Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_lcl.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
0
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb felem[NLIMBS];
132
typedef uint128_t largefelem[NLIMBS];
133
134
static const limb bottom57bits = 0x1ffffffffffffff;
135
static const limb bottom58bits = 0x3ffffffffffffff;
136
137
/*
138
 * bin66_to_felem takes a little-endian byte array and converts it into felem
139
 * form. This assumes that the CPU is little-endian.
140
 */
141
static void bin66_to_felem(felem out, const u8 in[66])
142
0
{
143
0
    out[0] = (*((limb *) & in[0])) & bottom58bits;
144
0
    out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
145
0
    out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
146
0
    out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
147
0
    out[4] = (*((limb *) & in[29])) & bottom58bits;
148
0
    out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
149
0
    out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
150
0
    out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
151
0
    out[8] = (*((limb *) & in[58])) & bottom57bits;
152
0
}
153
154
/*
155
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
156
 * array. This assumes that the CPU is little-endian.
157
 */
158
static void felem_to_bin66(u8 out[66], const felem in)
159
0
{
160
0
    memset(out, 0, 66);
161
0
    (*((limb *) & out[0])) = in[0];
162
0
    (*((limb *) & out[7])) |= in[1] << 2;
163
0
    (*((limb *) & out[14])) |= in[2] << 4;
164
0
    (*((limb *) & out[21])) |= in[3] << 6;
165
0
    (*((limb *) & out[29])) = in[4];
166
0
    (*((limb *) & out[36])) |= in[5] << 2;
167
0
    (*((limb *) & out[43])) |= in[6] << 4;
168
0
    (*((limb *) & out[50])) |= in[7] << 6;
169
0
    (*((limb *) & out[58])) = in[8];
170
0
}
171
172
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
173
static void flip_endian(u8 *out, const u8 *in, unsigned len)
174
0
{
175
0
    unsigned i;
176
0
    for (i = 0; i < len; ++i)
177
0
        out[i] = in[len - 1 - i];
178
0
}
179
180
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
181
static int BN_to_felem(felem out, const BIGNUM *bn)
182
0
{
183
0
    felem_bytearray b_in;
184
0
    felem_bytearray b_out;
185
0
    unsigned num_bytes;
186
0
187
0
    /* BN_bn2bin eats leading zeroes */
188
0
    memset(b_out, 0, sizeof(b_out));
189
0
    num_bytes = BN_num_bytes(bn);
190
0
    if (num_bytes > sizeof(b_out)) {
191
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
192
0
        return 0;
193
0
    }
194
0
    if (BN_is_negative(bn)) {
195
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
196
0
        return 0;
197
0
    }
198
0
    num_bytes = BN_bn2bin(bn, b_in);
199
0
    flip_endian(b_out, b_in, num_bytes);
200
0
    bin66_to_felem(out, b_out);
201
0
    return 1;
202
0
}
203
204
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
205
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
206
0
{
207
0
    felem_bytearray b_in, b_out;
208
0
    felem_to_bin66(b_in, in);
209
0
    flip_endian(b_out, b_in, sizeof(b_out));
210
0
    return BN_bin2bn(b_out, sizeof(b_out), out);
211
0
}
212
213
/*-
214
 * Field operations
215
 * ----------------
216
 */
217
218
static void felem_one(felem out)
219
0
{
220
0
    out[0] = 1;
221
0
    out[1] = 0;
222
0
    out[2] = 0;
223
0
    out[3] = 0;
224
0
    out[4] = 0;
225
0
    out[5] = 0;
226
0
    out[6] = 0;
227
0
    out[7] = 0;
228
0
    out[8] = 0;
229
0
}
230
231
static void felem_assign(felem out, const felem in)
232
0
{
233
0
    out[0] = in[0];
234
0
    out[1] = in[1];
235
0
