9, two105m41p9 };
266
267
/*-
268
 * smallfelem_neg sets |out| to |-small|
269
 * On exit:
270
 *   out[i] < out[i] + 2^105
271
 */
272
static void smallfelem_neg(felem out, const smallfelem small)
273
0
{
274
0
    /* In order to prevent underflow, we subtract from 0 mod p. */
275
0
    out[0] = zero105[0] - small[0];
276
0
    out[1] = zero105[1] - small[1];
277
0
    out[2] = zero105[2] - small[2];
278
0
    out[3] = zero105[3] - small[3];
279
0
}
280
281
/*-
282
 * felem_diff subtracts |in| from |out|
283
 * On entry:
284
 *   in[i] < 2^104
285
 * On exit:
286
 *   out[i] < out[i] + 2^105
287
 */
288
static void felem_diff(felem out, const felem in)
289
0
{
290
0
    /*
291
0
     * In order to prevent underflow, we add 0 mod p before subtracting.
292
0
     */
293
0
    out[0] += zero105[0];
294
0
    out[1] += zero105[1];
295
0
    out[2] += zero105[2];
296
0
    out[3] += zero105[3];
297
0
298
0
    out[0] -= in[0];
299
0
    out[1] -= in[1];
300
0
    out[2] -= in[2];
301
0
    out[3] -= in[3];
302
0
}
303
304
# define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
305
# define two107 (((limb)1) << 107)
306
# define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
307
308
/* zero107 is 0 mod p */
309
static const felem zero107 =
310
    { two107m43m11, two107, two107m43p11, two107m43p11 };
311
312
/*-
313
 * An alternative felem_diff for larger inputs |in|
314
 * felem_diff_zero107 subtracts |in| from |out|
315
 * On entry:
316
 *   in[i] < 2^106
317
 * On exit:
318
 *   out[i] < out[i] + 2^107
319
 */
320
static void felem_diff_zero107(felem out, const felem in)
321
0
{
322
0
    /*
323
0
     * In order to prevent underflow, we add 0 mod p before subtracting.
324
0
     */
325
0
    out[0] += zero107[0];
326
0
    out[1] += zero107[1];
327
0
    out[2] += zero107[2];
328
0
    out[3] += zero107[3];
329
0
330
0
    out[0] -= in[0];
331
0
    out[1] -= in[1];
332
0
    out[2] -= in[2];
333
0
    out[3] -= in[3];
334
0
}
335
336
/*-
337
 * longfelem_diff subtracts |in| from |out|
338
 * On entry:
339
 *   in[i] < 7*2^67
340
 * On exit:
341
 *   out[i] < out[i] + 2^70 + 2^40
342
 */
343
static void longfelem_diff(longfelem out, const longfelem in)
344
0
{
345
0
    static const limb two70m8p6 =
346
0
        (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
347
0
    static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
348
0
    static const limb two70 = (((limb) 1) << 70);
349
0
    static const limb two70m40m38p6 =
350
0
        (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
351
0
        (((limb) 1) << 6);
352
0
    static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
353
0
354
0
    /* add 0 mod p to avoid underflow */
355
0
    out[0] += two70m8p6;
356
0
    out[1] += two70p40;
357
0
    out[2] += two70;
358
0
    out[3] += two70m40m38p6;
359
0
    out[4] += two70m6;
360
0
    out[5] += two70m6;
361
0
    out[6] += two70m6;
362
0
    out[7] += two70m6;
363
0
364
0
    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
365
0
    out[0] -= in[0];
366
0
    out[1] -= in[1];
367
0
    out[2] -= in[2];
368
0
    out[3] -= in[3];
369
0
    out[4] -= in[4];
370
0
    out[5] -= in[5];
371
0
    out[6] -= in[6];
372
0
    out[7] -= in[7];
373
0
}
374
375
# define two64m0 (((limb)1) << 64) - 1
376
# define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
377
# define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
378
# define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
379
380
/* zero110 is 0 mod p */
381
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
382
383
/*-
384
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
385
 * minimal as the value may be greater than p.
386
 *
387
 * On entry:
388
 *   in[i] < 2^109
389
 * On exit:
390
 *   out[i] < 2^64
391
 */
392
static void felem_shrink(smallfelem out, const felem in)
393
0
{
394
0
    felem tmp;
395
0
    u64 a, b, mask;
396
0
    u64 high, low;
397
0
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
398
0
399
0
    /* Carry 2->3 */
400
0
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
401
0
    /* tmp[3] < 2^110 */
402
0
403
0
    tmp[2] = zero110[2] + (u64)in[2];
404
0
    tmp[0] = zero110[0] + in[0];
405
0
    tmp[1] = zero110[1] + in[1];
406
0
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
407
0
408
0
    /*
409
0
     * We perform two partial reductions where we eliminate the high-word of
410
0
     * tmp[3]. We don't update the other words till the end.
411
0
     */
412
0
    a = tmp[3] >> 64;           /* a < 2^46 */
413
0
    tmp[3] = (u64)tmp[3];
414
0
    tmp[3] -= a;
415
0
    tmp[3] += ((limb) a) << 32;
416
0
    /* tmp[3] < 2^79 */
417
0
418
0
    b = a;
419
0
    a = tmp[3] >> 64;           /* a < 2^15 */
420
0
    b += a;                     /* b < 2^46 + 2^15 < 2^47 */
421
0
    tmp[3] = (u64)tmp[3];
422
0
    tmp[3] -= a;
423
0
    tmp[3] += ((limb) a) << 32;
424
0
    /* tmp[3] < 2^64 + 2^47 */
425
0
426
0
    /*
427
0
     * This adjusts the other two words to complete the two partial
428
0
     * reductions.
429
0
     */
430
0
    tmp[0] += b;
431
0
    tmp[1] -= (((limb) b) << 32);
432
0
433
0
    /*
434
0
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
435
0
     * conditionally subtract kPrime if tmp[3] is large enough.
436
0
     */
437
0
    high = (u64)(tmp[3] >> 64);
438
0
    /* As tmp[3] < 2^65, high is either 1 or 0 */
439
0
    high = 0 - high;
440
0
    /*-
441
0
     * high is:
442
0
     *   all ones   if the high word of tmp[3] is 1
443
0
     *   all zeros  if the high word of tmp[3] if 0
444
0
     */
445
0
    low = (u64)tmp[3];
446
0
    mask = 0 - (low >> 63);
447
0
    /*-
448
0
     * mask is:
449
0
     *   all ones   if the MSB of low is 1
450
0
     *   all zeros  if the MSB of low if 0
451
0
     */
452
0
    low &= bottom63bits;
453
0
    low -= kPrime3Test;
454
0
    /* if low was greater than kPrime3Test then the MSB is zero */
455
0
    low = ~low;
456
0
    low = 0 - (low >> 63);
457
0
    /*-
458
0
     * low is:
459
0
     *   all ones   if low was > kPrime3Test
460
0
     *   all zeros  if low was <= kPrime3Test
461
0
     */
462
0
    mask = (mask & low) | high;
463
0
    tmp[0] -= mask & kPrime[0];
464
0
    tmp[1] -= mask & kPrime[1];
465
0
    /* kPrime[2] is zero, so omitted */
466
0
    tmp[3] -= mask & kPrime[3];
467
0
    /* tmp[3] < 2**64 - 2**32 + 1 */
468
0
469
0
    tmp[1] += ((u64)(tmp[0] >> 64));
470
0
    tmp[0] = (u64)tmp[0];
471
0
    tmp[2] += ((u64)(tmp[1] >> 64));
472
0
    tmp[1] = (u64)tmp[1];
473
0
    tmp[3] += ((u64)(tmp[2] >> 64));
474
0
    tmp[2] = (u64)tmp[2];
475
0
    /* tmp[i] < 2^64 */
476
0
477
0
    out[0] = tmp[0];
478
0
    out[1] = tmp[1];
479
0
    out[2] = tmp[2];
480
0
    out[3] = tmp[3];
481
0
}
482
483
/* smallfelem_expand converts a smallfelem to an felem */
484
static void smallfelem_expand(felem out, const smallfelem in)
485
0
{
486
0
    out[0] = in[0];
487
0
    out[1] = in[1];
488
0
    out[2] = in[2];
489
0
    out[3] = in[3];
490
0
}
491
492
/*-
493
 * smallfelem_square sets |out| = |small|^2
494
 * On entry:
495
 *   small[i] < 2^64
496
 * On exit:
497
 *   out[i] < 7 * 2^64 < 2^67
498
 */
499
static void smallfelem_square(longfelem out, const smallfelem small)
500
0
{
501
0
    limb a;
502
0
    u64 high, low;
503
0
504
0
    a = ((uint128_t) small[0]) * small[0];
505
0
    low = a;
506
0
    high = a >> 64;
507
0
    out[0] = low;
508
0
    out[1] = high;
509
0
510
0
    a = ((uint128_t) small[0]) * small[1];
511
0
    low = a;
512
0
    high = a >> 64;
513
0
    out[1] += low;
514
0
    out[1] += low;
515
0
    out[2] = high;
516
0
517
0
    a = ((uint128_t) small[0]) * small[2];
518
0
    low = a;
519
0
    high = a >> 64;
520
0
    out[2] += low;
521
0
    out[2] *= 2;
522
0
    out[3] = high;
523
0
524
0
    a = ((uint128_t) small[0]) * small[3];
525
0
    low = a;
526
0
    high = a >> 64;
527
0
    out[3] += low;
528
0
    out[4] = high;
529
0
530
0
    a = ((uint128_t) small[1]) * small[2];
531
0
    low = a;
532
0
    high = a >> 64;
533
0
    out[3] += low;
534
0
    out[3] *= 2;
535
0
    out[4] += high;
536
0
537
0
    a = ((uint128_t) small[1]) * small[1];
538
0
    low = a;
539
0
    high = a >> 64;
540
0
    out[2] += low;
541
0
    out[3] += high;
542
0
543
0
    a = ((uint128_t) small[1]) * small[3];
544
0
    low = a;
545
0
    high = a >> 64;
546
0
    out[4] += low;
547
0
    out[4] *= 2;
548
0
    out[5] = high;
549
0
550
0
    a = ((uint128_t) small[2]) * small[3];
551
0
    low = a;
552
0
    high = a >> 64;
553
0
    out[5] += low;
554
0
    out[5] *= 2;
555
0
    out[6] = high;
556
0
    out[6] += high;
557
0
558
0
    a = ((uint128_t) small[2]) * small[2];
559
0
    low = a;
560
0
    high = a >> 64;
561
0
    out[4] += low;
562
0
    out[5] += high;
563
0
564
0
    a = ((uint128_t) small[3]) * small[3];
565
0
    low = a;
566
0
    high = a >> 64;
567
0
    out[6] += low;
568
0
    out[7] = high;
569
0
}
570
571
/*-
572
 * felem_square sets |out| = |in|^2