    out[2] = in[2];
236
0
    out[3] = in[3];
237
0
    out[4] = in[4];
238
0
    out[5] = in[5];
239
0
    out[6] = in[6];
240
0
    out[7] = in[7];
241
0
    out[8] = in[8];
242
0
}
243
244
/* felem_sum64 sets out = out + in. */
245
static void felem_sum64(felem out, const felem in)
246
0
{
247
0
    out[0] += in[0];
248
0
    out[1] += in[1];
249
0
    out[2] += in[2];
250
0
    out[3] += in[3];
251
0
    out[4] += in[4];
252
0
    out[5] += in[5];
253
0
    out[6] += in[6];
254
0
    out[7] += in[7];
255
0
    out[8] += in[8];
256
0
}
257
258
/* felem_scalar sets out = in * scalar */
259
static void felem_scalar(felem out, const felem in, limb scalar)
260
0
{
261
0
    out[0] = in[0] * scalar;
262
0
    out[1] = in[1] * scalar;
263
0
    out[2] = in[2] * scalar;
264
0
    out[3] = in[3] * scalar;
265
0
    out[4] = in[4] * scalar;
266
0
    out[5] = in[5] * scalar;
267
0
    out[6] = in[6] * scalar;
268
0
    out[7] = in[7] * scalar;
269
0
    out[8] = in[8] * scalar;
270
0
}
271
272
/* felem_scalar64 sets out = out * scalar */
273
static void felem_scalar64(felem out, limb scalar)
274
0
{
275
0
    out[0] *= scalar;
276
0
    out[1] *= scalar;
277
0
    out[2] *= scalar;
278
0
    out[3] *= scalar;
279
0
    out[4] *= scalar;
280
0
    out[5] *= scalar;
281
0
    out[6] *= scalar;
282
0
    out[7] *= scalar;
283
0
    out[8] *= scalar;
284
0
}
285
286
/* felem_scalar128 sets out = out * scalar */
287
static void felem_scalar128(largefelem out, limb scalar)
288
0
{
289
0
    out[0] *= scalar;
290
0
    out[1] *= scalar;
291
0
    out[2] *= scalar;
292
0
    out[3] *= scalar;
293
0
    out[4] *= scalar;
294
0
    out[5] *= scalar;
295
0
    out[6] *= scalar;
296
0
    out[7] *= scalar;
297
0
    out[8] *= scalar;
298
0
}
299
300
/*-
301
 * felem_neg sets |out| to |-in|
302
 * On entry:
303
 *   in[i] < 2^59 + 2^14
304
 * On exit:
305
 *   out[i] < 2^62
306
 */
307
static void felem_neg(felem out, const felem in)
308
0
{
309
0
    /* In order to prevent underflow, we subtract from 0 mod p. */
310
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
311
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
312
0
313
0
    out[0] = two62m3 - in[0];
314
0
    out[1] = two62m2 - in[1];
315
0
    out[2] = two62m2 - in[2];
316
0
    out[3] = two62m2 - in[3];
317
0
    out[4] = two62m2 - in[4];
318
0
    out[5] = two62m2 - in[5];
319
0
    out[6] = two62m2 - in[6];
320
0
    out[7] = two62m2 - in[7];
321
0
    out[8] = two62m2 - in[8];
322
0
}
323
324
/*-
325
 * felem_diff64 subtracts |in| from |out|
326
 * On entry:
327
 *   in[i] < 2^59 + 2^14
328
 * On exit:
329
 *   out[i] < out[i] + 2^62
330
 */
331
static void felem_diff64(felem out, const felem in)
332
0
{
333
0
    /*
334
0
     * In order to prevent underflow, we add 0 mod p before subtracting.
335
0
     */
336
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
337
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
338
0
339
0
    out[0] += two62m3 - in[0];
340
0
    out[1] += two62m2 - in[1];
341
0
    out[2] += two62m2 - in[2];
342
0
    out[3] += two62m2 - in[3];
343
0
    out[4] += two62m2 - in[4];
344
0
    out[5] += two62m2 - in[5];
345
0
    out[6] += two62m2 - in[6];
346
0
    out[7] += two62m2 - in[7];
347
0
    out[8] += two62m2 - in[8];
348
0
}
349
350
/*-
351
 * felem_diff_128_64 subtracts |in| from |out|
352
 * On entry:
353
 *   in[i] < 2^62 + 2^17
354
 * On exit:
355
 *   out[i] < out[i] + 2^63
356
 */
357
static void felem_diff_128_64(largefelem out, const felem in)
358
0
{
359
0
    /*
360
0
     * In order to prevent underflow, we add 0 mod p before subtracting.
361
0
     */
362
0
    static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
363
0
    static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
364
0
365
0
    out[0] += two63m6 - in[0];
366
0
    out[1] += two63m5 - in[1];
367
0
    out[2] += two63m5 - in[2];
368
0
    out[3] += two63m5 - in[3];
369
0
    out[4] += two63m5 - in[4];
370
0
    out[5] += two63m5 - in[5];
371
0
    out[6] += two63m5 - in[6];
372
0
    out[7] += two63m5 - in[7];
373
0
    out[8] += two63m5 - in[8];
374
0
}
375
376
/*-
377
 * felem_diff_128_64 subtracts |in| from |out|
378
 * On entry:
379
 *   in[i] < 2^126
380
 * On exit:
381
 *   out[i] < out[i] + 2^127 - 2^69
382
 */
383
static void felem_diff128(largefelem out, const largefelem in)
384
0
{
385
0
    /*
386
0
     * In order to prevent underflow, we add 0 mod p before subtracting.
387
0
     */
388
0
    static const uint128_t two127m70 =
389
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
390
0
    static const uint128_t two127m69 =
391
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
392
0
393
0
    out[0] += (two127m70 - in[0]);
394
0
    out[1] += (two127m69 - in[1]);
395
0
    out[2] += (two127m69 - in[2]);
396
0
    out[3] += (two127m69 - in[3]);
397
0
    out[4] += (two127m69 - in[4]);
398
0
    out[5] += (two127m69 - in[5]);
399
0
    out[6] += (two127m69 - in[6]);
400
0
    out[7] += (two127m69 - in[7]);
401
0
    out[8] += (two127m69 - in[8]);
402
0
}
403
404
/*-
405
 * felem_square sets |out| = |in|^2
406
 * On entry:
407
 *   in[i] < 2^62
408
 * On exit:
409
 *   out[i] < 17 * max(in[i]) * max(in[i])
410
 */
411
static void felem_square(largefelem out, const felem in)
412
0
{
413
0
    felem inx2, inx4;
414
0
    felem_scalar(inx2, in, 2);
415
0
    felem_scalar(inx4, in, 4);
416
0
417
0
    /*-
418
0
     * We have many cases were we want to do
419
0
     *   in[x] * in[y] +
420
0
     *   in[y] * in[x]
421
0
     * This is obviously just
422
0
     *   2 * in[x] * in[y]
423
0
     * However, rather than do the doubling on the 128 bit result, we
424
0
     * double one of the inputs to the multiplication by reading from
425
0
     * |inx2|
426
0
     */
427
0
428
0
    out[0] = ((uint128_t) in[0]) * in[0];
429
0
    out[1] = ((uint128_t) in[0]) * inx2[1];
430
0
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
431
0
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
432
0
    out[4] = ((uint128_t) in[0]) * inx2[4] +
433
0
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
434
0
    out[5] = ((uint128_t) in[0]) * inx2[5] +
435
0
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
436
0
    out[6] = ((uint128_t) in[0]) * inx2[6] +
437
0
             ((uint128_t) in[1]) * inx2[5] +
438
0
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
439
0
    out[7] = ((uint128_t) in[0]) * inx2[7] +
440
0
             ((uint128_t) in[1]) * inx2[6] +
441
0
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
442
0
    out[8] = ((uint128_t) in[0]) * inx2[8] +
443
0
             ((uint128_t) in[1]) * inx2[7] +
444
0
             ((uint128_t) in[2]) * inx2[6] +
445
0
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
446
0
447
0
    /*
448
0
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
449
0
     * They correspond to locations one bit up from the limbs produced above
450
0
     * so we would have to multiply by two to align them. Again, rather than
451
0
     * operate on the 128-bit result, we double one of the inputs to the
452
0
     * multiplication. If we want to double for both this reason, and the
453
0
     * reason above, then we end up multiplying by four.