573
 * On entry:
574
 *   in[i] < 2^109
575
 * On exit:
576
 *   out[i] < 7 * 2^64 < 2^67
577
 */
578
static void felem_square(longfelem out, const felem in)
579
0
{
580
0
    u64 small[4];
581
0
    felem_shrink(small, in);
582
0
    smallfelem_square(out, small);
583
0
}
584
585
/*-
586
 * smallfelem_mul sets |out| = |small1| * |small2|
587
 * On entry:
588
 *   small1[i] < 2^64
589
 *   small2[i] < 2^64
590
 * On exit:
591
 *   out[i] < 7 * 2^64 < 2^67
592
 */
593
static void smallfelem_mul(longfelem out, const smallfelem small1,
594
                           const smallfelem small2)
595
0
{
596
0
    limb a;
597
0
    u64 high, low;
598
0
599
0
    a = ((uint128_t) small1[0]) * small2[0];
600
0
    low = a;
601
0
    high = a >> 64;
602
0
    out[0] = low;
603
0
    out[1] = high;
604
0
605
0
    a = ((uint128_t) small1[0]) * small2[1];
606
0
    low = a;
607
0
    high = a >> 64;
608
0
    out[1] += low;
609
0
    out[2] = high;
610
0
611
0
    a = ((uint128_t) small1[1]) * small2[0];
612
0
    low = a;
613
0
    high = a >> 64;
614
0
    out[1] += low;
615
0
    out[2] += high;
616
0
617
0
    a = ((uint128_t) small1[0]) * small2[2];
618
0
    low = a;
619
0
    high = a >> 64;
620
0
    out[2] += low;
621
0
    out[3] = high;
622
0
623
0
    a = ((uint128_t) small1[1]) * small2[1];
624
0
    low = a;
625
0
    high = a >> 64;
626
0
    out[2] += low;
627
0
    out[3] += high;
628
0
629
0
    a = ((uint128_t) small1[2]) * small2[0];
630
0
    low = a;
631
0
    high = a >> 64;
632
0
    out[2] += low;
633
0
    out[3] += high;
634
0
635
0
    a = ((uint128_t) small1[0]) * small2[3];
636
0
    low = a;
637
0
    high = a >> 64;
638
0
    out[3] += low;
639
0
    out[4] = high;
640
0
641
0
    a = ((uint128_t) small1[1]) * small2[2];
642
0
    low = a;
643
0
    high = a >> 64;
644
0
    out[3] += low;
645
0
    out[4] += high;
646
0
647
0
    a = ((uint128_t) small1[2]) * small2[1];
648
0
    low = a;
649
0
    high = a >> 64;
650
0
    out[3] += low;
651
0
    out[4] += high;
652
0
653
0
    a = ((uint128_t) small1[3]) * small2[0];
654
0
    low = a;
655
0
    high = a >> 64;
656
0
    out[3] += low;
657
0
    out[4] += high;
658
0
659
0
    a = ((uint128_t) small1[1]) * small2[3];
660
0
    low = a;
661
0
    high = a >> 64;
662
0
    out[4] += low;
663
0
    out[5] = high;
664
0
665
0
    a = ((uint128_t) small1[2]) * small2[2];
666
0
    low = a;
667
0
    high = a >> 64;
668
0
    out[4] += low;
669
0
    out[5] += high;
670
0
671
0
    a = ((uint128_t) small1[3]) * small2[1];
672
0
    low = a;
673
0
    high = a >> 64;
674
0
    out[4] += low;
675
0
    out[5] += high;
676
0
677
0
    a = ((uint128_t) small1[2]) * small2[3];
678
0
    low = a;
679
0
    high = a >> 64;
680
0
    out[5] += low;
681
0
    out[6] = high;
682
0
683
0
    a = ((uint128_t) small1[3]) * small2[2];
684
0
    low = a;
685
0
    high = a >> 64;
686
0
    out[5] += low;
687
0
    out[6] += high;
688
0
689
0
    a = ((uint128_t) small1[3]) * small2[3];
690
0
    low = a;
691
0
    high = a >> 64;
692
0
    out[6] += low;
693
0
    out[7] = high;
694
0
}
695
696
/*-
697
 * felem_mul sets |out| = |in1| * |in2|
698
 * On entry:
699
 *   in1[i] < 2^109
700
 *   in2[i] < 2^109
701
 * On exit:
702
 *   out[i] < 7 * 2^64 < 2^67
703
 */
704
static void felem_mul(longfelem out, const felem in1, const felem in2)
705
0
{
706
0
    smallfelem small1, small2;
707
0
    felem_shrink(small1, in1);
708
0
    felem_shrink(small2, in2);
709
0
    smallfelem_mul(out, small1, small2);
710
0
}
711
712
/*-
713
 * felem_small_mul sets |out| = |small1| * |in2|
714
 * On entry:
715
 *   small1[i] < 2^64
716
 *   in2[i] < 2^109
717
 * On exit:
718
 *   out[i] < 7 * 2^64 < 2^67
719
 */
720
static void felem_small_mul(longfelem out, const smallfelem small1,
721
                            const felem in2)
722
0
{
723
0
    smallfelem small2;
724
0
    felem_shrink(small2, in2);
725
0
    smallfelem_mul(out, small1, small2);
726
0
}
727
728
# define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
729
# define two100 (((limb)1) << 100)
730
# define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
731
/* zero100 is 0 mod p */
732
static const felem zero100 =
733
    { two100m36m4, two100, two100m36p4, two100m36p4 };
734
735
/*-
736
 * Internal function for the different flavours of felem_reduce.
737
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
738
 * On entry:
739
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
740
 *   out[1] >= in[7] + 2^32*in[4]
741
 *   out[2] >= in[5] + 2^32*in[5]
742
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
743
 * On exit:
744
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
745
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
746
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
747
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
748
 */
749
static void felem_reduce_(felem out, const longfelem in)
750
0
{
751
0
    int128_t c;
752
0
    /* combine common terms from below */
753
0
    c = in[4] + (in[5] << 32);
754
0
    out[0] += c;
755
0
    out[3] -= c;
756
0
757
0
    c = in[5] - in[7];
758
0
    out[1] += c;
759
0
    out[2] -= c;
760
0
761
0
    /* the remaining terms */
762
0
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
763
0
    out[1] -= (in[4] << 32);
764
0
    out[3] += (in[4] << 32);
765
0
766
0
    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
767
0
    out[2] -= (in[5] << 32);
768
0
769
0
    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
770
0
    out[0] -= in[6];
771
0
    out[0] -= (in[6] << 32);
772
0
    out[1] += (in[6] << 33);
773
0
    out[2] += (in[6] * 2);
774
0
    out[3] -= (in[6] << 32);
775
0
776
0
    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
777
0
    out[0] -= in[7];
778
0
    out[0] -= (in[7] << 32);
779
0
    out[2] += (in[7] << 33);
780
0
    out[3] += (in[7] * 3);
781
0
}
782
783
/*-
784
 * felem_reduce converts a longfelem into an felem.
785
 * To be called directly after felem_square or felem_mul.
786
 * On entry:
787
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
788
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
789
 * On exit:
790
 *   out[i] < 2^101
791
 */
792
static void felem_reduce(felem out, const longfelem in)
793
0
{
794
0
    out[0] = zero100[0] + in[0];
795
0
    out[1] = zero100[1] + in[1];
796
0
    out[2] = zero100[2] + in[2];
797
0
    out[3] = zero100[3] + in[3];
798
0
799
0
    felem_reduce_(out, in);
800
0
801
0
    /*-
802
0
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
803
0
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
804
0
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
805
0
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
806
0
     *
807
0
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
808
0
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
809
0
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
810
0
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
811
0
     */
812
0
}
813
814
/*-
815
 * felem_reduce_zero105 converts a larger longfelem into an felem.
816
 * On entry:
817
 *   in[0] < 2^71
818
 * On exit:
819
 *   out[i] < 2^106
820
 */
821
static void felem_reduce_zero105(felem out, const longfelem in)
822
0
{
823
0
    out[0] = zero105[0] + in[0];
824
0
    out[1] = zero105[1] + in[1];
825
0
    out[2] = zero105[2] + in[2];
826
0
    out[3] = zero105[3] + in[3];
827
0
828
0
    felem_reduce_(out, in);
829
0
830
0
    /*-
831
0
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
832
0
     * out[1] > 2^105 - 2^71 - 2^103 > 0
833
0
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
834
0
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
835
0
     *
836
0
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
837
0
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
838
0
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
839
0
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
840
0
     */
841
0
}
842
843
/*
844
 * subtract_u64 sets *result = *result - v and *carry to one if the
845
 * subtraction underflowed.
846
 */
847
static void subtract_u64(u64 *result, u64 *carry, u64 v)
848
0
{
849
0
    uint128_t r = *result;
850
0
    r -= v;
851
0
    *carry = (r >> 64) & 1;
852
0
    *result = (u64)r;
853
0
}
854
855
/*
856
 * felem_contract converts |in| to its unique, minimal representation. On
857
 * entry: in[i] < 2^109
858
 */
859
static void felem_contract(smallfelem out, const felem in)
860
0
{
861
0
    unsigned i;
862
0
    u64 all_equal_so_far = 0, result = 0, carry;
863
0
864
0
    felem_shrink(out, in);
865
0
    /* small is minimal except that the value might be > p */
866
0
867
0
    all_equal_so_far--;
868
0
    /*
869
0
     * We are doing a constant time test if out >= kPrime. We need to compare
870
0
     * each u64, from most-significant to least significant. For each one, if
871
0
     * all words so far have been equal (m is all ones) then a non-equal
872
0
     * result is the answer. Otherwise we continue.