454
0
     */
455
0
456
0
    /* 9 */
457
0
    out[0] += ((uint128_t) in[1]) * inx4[8] +
458
0
              ((uint128_t) in[2]) * inx4[7] +
459
0
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
460
0
461
0
    /* 10 */
462
0
    out[1] += ((uint128_t) in[2]) * inx4[8] +
463
0
              ((uint128_t) in[3]) * inx4[7] +
464
0
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
465
0
466
0
    /* 11 */
467
0
    out[2] += ((uint128_t) in[3]) * inx4[8] +
468
0
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
469
0
470
0
    /* 12 */
471
0
    out[3] += ((uint128_t) in[4]) * inx4[8] +
472
0
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
473
0
474
0
    /* 13 */
475
0
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
476
0
477
0
    /* 14 */
478
0
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
479
0
480
0
    /* 15 */
481
0
    out[6] += ((uint128_t) in[7]) * inx4[8];
482
0
483
0
    /* 16 */
484
0
    out[7] += ((uint128_t) in[8]) * inx2[8];
485
0
}
486
487
/*-
488
 * felem_mul sets |out| = |in1| * |in2|
489
 * On entry:
490
 *   in1[i] < 2^64
491
 *   in2[i] < 2^63
492
 * On exit:
493
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
494
 */
495
static void felem_mul(largefelem out, const felem in1, const felem in2)
496
0
{
497
0
    felem in2x2;
498
0
    felem_scalar(in2x2, in2, 2);
499
0
500
0
    out[0] = ((uint128_t) in1[0]) * in2[0];
501
0
502
0
    out[1] = ((uint128_t) in1[0]) * in2[1] +
503
0
             ((uint128_t) in1[1]) * in2[0];
504
0
505
0
    out[2] = ((uint128_t) in1[0]) * in2[2] +
506
0
             ((uint128_t) in1[1]) * in2[1] +
507
0
             ((uint128_t) in1[2]) * in2[0];
508
0
509
0
    out[3] = ((uint128_t) in1[0]) * in2[3] +
510
0
             ((uint128_t) in1[1]) * in2[2] +
511
0
             ((uint128_t) in1[2]) * in2[1] +
512
0
             ((uint128_t) in1[3]) * in2[0];
513
0
514
0
    out[4] = ((uint128_t) in1[0]) * in2[4] +
515
0
             ((uint128_t) in1[1]) * in2[3] +
516
0
             ((uint128_t) in1[2]) * in2[2] +
517
0
             ((uint128_t) in1[3]) * in2[1] +
518
0
             ((uint128_t) in1[4]) * in2[0];
519
0
520
0
    out[5] = ((uint128_t) in1[0]) * in2[5] +
521
0
             ((uint128_t) in1[1]) * in2[4] +
522
0
             ((uint128_t) in1[2]) * in2[3] +
523
0
             ((uint128_t) in1[3]) * in2[2] +
524
0
             ((uint128_t) in1[4]) * in2[1] +
525
0
             ((uint128_t) in1[5]) * in2[0];
526
0
527
0
    out[6] = ((uint128_t) in1[0]) * in2[6] +
528
0
             ((uint128_t) in1[1]) * in2[5] +
529
0
             ((uint128_t) in1[2]) * in2[4] +
530
0
             ((uint128_t) in1[3]) * in2[3] +
531
0
             ((uint128_t) in1[4]) * in2[2] +
532
0
             ((uint128_t) in1[5]) * in2[1] +
533
0
             ((uint128_t) in1[6]) * in2[0];
534
0
535
0
    out[7] = ((uint128_t) in1[0]) * in2[7] +
536
0
             ((uint128_t) in1[1]) * in2[6] +
537
0
             ((uint128_t) in1[2]) * in2[5] +
538
0
             ((uint128_t) in1[3]) * in2[4] +
539
0
             ((uint128_t) in1[4]) * in2[3] +
540
0
             ((uint128_t) in1[5]) * in2[2] +
541
0
             ((uint128_t) in1[6]) * in2[1] +
542
0
             ((uint128_t) in1[7]) * in2[0];
543
0
544
0
    out[8] = ((uint128_t) in1[0]) * in2[8] +
545
0
             ((uint128_t) in1[1]) * in2[7] +
546
0
             ((uint128_t) in1[2]) * in2[6] +
547
0
             ((uint128_t) in1[3]) * in2[5] +
548
0
             ((uint128_t) in1[4]) * in2[4] +
549
0
             ((uint128_t) in1[5]) * in2[3] +
550
0
             ((uint128_t) in1[6]) * in2[2] +
551
0
             ((uint128_t) in1[7]) * in2[1] +
552
0
             ((uint128_t) in1[8]) * in2[0];
553
0
554
0
    /* See comment in felem_square about the use of in2x2 here */
555
0
556
0
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
557
0
              ((uint128_t) in1[2]) * in2x2[7] +
558
0
              ((uint128_t) in1[3]) * in2x2[6] +
559
0
              ((uint128_t) in1[4]) * in2x2[5] +
560
0
              ((uint128_t) in1[5]) * in2x2[4] +
561
0
              ((uint128_t) in1[6]) * in2x2[3] +
562
0
              ((uint128_t) in1[7]) * in2x2[2] +
563
0
              ((uint128_t) in1[8]) * in2x2[1];
564
0
565
0
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
566
0
              ((uint128_t) in1[3]) * in2x2[7] +
567
0
              ((uint128_t) in1[4]) * in2x2[6] +
568
0
              ((uint128_t) in1[5]) * in2x2[5] +
569
0
              ((uint128_t) in1[6]) * in2x2[4] +
570
0