873
0
     */
874
0
    for (i = 3; i < 4; i--) {
875
0
        u64 equal;
876
0
        uint128_t a = ((uint128_t) kPrime[i]) - out[i];
877
0
        /*
878
0
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
879
0
         * will all be set.
880
0
         */
881
0
        result |= all_equal_so_far & ((u64)(a >> 64));
882
0
883
0
        /*
884
0
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
885
0
         * decrement will make it all ones.
886
0
         */
887
0
        equal = kPrime[i] ^ out[i];
888
0
        equal--;
889
0
        equal &= equal << 32;
890
0
        equal &= equal << 16;
891
0
        equal &= equal << 8;
892
0
        equal &= equal << 4;
893
0
        equal &= equal << 2;
894
0
        equal &= equal << 1;
895
0
        equal = 0 - (equal >> 63);
896
0
897
0
        all_equal_so_far &= equal;
898
0
    }
899
0
900
0
    /*
901
0
     * if all_equal_so_far is still all ones then the two values are equal
902
0
     * and so out >= kPrime is true.
903
0
     */
904
0
    result |= all_equal_so_far;
905
0
906
0
    /* if out >= kPrime then we subtract kPrime. */
907
0
    subtract_u64(&out[0], &carry, result & kPrime[0]);
908
0
    subtract_u64(&out[1], &carry, carry);
909
0
    subtract_u64(&out[2], &carry, carry);
910
0
    subtract_u64(&out[3], &carry, carry);
911
0
912
0
    subtract_u64(&out[1], &carry, result & kPrime[1]);
913
0
    subtract_u64(&out[2], &carry, carry);
914
0
    subtract_u64(&out[3], &carry, carry);
915
0
916
0
    subtract_u64(&out[2], &carry, result & kPrime[2]);
917
0
    subtract_u64(&out[3], &carry, carry);
918
0
919
0
    subtract_u64(&out[3], &carry, result & kPrime[3]);
920
0
}
921
922
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
923
0
{
924
0
    longfelem longtmp;
925
0
    felem tmp;
926
0
927
0
    smallfelem_square(longtmp, in);
928
0
    felem_reduce(tmp, longtmp);
929
0
    felem_contract(out, tmp);
930
0
}
931
932
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
933
                                    const smallfelem in2)
934
0
{
935
0
    longfelem longtmp;
936
0
    felem tmp;
937
0
938
0
    smallfelem_mul(longtmp, in1, in2);
939
0
    felem_reduce(tmp, longtmp);
940
0
    felem_contract(out, tmp);
941
0
}
942
943
/*-
944
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
945
 * otherwise.
946
 * On entry:
947
 *   small[i] < 2^64
948
 */
949
static limb smallfelem_is_zero(const smallfelem small)
950
0
{
951
0
    limb result;
952
0
    u64 is_p;
953
0
954
0
    u64 is_zero = small[0] | small[1] | small[2] | small[3];
955
0
    is_zero--;
956
0
    is_zero &= is_zero << 32;
957
0
    is_zero &= is_zero << 16;
958
0
    is_zero &= is_zero << 8;
959
0
    is_zero &= is_zero << 4;
960
0
    is_zero &= is_zero << 2;
961
0
    is_zero &= is_zero << 1;
962
0
    is_zero = 0 - (is_zero >> 63);
963
0
964
0
    is_p = (small[0] ^ kPrime[0]) |
965
0
        (small[1] ^ kPrime[1]) |
966
0
        (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
967
0
    is_p--;
968
0
    is_p &= is_p << 32;
969
0
    is_p &= is_p << 16;
970
0
    is_p &= is_p << 8;
971
0
    is_p &= is_p << 4;
972
0
    is_p &= is_p << 2;
973
0
    is_p &= is_p << 1;
974
0
    is_p = 0 - (is_p >> 63);
975
0
976
0
    is_zero |= is_p;
977
0
978
0
    result = is_zero;
979
0
    result |= ((limb) is_zero) << 64;
980
0
    return result;
981
0
}
982
983
static int smallfelem_is_zero_int(const void *small)
984
0
{
985
0
    return (int)(smallfelem_is_zero(small) & ((limb) 1));
986
0
}
987
988
/*-
989
 * felem_inv calculates |out| = |in|^{-1}
990
 *
991
 * Based on Fermat's Little Theorem:
992
 *   a^p = a (mod p)
993
 *   a^{p-1} = 1 (mod p)
994
 *   a^{p-2} = a^{-1} (mod p)
995
 */
996
static void felem_inv(felem out, const felem in)
997
0
{
998
0
    felem ftmp, ftmp2;
999
0
    /* each e_I will hold |in|^{2^I - 1} */
1000
0
    felem e2, e4, e8, e16, e32, e64;
1001
0
    longfelem tmp;
1002
0
    unsigned i;
1003
0
1004
0
    felem_square(tmp, in);
1005
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
1006
0
    felem_mul(tmp, in, ftmp);
1007
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
1008
0
    felem_assign(e2, ftmp);
1009
0
    felem_square(tmp, ftmp);
1010
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
1011
0
    felem_square(tmp, ftmp);
1012
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^2 */
1013
0
    felem_mul(tmp, ftmp, e2);
1014
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^0 */
1015
0
    felem_assign(e4, ftmp);
1016
0
    felem_square(tmp, ftmp);
1017
0
    felem_reduce(ftmp, tmp);    /* 2^5 - 2^1 */
1018
0
    felem_square(tmp, ftmp);
1019
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 2^2 */
1020
0
    felem_square(tmp, ftmp);
1021
0
    felem_reduce(ftmp, tmp);    /* 2^7 - 2^3 */
1022
0
    felem_square(tmp, ftmp);
1023
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^4 */
1024
0
    felem_mul(tmp, ftmp, e4);
1025
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^0 */
1026
0
    felem_assign(e8, ftmp);
1027
0
    for (i = 0; i < 8; i++) {
1028
0
        felem_square(tmp, ftmp);
1029
0
        felem_reduce(ftmp, tmp);
1030
0
    }                           /* 2^16 - 2^8 */
1031
0
    felem_mul(tmp, ftmp, e8);
1032
0
    felem_reduce(ftmp, tmp);    /* 2^16 - 2^0 */
1033
0
    felem_assign(e16, ftmp);
1034
0
    for (i = 0; i < 16; i++) {
1035
0
        felem_square(tmp, ftmp);
1036
0
        felem_reduce(ftmp, tmp);
1037
0
    }                           /* 2^32 - 2^16 */
1038
0
    felem_mul(tmp, ftmp, e16);
1039
0
    felem_reduce(ftmp, tmp);    /* 2^32 - 2^0 */
1040
0
    felem_assign(e32, ftmp);
1041
0
    for (i = 0; i < 32; i++) {
1042
0
        felem_square(tmp, ftmp);
1043
0
        felem_reduce(ftmp, tmp);
1044
0
    }                           /* 2^64 - 2^32 */
1045
0
    felem_assign(e64, ftmp);
1046
0
    felem_mul(tmp, ftmp, in);
1047
0
    felem_reduce(ftmp, tmp);    /* 2^64 - 2^32 + 2^0 */
1048
0
    for (i = 0; i < 192; i++) {
1049
0
        felem_square(tmp, ftmp);
1050
0
        felem_reduce(ftmp, tmp);
1051
0
    }                           /* 2^256 - 2^224 + 2^192 */
1052
0
1053
0
    felem_mul(tmp, e64, e32);
1054
0
    felem_reduce(ftmp2, tmp);   /* 2^64 - 2^0 */
1055
0
    for (i = 0; i < 16; i++) {
1056
0
        felem_square(tmp, ftmp2);
1057
0
        felem_reduce(ftmp2, tmp);
1058
0
    }                           /* 2^80 - 2^16 */
1059
0
    felem_mul(tmp, ftmp2, e16);
1060
0
    felem_reduce(ftmp2, tmp);   /* 2^80 - 2^0 */
1061
0
    for (i = 0; i < 8; i++) {
1062
0
        felem_square(tmp, ftmp2);
1063
0
        felem_reduce(ftmp2, tmp);
1064
0
    }                           /* 2^88 - 2^8 */
1065
0
    felem_mul(tmp, ftmp2, e8);
1066
0
    felem_reduce(ftmp2, tmp);   /* 2^88 - 2^0 */
1067
0
    for (i = 0; i < 4; i++) {
1068
0
        felem_square(tmp, ftmp2);
1069
0
        felem_reduce(ftmp2, tmp);
1070
0
    }                           /* 2^92 - 2^4 */
1071
0
    felem_mul(tmp, ftmp2, e4);
1072
0
    felem_reduce(ftmp2, tmp);   /* 2^92 - 2^0 */
1073
0
    felem_square(tmp, ftmp2);
1074
0
    felem_reduce(ftmp2, tmp);   /* 2^93 - 2^1 */
1075
0
    felem_square(tmp, ftmp2);
1076
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^2 */
1077
0
    felem_mul(tmp, ftmp2, e2);
1078
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^0 */
1079
0
    felem_square(tmp, ftmp2);
1080
0
    felem_reduce(ftmp2, tmp);   /* 2^95 - 2^1 */
1081
0
    felem_square(tmp, ftmp2);
1082
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 2^2 */
1083
0
    felem_mul(tmp, ftmp2, in);
1084
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 3 */
1085
0
1086
0
    felem_mul(tmp, ftmp2, ftmp);
1087
0
    felem_reduce(out, tmp);     /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1088
0
}
1089
1090
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1091
0
{
1092
0
    felem tmp;
1093
0
1094
0
    smallfelem_expand(tmp, in);
1095
0
    felem_inv(tmp, tmp);
1096
0
    felem_contract(out, tmp);
1097
0
}
1098
1099
/*-
1100
 * Group operations
1101
 * ----------------
1102
 *
1103
 * Building on top of the field operations we have the operations on the
1104
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1105
 * coordinates
1106
 */
1107
1108
/*-
1109
 * point_double calculates 2*(x_in, y_in, z_in)
1110
 *
1111
 * The method is taken from:
1112
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1113
 *
1114
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1115
 * while x_out == y_in is not (maybe this works, but it's not tested).
1116
 */
1117
static void
1118
point_double(felem x_out, felem y_out, felem z_out,
1119
             const felem x_in, const felem y_in, const felem z_in)
1120
0
{
1121
0
    longfelem tmp, tmp2;
1122
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1123
0
    smallfelem small1, small2;
1124
0
1125
0
    felem_assign(ftmp, x_in);
1126
0
    /* ftmp[i] < 2^106 */
1127
0
    felem_assign(ftmp2, x_in);
1128
0
    /* ftmp2[i] < 2^106 */
1129
0
1130
0
    /* delta = z^2 */
1131
0
    felem_square(tmp, z_in);
1132
0
    felem_reduce(delta, tmp);
1133
0
    /* delta[i] < 2^101 */
1134
0
1135
0
    /* gamma = y^2 */
1136
0
    felem_square(tmp, y_in);
1137
0
    felem_reduce(gamma, tmp);
1138
0
    /* gamma[i] < 2^101 */
1139
0
    felem_shrink(small1, gamma);
1140
0
1141
0
    /* beta = x*gamma */
1142
0
    felem_small_mul(tmp, small1, x_in);
1143
0
    felem_reduce(beta, tmp);
1144
0
    /* beta[i] < 2^101 */
1145
0
1146
0
    /* alpha = 3*(x-delta)*(x+delta) */
1147
0
    felem_diff(ftmp, delta);
1148
0
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1149
0
    felem_sum(ftmp2, delta);
1150
0
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1151
0
    felem_scalar(ftmp2, 3);
1152
0
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
1153
0
    felem_mul(tmp, ftmp, ftmp2);
1154
0
    felem_reduce(alpha, tmp);
1155
0
    /* alpha[i] < 2^101 */
1156
0
    felem_shrink(small2, alpha);
1157
0
1158
0
    /* x' = alpha^2 - 8*beta */
1159
0
    smallfelem_square(tmp, small2);
1160
0
    felem_reduce(x_out, tmp);
1161
0
    felem_assign(ftmp, beta);
1162
0
    felem_scalar(ftmp, 8);
1163
0
    /* ftmp[i] < 8 * 2^101 = 2^104 */
1164
0
    felem_diff(x_out, ftmp);
1165
0
    /* x_out[i] < 2^105 + 2^101 < 2^106 */
1166
0
1167
0
    /* z' = (y + z)^2 - gamma - delta */
1168
0
    felem_sum(delta, gamma);
1169
0
    /* delta[i] < 2^101 + 2^101 = 2^102 */
1170
0
    felem_assign(ftmp, y_in);
1171
0
    felem_sum(ftmp, z_in);
1172
0
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1173
0
    felem_square(tmp, ftmp);
1174
0
    felem_reduce(z_out, tmp);
1175
0
    felem_diff(z_out, delta);
1176
0
    /* z_out[i] < 2^105 + 2^101 < 2^106 */
1177
0
1178
0
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1179
0
    felem_scalar(beta, 4);
1180
0
    /* beta[i] < 4 * 2^101 = 2^103 */
1181
0
    felem_diff_zero107(beta, x_out);
1182
0
    /* beta[i] < 2^107 + 2^103 < 2^108 */
1183
0
    felem_small_mul(tmp, small2, beta);
1184
0
    /* tmp[i] < 7 * 2^64 < 2^67 */
1185
0
    smallfelem_square(tmp2, small1);
1186
0
    /* tmp2[i] < 7 * 2^64 */
1187
0
    longfelem_scalar(tmp2, 8);
1188
0
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1189
0
    longfelem_diff(tmp, tmp2);
1190
0
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1191
0
    felem_reduce_zero105(y_out, tmp);
1192
0
    /* y_out[i] < 2^106 */
1193
0
}
1194
1195
/*
1196
 * point_double_small is the same as point_double, except that it operates on
1197
 * smallfelems
1198
 */
1199
static void
1200
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1201
                   const smallfelem x_in, const smallfelem y_in,
1202
                   const smallfelem z_in)
1203
0
{
1204
0
    felem felem_x_out, felem_y_out, felem_z_out;
1205
0
    felem felem_x_in, felem_y_in, felem_z_in;
1206
0
1207
0
    smallfelem_expand(felem_x_in, x_in);
1208
0
    smallfelem_expand(felem_y_in, y_in);
1209
0
    smallfelem_expand(felem_z_in, z_in);
1210
0
    point_double(felem_x_out, felem_y_out, felem_z_out,
1211
0
                 felem_x_in, felem_y_in, felem_z_in);
1212
0
    felem_shrink(x_out, felem_x_out);
1213
0
    felem_shrink(y_out, felem_y_out);
1214
0
    felem_shrink(z_out, felem_z_out);
1215
0
}
1216
1217
/* copy_conditional copies in to out iff mask is all ones. */
1218
static void copy_conditional(felem out, const felem in, limb mask)
1219
0
{
1220
0
    unsigned i;
1221
0
    for (i = 0; i < NLIMBS; ++i) {
1222
0
        const limb tmp = mask & (in[i] ^ out[i]);
1223
0
        out[i] ^= tmp;
1224
0
    }
1225
0
}
1226
1227
/* copy_small_conditional copies in to out iff mask is all ones. */
1228
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1229
0
{
1230
0
    unsigned i;
1231
0
    const u64 mask64 = mask;
1232
0
    for (i = 0; i < NLIMBS; ++i) {
1233
0
        out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1234
0
    }
1235
0
}
1236
1237
/*-
1238
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1239
 *
1240
 * The method is taken from:
1241
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1242
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1243
 *
1244
 * This function includes a branch for checking whether the two input points
1245
 * are equal, (while not equal to the point at infinity). This case never
1246
 * happens during single point multiplication, so there is no timing leak for
1247
 * ECDH or ECDSA signing.
1248
 */
1249
static void point_add(felem x3, felem y3, felem z3,
1250
                      const felem x1, const felem y1, const felem z1,
1251
                      const int mixed, const smallfelem x2,
1252
                      const smallfelem y2, const smallfelem z2)
1253
0
{
1254
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1255
0
    longfelem tmp, tmp2;
1256
0
    smallfelem small1, small2, small3, small4, small5;
1257
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1258
0
1259
0
    felem_shrink(small3, z1);
1260
0
1261
0
    z1_is_zero = smallfelem_is_zero(small3);
1262
0
    z2_is_zero = smallfelem_is_zero(z2);
1263
0
1264
0
    /* ftmp = z1z1 = z1**2 */
1265
0
    smallfelem_square(tmp, small3);
1266
0
    felem_reduce(ftmp, tmp);
1267
0
    /* ftmp[i] < 2^101 */
1268
0
    felem_shrink(small1, ftmp);
1269
0
1270
0
    if (!mixed) {
1271
0
        /* ftmp2 = z2z2 = z2**2 */
1272
0
        smallfelem_square(tmp, z2);
1273
0
        felem_reduce(ftmp2, tmp);
1274
0
        /* ftmp2[i] < 2^101 */
1275
0
        felem_shrink(small2, ftmp2);
1276
0
1277
0
        felem_shrink(small5, x1);
1278
0
1279
0
        /* u1 = ftmp3 = x1*z2z2 */
1280
0
        smallfelem_mul(tmp, small5, small2);
1281
0
        felem_reduce(ftmp3, tmp);
1282
0
        /* ftmp3[i] < 2^101 */
1283
0
1284
0
        /* ftmp5 = z1 + z2 */
1285
0
        felem_assign(ftmp5, z1);
1286
0
        felem_small_sum(ftmp5, z2);
1287
0
        /* ftmp5[i] < 2^107 */
1288
0
1289
0
        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1290
0
        felem_square(tmp, ftmp5);
1291
0
        felem_reduce(ftmp5, tmp);
1292
0
        /* ftmp2 = z2z2 + z1z1 */
1293
0
        felem_sum(ftmp2, ftmp);
1294
0
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1295
0
        felem_diff(ftmp5, ftmp2);
1296
0
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1297
0
1298
0
        /* ftmp2 = z2 * z2z2 */
1299
0
        smallfelem_mul(tmp, small2, z2);
1300
0
        felem_reduce(ftmp2, tmp);
1301
0
1302
0
        /* s1 = ftmp2 = y1 * z2**3 */
1303
0
        felem_mul(tmp, y1, ftmp2);
1304
0
        felem_reduce(ftmp6, tmp);
1305
0
        /* ftmp6[i] < 2^101 */
1306
0
    } else {
1307
0
        /*
1308
0
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1309
0
         */
1310
0
1311
0
        /* u1 = ftmp3 = x1*z2z2 */
1312
0
        felem_assign(ftmp3, x1);
1313
0
        /* ftmp3[i] < 2^106 */
1314
0
1315
0
        /* ftmp5 = 2z1z2 */
1316
0
        felem_assign(ftmp5, z1);
1317
0
        felem_scalar(ftmp5, 2);
1318
0
        /* ftmp5[i] < 2*2^106 = 2^107 */
1319
0
1320
0
        /* s1 = ftmp2 = y1 * z2**3 */
1321
0
        felem_assign(ftmp6, y1);
1322
0
        /* ftmp6[i] < 2^106 */
1323
0
    }
1324
0
1325
0
    /* u2 = x2*z1z1 */
1326
0
    smallfelem_mul(tmp, x2, small1);
1327
0
    felem_reduce(ftmp4, tmp);
1328
0
1329
0
    /* h = ftmp4 = u2 - u1 */
1330
0
    felem_diff_zero107(ftmp4, ftmp3);
1331
0
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1332
0
    felem_shrink(small4, ftmp4);
1333
0
1334
0
    x_equal = smallfelem_is_zero(small4);
1335
0
1336
0
    /* z_out = ftmp5 * h */
1337
0
    felem_small_mul(tmp, small4, ftmp5);
1338
0
    felem_reduce(z_out, tmp);
1339
0
    /* z_out[i] < 2^101 */
1340
0
1341
0
    /* ftmp = z1 * z1z1 */
1342
0
    smallfelem_mul(tmp, small1, small3);
1343
0
    felem_reduce(ftmp, tmp);
1344
0
1345
0
    /* s2 = tmp = y2 * z1**3 */
1346
0
    felem_small_mul(tmp, y2, ftmp);
1347
0
    felem_reduce(ftmp5, tmp);
1348
0
1349
0
    /* r = ftmp5 = (s2 - s1)*2 */
1350
0
    felem_diff_zero107(ftmp5, ftmp6);
1351
0
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1352
0
    felem_scalar(ftmp5, 2);
1353
0
    /* ftmp5[i] < 2^109 */
1354
0
    felem_shrink(small1, ftmp5);
1355
0
    y_equal = smallfelem_is_zero(small1);
1356
0
1357
0
    if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1358
0
        point_double(x3, y3, z3, x1, y1, z1);
1359
0
        return;
1360
0
    }
1361
0
1362
0
    /* I = ftmp = (2h)**2 */
1363
0
    felem_assign(ftmp, ftmp4);
1364
0
    felem_scalar(ftmp, 2);
1365
0
    /* ftmp[i] < 2*2^108 = 2^109 */
1366
0
    felem_square(tmp, ftmp);
1367
0
    felem_reduce(ftmp, tmp);
1368
0
1369
0
    /* J = ftmp2 = h * I */
1370
0
    felem_mul(tmp, ftmp4, ftmp);
1371
0
    felem_reduce(ftmp2, tmp);
1372
0
1373
0
    /* V = ftmp4 = U1 * I */
1374
0
    felem_mul(tmp, ftmp3, ftmp);
1375
0
    felem_reduce(ftmp4, tmp);
1376
0
1377
0
    /* x_out = r**2 - J - 2V */
1378
0
    smallfelem_square(tmp, small1);
1379
0
    felem_reduce(x_out, tmp);
1380
0
    felem_assign(ftmp3, ftmp4);
1381
0
    felem_scalar(ftmp4, 2);
1382
0
    felem_sum(ftmp4, ftmp2);
1383
0
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1384
0
    felem_diff(x_out, ftmp4);
1385
0
    /* x_out[i] < 2^105 + 2^101 */
1386
0
1387
0
    /* y_out = r(V-x_out) - 2 * s1 * J */
1388
0
    felem_diff_zero107(ftmp3, x_out);
1389
0
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1390
0
    felem_small_mul(tmp, small1, ftmp3);
1391
0
    felem_mul(tmp2, ftmp6, ftmp2);
1392
0
    longfelem_scalar(tmp2, 2);
1393
0
    /* tmp2[i] < 2*2^67 = 2^68 */
1394
0