              ((uint128_t) in1[7]) * in2x2[3] +
571
0
              ((uint128_t) in1[8]) * in2x2[2];
572
0
573
0
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
574
0
              ((uint128_t) in1[4]) * in2x2[7] +
575
0
              ((uint128_t) in1[5]) * in2x2[6] +
576
0
              ((uint128_t) in1[6]) * in2x2[5] +
577
0
              ((uint128_t) in1[7]) * in2x2[4] +
578
0
              ((uint128_t) in1[8]) * in2x2[3];
579
0
580
0
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
581
0
              ((uint128_t) in1[5]) * in2x2[7] +
582
0
              ((uint128_t) in1[6]) * in2x2[6] +
583
0
              ((uint128_t) in1[7]) * in2x2[5] +
584
0
              ((uint128_t) in1[8]) * in2x2[4];
585
0
586
0
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
587
0
              ((uint128_t) in1[6]) * in2x2[7] +
588
0
              ((uint128_t) in1[7]) * in2x2[6] +
589
0
              ((uint128_t) in1[8]) * in2x2[5];
590
0
591
0
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
592
0
              ((uint128_t) in1[7]) * in2x2[7] +
593
0
              ((uint128_t) in1[8]) * in2x2[6];
594
0
595
0
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
596
0
              ((uint128_t) in1[8]) * in2x2[7];
597
0
598
0
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
599
0
}
600
601
static const limb bottom52bits = 0xfffffffffffff;
602
603
/*-
604
 * felem_reduce converts a largefelem to an felem.
605
 * On entry:
606
 *   in[i] < 2^128
607
 * On exit:
608
 *   out[i] < 2^59 + 2^14
609
 */
610
static void felem_reduce(felem out, const largefelem in)
611
0
{
612
0
    u64 overflow1, overflow2;
613
0
614
0
    out[0] = ((limb) in[0]) & bottom58bits;
615
0
    out[1] = ((limb) in[1]) & bottom58bits;
616
0
    out[2] = ((limb) in[2]) & bottom58bits;
617
0
    out[3] = ((limb) in[3]) & bottom58bits;
618
0
    out[4] = ((limb) in[4]) & bottom58bits;
619
0
    out[5] = ((limb) in[5]) & bottom58bits;
620
0
    out[6] = ((limb) in[6]) & bottom58bits;
621
0
    out[7] = ((limb) in[7]) & bottom58bits;
622
0
    out[8] = ((limb) in[8]) & bottom58bits;
623
0
624
0
    /* out[i] < 2^58 */
625
0
626
0
    out[1] += ((limb) in[0]) >> 58;
627
0
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
628
0
    /*-
629
0
     * out[1] < 2^58 + 2^6 + 2^58
630
0
     *        = 2^59 + 2^6
631
0
     */
632
0
    out[2] += ((limb) (in[0] >> 64)) >> 52;
633
0
634
0
    out[2] += ((limb) in[1]) >> 58;
635
0
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
636
0
    out[3] += ((limb) (in[1] >> 64)) >> 52;
637
0
638
0
    out[3] += ((limb) in[2]) >> 58;
639
0
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
640
0
    out[4] += ((limb) (in[2] >> 64)) >> 52;
641
0
642
0
    out[4] += ((limb) in[3]) >> 58;
643
0
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
644
0
    out[5] += ((limb) (in[3] >> 64)) >> 52;
645
0
646
0
    out[5] += ((limb) in[4]) >> 58;
647
0
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
648
0
    out[6] += ((limb) (in[4] >> 64)) >> 52;
649
0
650
0
    out[6] += ((limb) in[5]) >> 58;
651
0
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
652
0
    out[7] += ((limb) (in[5] >> 64)) >> 52;
653
0
654
0
    out[7] += ((limb) in[6]) >> 58;
655
0
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
656
0
    out[8] += ((limb) (in[6] >> 64)) >> 52;
657
0
658
0
    out[8] += ((limb) in[7]) >> 58;
659
0
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
660
0
    /*-
661
0
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
662
0
     *            < 2^59 + 2^13
663
0
     */
664
0
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
665
0
666
0
    overflow1 += ((limb) in[8]) >> 58;
667
0
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
668
0
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
669
0
670
0
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
671
0
    overflow2 <<= 1;            /* overflow2 < 2^13 */
672
0
673
0
    out[0] += overflow1;        /* out[0] < 2^60 */
674
0
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
675
0
676
0
    out[1] += out[0] >> 58;
677
0
    out[0] &= bottom58bits;
678
0
    /*-
679
0
     * out[0] < 2^58
680
0
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
681
0
     *        < 2^59 + 2^14
682
0
     */
683
0
}
684
685
static void felem_square_reduce(felem out, const felem in)
686
0
{
687
0
    largefelem tmp;
688
0
    felem_square(tmp, in);
689
0
    felem_reduce(out, tmp);
690
0
}
691
692
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