    longfelem_diff(tmp, tmp2);
1395
0
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1396
0
    felem_reduce_zero105(y_out, tmp);
1397
0
    /* y_out[i] < 2^106 */
1398
0
1399
0
    copy_small_conditional(x_out, x2, z1_is_zero);
1400
0
    copy_conditional(x_out, x1, z2_is_zero);
1401
0
    copy_small_conditional(y_out, y2, z1_is_zero);
1402
0
    copy_conditional(y_out, y1, z2_is_zero);
1403
0
    copy_small_conditional(z_out, z2, z1_is_zero);
1404
0
    copy_conditional(z_out, z1, z2_is_zero);
1405
0
    felem_assign(x3, x_out);
1406
0
    felem_assign(y3, y_out);
1407
0
    felem_assign(z3, z_out);
1408
0
}
1409
1410
/*
1411
 * point_add_small is the same as point_add, except that it operates on
1412
 * smallfelems
1413
 */
1414
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1415
                            smallfelem x1, smallfelem y1, smallfelem z1,
1416
                            smallfelem x2, smallfelem y2, smallfelem z2)
1417
0
{
1418
0
    felem felem_x3, felem_y3, felem_z3;
1419
0
    felem felem_x1, felem_y1, felem_z1;
1420
0
    smallfelem_expand(felem_x1, x1);
1421
0
    smallfelem_expand(felem_y1, y1);
1422
0
    smallfelem_expand(felem_z1, z1);
1423
0
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1424
0
              x2, y2, z2);
1425
0
    felem_shrink(x3, felem_x3);
1426
0
    felem_shrink(y3, felem_y3);
1427
0
    felem_shrink(z3, felem_z3);
1428
0
}
1429
1430
/*-
1431
 * Base point pre computation
1432
 * --------------------------
1433
 *
1434
 * Two different sorts of precomputed tables are used in the following code.
1435
 * Each contain various points on the curve, where each point is three field
1436
 * elements (x, y, z).
1437
 *
1438
 * For the base point table, z is usually 1 (0 for the point at infinity).
1439
 * This table has 2 * 16 elements, starting with the following:
1440
 * index | bits    | point
1441
 * ------+---------+------------------------------
1442
 *     0 | 0 0 0 0 | 0G
1443
 *     1 | 0 0 0 1 | 1G
1444
 *     2 | 0 0 1 0 | 2^64G
1445
 *     3 | 0 0 1 1 | (2^64 + 1)G
1446
 *     4 | 0 1 0 0 | 2^128G
1447
 *     5 | 0 1 0 1 | (2^128 + 1)G
1448
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1449
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1450
 *     8 | 1 0 0 0 | 2^192G
1451
 *     9 | 1 0 0 1 | (2^192 + 1)G
1452
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1453
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1454
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1455
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1456
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1457
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1458
 * followed by a copy of this with each element multiplied by 2^32.
1459
 *
1460
 * The reason for this is so that we can clock bits into four different
1461
 * locations when doing simple scalar multiplies against the base point,
1462
 * and then another four locations using the second 16 elements.
1463
 *
1464
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1465
1466
/* gmul is the table of precomputed base points */
1467
static const smallfelem gmul[2][16][3] = {
1468
    {{{0, 0, 0, 0},
1469
      {0, 0, 0, 0},
1470
      {0, 0, 0, 0}},
1471
     {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1472
       0x6b17d1f2e12c4247},
1473
      {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1474
       0x4fe342e2fe1a7f9b},
1475
      {1, 0, 0, 0}},
1476
     {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1477
       0x0fa822bc2811aaa5},
1478
      {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1479
       0xbff44ae8f5dba80d},
1480
      {1, 0, 0, 0}},
1481
     {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1482
       0x300a4bbc89d6726f},
1483
      {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1484
       0x72aac7e0d09b4644},
1485
      {1, 0, 0, 0}},
1486
     {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1487
       0x447d739beedb5e67},
1488
      {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1489
       0x2d4825ab834131ee},
1490
      {1, 0, 0, 0}},
1491
     {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1492
       0xef9519328a9c72ff},
1493
      {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1494
       0x611e9fc37dbb2c9b},
1495
      {1, 0, 0, 0}},
1496
     {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1497
       0x550663797b51f5d8},
1498
      {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1499
       0x157164848aecb851},
1500
      {1, 0, 0, 0}},
1501
     {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1502
       0xeb5d7745b21141ea},
1503
      {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1504
       0xeafd72ebdbecc17b},
1505
      {1, 0, 0, 0}},
1506
     {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1507
       0xa6d39677a7849276},
1508
      {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1509
       0x674f84749b0b8816},
1510
      {1, 0, 0, 0}},
1511
     {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1512
       0x4e769e7672c9ddad},
1513
      {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1514
       0x42b99082de830663},
1515
      {1, 0, 0, 0}},
1516
     {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1517
       0x78878ef61c6ce04d},
1518
      {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1519
       0xb6cb3f5d7b72c321},
1520
      {1, 0, 0, 0}},
1521
     {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1522
       0x0c88bc4d716b1287},
1523
      {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1524
       0xdd5ddea3f3901dc6},
1525
      {1, 0, 0, 0}},
1526
     {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1527
       0x68f344af6b317466},
1528
      {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1529
       0x31b9c405f8540a20},
1530
      {1, 0, 0, 0}},
1531
     {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1532
       0x4052bf4b6f461db9},
1533
      {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1534
       0xfecf4d5190b0fc61},
1535
      {1, 0, 0, 0}},
1536
     {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1537
       0x1eddbae2c802e41a},
1538
      {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1539
       0x43104d86560ebcfc},
1540
      {1, 0, 0, 0}},
1541
     {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1542
       0xb48e26b484f7a21c},
1543
      {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1544
       0xfac015404d4d3dab},
1545
      {1, 0, 0, 0}}},
1546
    {{{0, 0, 0, 0},
1547
      {0, 0, 0, 0},
1548
      {0, 0, 0, 0}},
1549
     {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1550
       0x7fe36b40af22af89},
1551
      {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1552
       0xe697d45825b63624},
1553
      {1, 0, 0, 0}},
1554
     {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1555
       0x4a5b506612a677a6},
1556
      {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1557
       0xeb13461ceac089f1},
1558
      {1, 0, 0, 0}},
1559
     {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1560
       0x0781b8291c6a220a},
1561
      {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1562
       0x690cde8df0151593},
1563
      {1, 0, 0, 0}},
1564
     {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1565
       0x8a535f566ec73617},
1566
      {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1567
       0x0455c08468b08bd7},
1568
      {1, 0, 0, 0}},
1569
     {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1570
       0x06bada7ab77f8276},
1571
      {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1572
       0x5b476dfd0e6cb18a},
1573
      {1, 0, 0, 0}},
1574
     {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1575
       0x3e29864e8a2ec908},
1576
      {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1577
       0x239b90ea3dc31e7e},
1578
      {1, 0, 0, 0}},
1579
     {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1580
       0x820f4dd949f72ff7},
1581
      {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1582
       0x140406ec783a05ec},
1583
      {1, 0, 0, 0}},
1584
     {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1585
       0x68f6b8542783dfee},
1586
      {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1587
       0xcbe1feba92e40ce6},
1588
      {1, 0, 0, 0}},
1589
     {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1590
       0xd0b2f94d2f420109},
1591
      {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1592
       0x971459828b0719e5},
1593
      {1, 0, 0, 0}},
1594
     {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1595
       0x961610004a866aba},
1596
      {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1597
       0x7acb9fadcee75e44},
1598
      {1, 0, 0, 0}},
1599
     {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1600
       0x24eb9acca333bf5b},
1601
      {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1602
       0x69f891c5acd079cc},
1603
      {1, 0, 0, 0}},
1604
     {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1605
       0xe51f547c5972a107},
1606
      {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1607
       0x1c309a2b25bb1387},
1608
      {1, 0, 0, 0}},
1609
     {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1610
       0x20b87b8aa2c4e503},
1611
      {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1612
       0xf5c6fa49919776be},
1613
      {1, 0, 0, 0}},
1614
     {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1615
       0x1ed7d1b9332010b9},
1616
      {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1617
       0x3a2b03f03217257a},
1618
      {1, 0, 0, 0}},
1619
     {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1620
       0x15fee545c78dd9f6},
1621
      {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1622
       0x4ab5b6b2b8753f81},
1623
      {1, 0, 0, 0}}}
1624
};
1625
1626
/*
1627
 * select_point selects the |idx|th point from a precomputation table and
1628
 * copies it to out.
1629
 */
1630
static void select_point(const u64 idx, unsigned int size,
1631
                         const smallfelem pre_comp[16][3], smallfelem out[3])
1632
0
{
1633
0
    unsigned i, j;
1634
0
    u64 *outlimbs = &out[0][0];
1635
0
1636
0
    memset(out, 0, sizeof(*out) * 3);
1637
0
1638
0
    for (i = 0; i < size; i++) {
1639
0
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1640
0
        u64 mask = i ^ idx;
1641
0
        mask |= mask >> 4;
1642
0
        mask |= mask >> 2;
1643
0
        mask |= mask >> 1;
1644
0
        mask &= 1;
1645
0
        mask--;
1646
0
        for (j = 0; j < NLIMBS * 3; j++)
1647
0
            outlimbs[j] |= inlimbs[j] & mask;
1648
0
    }
1649
0
}
1650
1651
/* get_bit returns the |i|th bit in |in| */
1652
static char get_bit(const felem_bytearray in, int i)
1653
0
{
1654
0
    if ((i < 0) || (i >= 256))
1655
0
        return 0;
1656
0
    return (in[i >> 3] >> (i & 7)) & 1;
1657
0
}
1658
1659
/*
1660
 * Interleaved point multiplication using precomputed point multiples: The
1661
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1662
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1663
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1664
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1665
 */
1666
static void batch_mul(felem x_out, felem y_out, felem z_out,
1667
                      const felem_bytearray scalars[],
1668
                      const unsigned num_points, const u8 *g_scalar,
1669
                      const int mixed, const smallfelem pre_comp[][17][3],
1670
                      const smallfelem g_pre_comp[2][16][3])
1671
0
{
1672
0
    int i, skip;
1673
0
    unsigned num, gen_mul = (g_scalar != NULL);
1674
0
    felem nq[3], ftmp;
1675
0
    smallfelem tmp[3];
1676
0
    u64 bits;
1677
0
    u8 sign, digit;
1678
0
1679
0
    /* set nq to the point at infinity */
1680
0
    memset(nq, 0, sizeof(nq));
1681
0
1682
0
    /*
1683
0
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1684
0
     * of the generator (two in each of the last 32 rounds) and additions of
1685
0
     * other points multiples (every 5th round).
1686
0
     */
1687
0
    skip = 1;                   /* save two point operations in the first
1688
0
                                 * round */
1689
0
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
1690
0
        /* double */
1691
0
        if (!skip)
1692
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1693
0
1694
0
        /* add multiples of the generator */
1695
0
        if (gen_mul && (i <= 31)) {
1696
0
            /* first, look 32 bits upwards */
1697
0
            bits = get_bit(g_scalar, i + 224) << 3;
1698
0
            bits |= get_bit(g_scalar, i + 160) << 2;
1699
0
            bits |= get_bit(g_scalar, i + 96) << 1;
1700
0
            bits |= get_bit(g_scalar, i + 32);
1701
0
            /* select the point to add, in constant time */
1702
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1703
0
1704
0
            if (!skip) {
1705
0
                /* Arg 1 below is for "mixed" */
1706
0
                point_add(nq[0], nq[1], nq[2],
1707
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1708
0
            } else {
1709
0
                smallfelem_expand(nq[0], tmp[0]);
1710
0
                smallfelem_expand(nq[1], tmp[1]);
1711
0
                smallfelem_expand(nq[2], tmp[2]);
1712
0
                skip = 0;
1713
0
            }
1714
0
1715
0
            /* second, look at the current position */
1716
0
            bits = get_bit(g_scalar, i + 192) << 3;
1717
0
            bits |= get_bit(g_scalar, i + 128) << 2;
1718
0
            bits |= get_bit(g_scalar, i + 64) << 1;
1719
0
            bits |= get_bit(g_scalar, i);
1720
0
            /* select the point to add, in constant time */
1721
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1722
0
            /* Arg 1 below is for "mixed" */
1723
0
            point_add(nq[0], nq[1], nq[2],
1724
0
                      nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1725
0
        }
1726
0
1727
0
        /* do other additions every 5 doublings */
1728
0
        if (num_points && (i % 5 == 0)) {
1729
0
            /* loop over all scalars */
1730
0
            for (num = 0; num < num_points; ++num) {
1731
0
                bits = get_bit(scalars[num], i + 4) << 5;
1732
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1733
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1734
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1735
0
                bits |= get_bit(scalars[num], i) << 1;
1736
0
                bits |= get_bit(scalars[num], i - 1);
1737
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1738
0
1739
0
                /*
1740
0
                 * select the point to add or subtract, in constant time
1741
0
                 */
1742
0
                select_point(digit, 17, pre_comp[num], tmp);
1743
0
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1744
0
                                               * point */
1745
0
                copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1746
0
                felem_contract(tmp[1], ftmp);
1747
0
1748
0
                if (!skip) {
1749
0
                    point_add(nq[0], nq[1], nq[2],
1750
0
                              nq[0], nq[1], nq[2],
1751
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1752
0
                } else {
1753
0
                    smallfelem_expand(nq[0], tmp[0]);
1754
0
                    smallfelem_expand(nq[1], tmp[1]);
1755
0
                    smallfelem_expand(nq[2], tmp[2]);
1756
0
                    skip = 0;
1757
0
                }
1758
0
            }
1759
0
        }
1760
0
    }
1761
0
    felem_assign(x_out, nq[0]);
1762
0
    felem_assign(y_out, nq[1]);
1763
0
    felem_assign(z_out, nq[2]);
1764
0
}
1765
1766
/* Precomputation for the group generator. */
1767
struct nistp256_pre_comp_st {
1768
    smallfelem g_pre_comp[2][16][3];
1769
    CRYPTO_REF_COUNT references;
1770
    CRYPTO_RWLOCK *lock;
1771
};
1772
1773
const EC_METHOD *EC_GFp_nistp256_method(void)
1774
0
{
1775
0
    static const EC_METHOD ret = {
1776
0
        EC_FLAGS_DEFAULT_OCT,
1777
0
        NID_X9_62_prime_field,
1778
0
        ec_GFp_nistp256_group_init,
1779
0
        ec_GFp_simple_group_finish,
1780
0
        ec_GFp_simple_group_clear_finish,
1781
0
        ec_GFp_nist_group_copy,
1782
0
        ec_GFp_nistp256_group_set_curve,
1783
0
        ec_GFp_simple_group_get_curve,
1784
0
        ec_GFp_simple_group_get_degree,
1785
0
        ec_group_simple_order_bits,
1786
0
        ec_GFp_simple_group_check_discriminant,
1787
0
        ec_GFp_simple_point_init,
1788
0
        ec_GFp_simple_point_finish,
1789
0
        ec_GFp_simple_point_clear_finish,
1790
0
        ec_GFp_simple_point_copy,
1791
0
        ec_GFp_simple_point_set_to_infinity,
1792
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1793
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1794
0
        ec_GFp_simple_point_set_affine_coordinates,
1795
0
        ec_GFp_nistp256_point_get_affine_coordinates,
1796
0
        0 /* point_set_compressed_coordinates */ ,
1797
0
        0 /* point2oct */ ,
1798
0
        0 /* oct2point */ ,
1799
0
        ec_GFp_simple_add,
1800
0
        ec_GFp_simple_dbl,
1801
0
        ec_GFp_simple_invert,
1802
0
        ec_GFp_simple_is_at_infinity,
1803
0
        ec_GFp_simple_is_on_curve,
1804
0
        ec_GFp_simple_cmp,
1805
0
        ec_GFp_simple_make_affine,
1806
0
        ec_GFp_simple_points_make_affine,
1807
0
        ec_GFp_nistp256_points_mul,
1808
0
        ec_GFp_nistp256_precompute_mult,
1809
0
        ec_GFp_nistp256_have_precompute_mult,
1810
0
        ec_GFp_nist_field_mul,
1811
0
        ec_GFp_nist_field_sqr,
1812
0
        0 /* field_div */ ,
1813
0
        0 /* field_encode */ ,
1814
0
        0 /* field_decode */ ,
1815
0
        0,                      /* field_set_to_one */
1816
0
        ec_key_simple_priv2oct,
1817
0
        ec_key_simple_oct2priv,
1818
0
        0, /* set private */
1819
0
        ec_key_simple_generate_key,
1820
0
        ec_key_simple_check_key,
1821
0
        ec_key_simple_generate_public_key,
1822
0
        0, /* keycopy */
1823
0
        0, /* keyfinish */
1824
0
        ecdh_simple_compute_key,
1825
0
        0, /* field_inverse_mod_ord */
1826
0
        0, /* blind_coordinates */
1827
0
        0, /* ladder_pre */
1828
0
        0, /* ladder_step */
1829
0
        0  /* ladder_post */
1830
0
    };
1831
0
1832
0
    return &ret;
1833
0
}
1834
1835
/******************************************************************************/
1836
/*
1837
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1838
 */
1839
1840
static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1841
0
{
1842
0
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1843
0
1844
0
    if (ret == NULL) {
1845
0
        ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1846
0
        return ret;
1847
0
    }
1848
0
1849
0
    ret->references = 1;
1850
0
1851
0
    ret->lock = CRYPTO_THREAD_lock_new();
1852
0
    if (ret->lock == NULL) {
1853
0
        ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1854
0
        OPENSSL_free(ret);
1855
0
        return NULL;
1856
0
    }
1857
0
    return ret;
1858
0
}
1859
1860
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1861
0
{
1862
0
    int i;
1863
0
    if (p != NULL)
1864
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1865
0
    return p;
1866
0
}
1867
1868
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1869
0
{
1870
0
    int i;
1871
0
1872
0
    if (pre == NULL)
1873
0
        return;
1874
0
1875
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1876
0
    REF_PRINT_COUNT("EC_nistp256", x);
1877
0
    if (i > 0)
1878
0
        return;
1879
0
    REF_ASSERT_ISNT(i < 0);
1880
0
1881
0
    CRYPTO_THREAD_lock_free(pre->lock);
1882
0
    OPENSSL_free(pre);
1883
0
}
1884
1885
/******************************************************************************/
1886
/*
1887
 * OPENSSL EC_METHOD FUNCTIONS
1888
 */
1889
1890
int ec_GFp_nistp256_group_init(EC_GROUP *group)
1891
0
{
1892
0
    int ret;
1893
0
    ret = ec_GFp_simple_group_init(group);
1894
0
    group->a_is_minus3 = 1;
1895
0
    return ret;
1896
0
}
1897
1898