693
0
{
694
0
    largefelem tmp;
695
0
    felem_mul(tmp, in1, in2);
696
0
    felem_reduce(out, tmp);
697
0
}
698
699
/*-
700
 * felem_inv calculates |out| = |in|^{-1}
701
 *
702
 * Based on Fermat's Little Theorem:
703
 *   a^p = a (mod p)
704
 *   a^{p-1} = 1 (mod p)
705
 *   a^{p-2} = a^{-1} (mod p)
706
 */
707
static void felem_inv(felem out, const felem in)
708
0
{
709
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
710
0
    largefelem tmp;
711
0
    unsigned i;
712
0
713
0
    felem_square(tmp, in);
714
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
715
0
    felem_mul(tmp, in, ftmp);
716
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
717
0
    felem_assign(ftmp2, ftmp);
718
0
    felem_square(tmp, ftmp);
719
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
720
0
    felem_mul(tmp, in, ftmp);
721
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
722
0
    felem_square(tmp, ftmp);
723
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
724
0
725
0
    felem_square(tmp, ftmp2);
726
0
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
727
0
    felem_square(tmp, ftmp3);
728
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
729
0
    felem_mul(tmp, ftmp3, ftmp2);
730
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
731
0
732
0
    felem_assign(ftmp2, ftmp3);
733
0
    felem_square(tmp, ftmp3);
734
0
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
735
0
    felem_square(tmp, ftmp3);
736
0
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
737
0
    felem_square(tmp, ftmp3);
738
0
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
739
0
    felem_square(tmp, ftmp3);
740
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
741
0
    felem_assign(ftmp4, ftmp3);
742
0
    felem_mul(tmp, ftmp3, ftmp);
743
0
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
744
0
    felem_square(tmp, ftmp4);
745
0
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
746
0
    felem_mul(tmp, ftmp3, ftmp2);
747
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
748
0
    felem_assign(ftmp2, ftmp3);
749
0
750
0
    for (i = 0; i < 8; i++) {
751
0
        felem_square(tmp, ftmp3);
752
0
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
753
0
    }
754
0
    felem_mul(tmp, ftmp3, ftmp2);
755
0
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
756
0
    felem_assign(ftmp2, ftmp3);
757
0
758
0
    for (i = 0; i < 16; i++) {
759
0
        felem_square(tmp, ftmp3);
760
0
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
761
0
    }
762
0
    felem_mul(tmp, ftmp3, ftmp2);
763
0
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
764
0
    felem_assign(ftmp2, ftmp3);
765
0
766
0
    for (i = 0; i < 32; i++) {
767
0
        felem_square(tmp, ftmp3);
768
0
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
769
0
    }
770
0
    felem_mul(tmp, ftmp3, ftmp2);
771
0
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
772
0
    felem_assign(ftmp2, ftmp3);
773
0
774
0
    for (i = 0; i < 64; i++) {
775
0
        felem_square(tmp, ftmp3);
776
0
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
777
0
    }
778
0
    felem_mul(tmp, ftmp3, ftmp2);
779
0
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
780
0
    felem_assign(ftmp2, ftmp3);
781
0
782
0
    for (i = 0; i < 128; i++) {
783
0
        felem_square(tmp, ftmp3);
784
0
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
785
0
    }
786
0
    felem_mul(tmp, ftmp3, ftmp2);
787
0
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
788
0
    felem_assign(ftmp2, ftmp3);
789
0
790
0
    for (i = 0; i < 256; i++) {
791
0
        felem_square(tmp, ftmp3);
792
0
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
793
0
    }
794
0
    felem_mul(tmp, ftmp3, ftmp2);
795
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
796
0
797
0
    for (i = 0; i < 9; i++) {
798
0
        felem_square(tmp, ftmp3);
799
0
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
800
0
    }
801
0
    felem_mul(tmp, ftmp3, ftmp4);
802
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
803
0
    felem_mul(tmp, ftmp3, in);
804
0
    felem_reduce(out, tmp);     /* 2^512 - 3 */
805
0
}
806
807
/* This is 2^521-1, expressed as an felem */
808
static const felem kPrime = {
809
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
810
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
811
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
812
};
813
814
/*-
815
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
816
 * otherwise.