int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1899
                                    const BIGNUM *a, const BIGNUM *b,
1900
                                    BN_CTX *ctx)
1901
0
{
1902
0
    int ret = 0;
1903
0
    BN_CTX *new_ctx = NULL;
1904
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1905
0
1906
0
    if (ctx == NULL)
1907
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1908
0
            return 0;
1909
0
    BN_CTX_start(ctx);
1910
0
    curve_p = BN_CTX_get(ctx);
1911
0
    curve_a = BN_CTX_get(ctx);
1912
0
    curve_b = BN_CTX_get(ctx);
1913
0
    if (curve_b == NULL)
1914
0
        goto err;
1915
0
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1916
0
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1917
0
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1918
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1919
0
        ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1920
0
              EC_R_WRONG_CURVE_PARAMETERS);
1921
0
        goto err;
1922
0
    }
1923
0
    group->field_mod_func = BN_nist_mod_256;
1924
0
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1925
0
 err:
1926
0
    BN_CTX_end(ctx);
1927
0
    BN_CTX_free(new_ctx);
1928
0
    return ret;
1929
0
}
1930
1931
/*
1932
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1933
 * (X/Z^2, Y/Z^3)
1934
 */
1935
int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1936
                                                 const EC_POINT *point,
1937
                                                 BIGNUM *x, BIGNUM *y,
1938
                                                 BN_CTX *ctx)
1939
0
{
1940
0
    felem z1, z2, x_in, y_in;
1941
0
    smallfelem x_out, y_out;
1942
0
    longfelem tmp;
1943
0
1944
0
    if (EC_POINT_is_at_infinity(group, point)) {
1945
0
        ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1946
0
              EC_R_POINT_AT_INFINITY);
1947
0
        return 0;
1948
0
    }
1949
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1950
0
        (!BN_to_felem(z1, point->Z)))
1951
0
        return 0;
1952
0
    felem_inv(z2, z1);
1953
0
    felem_square(tmp, z2);
1954
0
    felem_reduce(z1, tmp);
1955
0
    felem_mul(tmp, x_in, z1);
1956
0
    felem_reduce(x_in, tmp);
1957
0
    felem_contract(x_out, x_in);
1958
0
    if (x != NULL) {
1959
0
        if (!smallfelem_to_BN(x, x_out)) {
1960
0
            ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1961
0
                  ERR_R_BN_LIB);
1962
0
            return 0;
1963
0
        }
1964
0
    }
1965
0
    felem_mul(tmp, z1, z2);
1966
0
    felem_reduce(z1, tmp);
1967
0
    felem_mul(tmp, y_in, z1);
1968
0
    felem_reduce(y_in, tmp);
1969
0
    felem_contract(y_out, y_in);
1970
0
    if (y != NULL) {
1971
0
        if (!smallfelem_to_BN(y, y_out)) {
1972
0
            ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1973
0
                  ERR_R_BN_LIB);
1974
0
            return 0;
1975
0
        }
1976
0
    }
1977
0
    return 1;
1978
0
}
1979
1980
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1981
static void make_points_affine(size_t num, smallfelem points[][3],
1982
                               smallfelem tmp_smallfelems[])
1983
0
{
1984
0
    /*
1985
0
     * Runs in constant time, unless an input is the point at infinity (which
1986
0
     * normally shouldn't happen).
1987
0
     */
1988
0
    ec_GFp_nistp_points_make_affine_internal(num,
1989
0
                                             points,
1990
0
                                             sizeof(smallfelem),
1991
0
                                             tmp_smallfelems,
1992
0
                                             (void (*)(void *))smallfelem_one,
1993
0
                                             smallfelem_is_zero_int,
1994
0
                                             (void (*)(void *, const void *))
1995
0
                                             smallfelem_assign,
1996
0
                                             (void (*)(void *, const void *))
1997
0
                                             smallfelem_square_contract,
1998
0
                                             (void (*)
1999
0
                                              (void *, const void *,
2000
0
                                               const void *))
2001
0
                                             smallfelem_mul_contract,
2002
0
                                             (void (*)(void *, const void *))
2003
0
                                             smallfelem_inv_contract,
2004
0
                                             /* nothing to contract */
2005
0
                                             (void (*)(void *, const void *))
2006
0
                                             smallfelem_assign);
2007
0
}
2008
2009
/*
2010
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2011
 * values Result is stored in r (r can equal one of the inputs).
2012
 */
2013
int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2014
                               const BIGNUM *scalar, size_t num,
2015
                               const EC_POINT *points[],
2016
                               const BIGNUM *scalars[], BN_CTX *ctx)
2017
0
{
2018
0
    int ret = 0;
2019
0
    int j;
2020
0
    int mixed = 0;
2021
0
    BIGNUM *x, *y, *z, *tmp_scalar;
2022
0
    felem_bytearray g_secret;
2023
0
    felem_bytearray *secrets = NULL;
2024
0
    smallfelem (*pre_comp)[17][3] = NULL;
2025
0
    smallfelem *tmp_smallfelems = NULL;
2026
0
    felem_bytearray tmp;
2027
0
    unsigned i, num_bytes;
2028
0
    int have_pre_comp = 0;
2029
0
    size_t num_points = num;
2030
0
    smallfelem x_in, y_in, z_in;
2031
0
    felem x_out, y_out, z_out;
2032
0
    NISTP256_PRE_COMP *pre = NULL;
2033
0
    const smallfelem(*g_pre_comp)[16][3] = NULL;
2034
0
    EC_POINT *generator = NULL;
2035
0
    const EC_POINT *p = NULL;
2036
0
    const BIGNUM *p_scalar = NULL;
2037
0
2038
0
    BN_CTX_start(ctx);
2039
0
    x = BN_CTX_get(ctx);
2040
0
    y = BN_CTX_get(ctx);
2041
0
    z = BN_CTX_get(ctx);
2042
0
    tmp_scalar = BN_CTX_get(ctx);
2043
0
    if (tmp_scalar == NULL)
2044
0
        goto err;
2045
0
2046
0
    if (scalar != NULL) {
2047
0
        pre = group->pre_comp.nistp256;
2048
0
        if (pre)
2049
0
            /* we have precomputation, try to use it */
2050
0
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2051
0
        else
2052
0
            /* try to use the standard precomputation */
2053
0
            g_pre_comp = &gmul[0];
2054
0
        generator = EC_POINT_new(group);
2055
0
        if (generator == NULL)
2056
0
            goto err;
2057
0
        /* get the generator from precomputation */
2058
0
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
2059
0
            !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
2060
0
            !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2061
0
            ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2062
0
            goto err;
2063
0
        }
2064
0
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
2065
0
                                                      generator, x, y, z,
2066
0
                                                      ctx))
2067
0
            goto err;
2068
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2069
0
            /* precomputation matches generator */
2070
0
            have_pre_comp = 1;
2071
0
        else
2072
0
            /*
2073
0
             * we don't have valid precomputation: treat the generator as a
2074
0
             * random point
2075
0
             */
2076
0
            num_points++;
2077
0
    }
2078
0
    if (num_points > 0) {
2079
0
        if (num_points >= 3) {
2080
0
            /*
2081
0
             * unless we precompute multiples for just one or two points,
2082
0
             * converting those into affine form is time well spent
2083
0
             */
2084
0
            mixed = 1;
2085
0
        }
2086
0
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2087
0
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2088
0
        if (mixed)
2089
0
            tmp_smallfelems =
2090
0
              OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2091
0
        if ((secrets == NULL) || (pre_comp == NULL)
2092
0
            || (mixed && (tmp_smallfelems == NULL))) {
2093
0
            ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
2094
0
            goto err;
2095
0
        }
2096
0
2097
0
        /*
2098
0
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2099
0
         * i.e., they contribute nothing to the linear combination
2100
0
         */
2101
0
        memset(secrets, 0, sizeof(*secrets) * num_points);
2102
0
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2103
0
        for (i = 0; i < num_points; ++i) {
2104
0
            if (i == num)
2105
0
                /*
2106
0
                 * we didn't have a valid precomputation, so we pick the
2107
0
                 * generator
2108
0
                 */
2109
0
            {
2110
0
                p = EC_GROUP_get0_generator(group);
2111
0
                p_scalar = scalar;
2112
0
            } else
2113
0
                /* the i^th point */
2114
0
            {
2115
0
                p = points[i];
2116
0
                p_scalar = scalars[i];
2117
0
            }
2118
0
            if ((p_scalar != NULL) && (p != NULL)) {
2119
0
                /* reduce scalar to 0 <= scalar < 2^256 */
2120
0
                if ((BN_num_bits(p_scalar) > 256)
2121
0
                    || (BN_is_negative(p_scalar))) {
2122
0
                    /*
2123
0
                     * this is an unusual input, and we don't guarantee
2124
0
                     * constant-timeness
2125
0
                     */
2126
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2127
0
                        ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2128
0
                        goto err;
2129
0
                    }
2130
0
                    num_bytes = BN_bn2bin(tmp_scalar, tmp);
2131
0
                } else
2132
0
                    num_bytes = BN_bn2bin(p_scalar, tmp);
2133
0
                flip_endian(secrets[i], tmp, num_bytes);
2134
0
                /* precompute multiples */
2135
0
                if ((!BN_to_felem(x_out, p->X)) ||
2136
0
                    (!BN_to_felem(y_out, p->Y)) ||
2137
0
                    (!BN_to_felem(z_out, p->Z)))
2138
0
                    goto err;
2139
0
                felem_shrink(pre_comp[i][1][0], x_out);
2140
0
                felem_shrink(pre_comp[i][1][1], y_out);
2141
0
                felem_shrink(pre_comp[i][1][2], z_out);
2142
0
                for (j = 2; j <= 16; ++j) {
2143
0
                    if (j & 1) {
2144
0
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2145
0
                                        pre_comp[i][j][2], pre_comp[i][1][0],
2146
0
                                        pre_comp[i][1][1], pre_comp[i][1][2],
2147
0
                                        pre_comp[i][j - 1][0],
2148
0
                                        pre_comp[i][j - 1][1],
2149
0
                                        pre_comp[i][j - 1][2]);
2150
0
                    } else {
2151
0
                        point_double_small(pre_comp[i][j][0],
2152
0
                                           pre_comp[i][j][1],
2153
0
                                           pre_comp[i][j][2],
2154
0
                                           pre_comp[i][j / 2][0],
2155
0
                                           pre_comp[i][j / 2][1],
2156
0
                                           pre_comp[i][j / 2][2]);
2157
0
                    }
2158
0
                }
2159
0
            }
2160
0
        }
2161
0
        if (mixed)
2162
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2163
0
    }
2164
0
2165
0
    /* the scalar for the generator */
2166
0
    if ((scalar != NULL) && (have_pre_comp)) {
2167
0
        memset(g_secret, 0, sizeof(g_secret));
2168
0
        /* reduce scalar to 0 <= scalar < 2^256 */
2169
0
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2170
0
            /*
2171
0
             * this is an unusual input, and we don't guarantee
2172
0
             * constant-timeness
2173
0
             */
2174
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2175
0
                ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2176
0
                goto err;
2177
0
            }
2178
0
            num_bytes = BN_bn2bin(tmp_scalar, tmp);
2179
0
        } else
2180
0
            num_bytes = BN_bn2bin(scalar, tmp);
2181
0
        flip_endian(g_secret, tmp, num_bytes);
2182
0
        /* do the multiplication with generator precomputation */
2183
0
        batch_mul(x_out, y_out, z_out,
2184
0
                  (const felem_bytearray(*))secrets, num_points,
2185
0
                  g_secret,
2186
0
                  mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2187
0
    } else
2188
0
        /* do the multiplication without generator precomputation */
2189
0
        batch_mul(x_out, y_out, z_out,
2190
0
                  (const felem_bytearray(*))secrets, num_points,
2191
0
                  NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2192
0
    /* reduce the output to its unique minimal representation */
2193
0
    felem_contract(x_in, x_out);
2194
0
    felem_contract(y_in, y_out);
2195
0
    felem_contract(z_in, z_out);
2196
0
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2197
0
        (!smallfelem_to_BN(z, z_in))) {
2198
0
        ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2199
0
        goto err;
2200
0
    }
2201
0
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2202
0
2203
0
 err:
2204
0
    BN_CTX_end(ctx);
2205
0
    EC_POINT_free(generator);
2206
0
    OPENSSL_free(secrets);
2207
0
    OPENSSL_free(pre_comp);
2208
0
    OPENSSL_free(tmp_smallfelems);
2209
0
    return ret;
2210
0
}
2211
2212
int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2213
0
{
2214
0
    int ret = 0;
2215
0
    NISTP256_PRE_COMP *pre = NULL;
2216
0
    int i, j;
2217
0
    BN_CTX *new_ctx = NULL;
2218
0
    BIGNUM *x, *y;
2219
0
    EC_POINT *generator = NULL;
2220
0
    smallfelem tmp_smallfelems[32];
2221
0
    felem x_tmp, y_tmp, z_tmp;
2222
0
2223
0
    /* throw away old precomputation */
2224
0
    EC_pre_comp_free(group);
2225
0
    if (ctx == NULL)
2226
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2227
0
            return 0;
2228
0
    BN_CTX_start(ctx);
2229
0
    x = BN_CTX_get(ctx);
2230
0
    y = BN_CTX_get(ctx);
2231
0
    if (y == NULL)
2232
0
        goto err;
2233
0
    /* get the generator */
2234
0
    if (group->generator == NULL)
2235
0
        goto err;
2236
0
    generator = EC_POINT_new(group);
2237
0
    if (generator == NULL)
2238
0
        goto err;
2239
0
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2240
0
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2241
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2242
0
        goto err;
2243
0
    if ((pre = nistp256_pre_comp_new()) == NULL)
2244
0
        goto err;
2245
0
    /*
2246
0
     * if the generator is the standard one, use built-in precomputation
2247
0
     */
2248
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2249
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2250
0
        goto done;
2251
0
    }
2252
0
    if ((!BN_to_felem(x_tmp, group->generator->X)) ||
2253
0
        (!BN_to_felem(y_tmp, group->generator->Y)) ||
2254
0
        (!BN_to_felem(z_tmp, group->generator->Z)))
2255
0
        goto err;
2256
0
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2257
0
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2258
0
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2259
0
    /*
2260
0
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2261
0
     * 2^160*G, 2^224*G for the second one
2262
0
     */
2263
0
    for (i = 1; i <= 8; i <<= 1) {
2264
0
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2265
0
                           pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2266
0
                           pre->g_pre_comp[0][i][1],
2267
0
                           pre->g_pre_comp[0][i][2]);
2268
0
        for (j = 0; j < 31; ++j) {
2269
0
            point_double_small(pre->g_pre_comp[1][i][0],
2270
0
                               pre->g_pre_comp[1][i][1],
2271
0
                               pre->g_pre_comp[1][i][2],
2272
0
                               pre->g_pre_comp[1][i][0],
2273
0
                               pre->g_pre_comp[1][i][1],
2274
0
                               pre->g_pre_comp[1][i][2]);
2275
0
        }
2276
0
        if (i == 8)
2277
0
            break;
2278
0
        point_double_small(pre->g_pre_comp[0][2 * i][0],
2279
0
                           pre->g_pre_comp[0][2 * i][1],
2280
0
                           pre->g_pre_comp[0][2 * i][2],
2281
0
                           pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2282
0
                           pre->g_pre_comp[1][i][2]);
2283
0
        for (j = 0; j < 31; ++j) {
2284
0
            point_double_small(pre->g_pre_comp[0][2 * i][0],
2285
0
                               pre->g_pre_comp[0][2 * i][1],
2286
0
                               pre->g_pre_comp[0][2 * i][2],
2287
0
                               pre->g_pre_comp[0][2 * i][0],
2288
0
                               pre->g_pre_comp[0][2 * i][1],
2289
0
                               pre->g_pre_comp[0][2 * i][2]);
2290
0
        }
2291
0
    }
2292
0
    for (i = 0; i < 2; i++) {
2293
0
        /* g_pre_comp[i][0] is the point at infinity */
2294
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2295
0
        /* the remaining multiples */
2296
0
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2297
0
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2298
0
                        pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2299
0
                        pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2300
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2301
0
                        pre->g_pre_comp[i][2][2]);
2302
0
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2303
0
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2304
0
                        pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2305
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2306
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2307
0
                        pre->g_pre_comp[i][2][2]);
2308
0
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2309
0
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2310
0
                        pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2311
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2312
0
                        pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2313
0
                        pre->g_pre_comp[i][4][2]);
2314
0
        /*
2315
0
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2316
0
         */
2317
0
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2318
0
                        pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2319
0
                        pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2320
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2321
0
                        pre->g_pre_comp[i][2][2]);
2322
0
        for (j = 1; j < 8; ++j) {
2323
0
            /* odd multiples: add G resp. 2^32*G */
2324
0
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2325
0
                            pre->g_pre_comp[i][2 * j + 1][1],
2326
0
                            pre->g_pre_comp[i][2 * j + 1][2],
2327
0
                            pre->g_pre_comp[i][2 * j][0],
2328
0
                            pre->g_pre_comp[i][2 * j][1],
2329
0
                            pre->g_pre_comp[i][2 * j][2],
2330
0
                            pre->g_pre_comp[i][1][0],
2331
0
                            pre->g_pre_comp[i][1][1],
2332
0
                            pre->g_pre_comp[i][1][2]);
2333
0
        }
2334
0
    }
2335
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2336
0
2337
0
 done:
2338
0
    SETPRECOMP(group, nistp256, pre);
2339
0
    pre = NULL;
2340
0
    ret = 1;
2341
0
2342
0
 err:
2343
0
    BN_CTX_end(ctx);
2344
0
    EC_POINT_free(generator);
2345
0
    BN_CTX_free(new_ctx);
2346
0
    EC_nistp256_pre_comp_free(pre);
2347
0
    return ret;
2348
0
}
2349
2350
int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2351
0
{
2352
0
    return HAVEPRECOMP(group, nistp256);
2353
0
}
2354
#endif