817
 * On entry:
818
 *   in[i] < 2^59 + 2^14
819
 */
820
static limb felem_is_zero(const felem in)
821
0
{
822
0
    felem ftmp;
823
0
    limb is_zero, is_p;
824
0
    felem_assign(ftmp, in);
825
0
826
0
    ftmp[0] += ftmp[8] >> 57;
827
0
    ftmp[8] &= bottom57bits;
828
0
    /* ftmp[8] < 2^57 */
829
0
    ftmp[1] += ftmp[0] >> 58;
830
0
    ftmp[0] &= bottom58bits;
831
0
    ftmp[2] += ftmp[1] >> 58;
832
0
    ftmp[1] &= bottom58bits;
833
0
    ftmp[3] += ftmp[2] >> 58;
834
0
    ftmp[2] &= bottom58bits;
835
0
    ftmp[4] += ftmp[3] >> 58;
836
0
    ftmp[3] &= bottom58bits;
837
0
    ftmp[5] += ftmp[4] >> 58;
838
0
    ftmp[4] &= bottom58bits;
839
0
    ftmp[6] += ftmp[5] >> 58;
840
0
    ftmp[5] &= bottom58bits;
841
0
    ftmp[7] += ftmp[6] >> 58;
842
0
    ftmp[6] &= bottom58bits;
843
0
    ftmp[8] += ftmp[7] >> 58;
844
0
    ftmp[7] &= bottom58bits;
845
0
    /* ftmp[8] < 2^57 + 4 */
846
0
847
0
    /*
848
0
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
849
0
     * than our bound for ftmp[8]. Therefore we only have to check if the
850
0
     * zero is zero or 2^521-1.
851
0
     */
852
0
853
0
    is_zero = 0;
854
0
    is_zero |= ftmp[0];
855
0
    is_zero |= ftmp[1];
856
0
    is_zero |= ftmp[2];
857
0
    is_zero |= ftmp[3];
858
0
    is_zero |= ftmp[4];
859
0
    is_zero |= ftmp[5];
860
0
    is_zero |= ftmp[6];
861
0
    is_zero |= ftmp[7];
862
0
    is_zero |= ftmp[8];
863
0
864
0
    is_zero--;
865
0
    /*
866
0
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
867
0
     * can be set is if is_zero was 0 before the decrement.
868
0
     */
869
0
    is_zero = 0 - (is_zero >> 63);
870
0
871
0
    is_p = ftmp[0] ^ kPrime[0];
872
0
    is_p |= ftmp[1] ^ kPrime[1];
873
0
    is_p |= ftmp[2] ^ kPrime[2];
874
0
    is_p |= ftmp[3] ^ kPrime[3];
875
0
    is_p |= ftmp[4] ^ kPrime[4];
876
0
    is_p |= ftmp[5] ^ kPrime[5];
877
0
    is_p |= ftmp[6] ^ kPrime[6];
878
0
    is_p |= ftmp[7] ^ kPrime[7];
879
0
    is_p |= ftmp[8] ^ kPrime[8];
880
0
881
0
    is_p--;
882
0
    is_p = 0 - (is_p >> 63);
883
0
884
0
    is_zero |= is_p;
885
0
    return is_zero;
886
0
}
887
888
static int felem_is_zero_int(const void *in)
889
0
{
890
0
    return (int)(felem_is_zero(in) & ((limb) 1));
891
0
}
892
893
/*-
894
 * felem_contract converts |in| to its unique, minimal representation.
895
 * On entry:
896
 *   in[i] < 2^59 + 2^14
897
 */
898
static void felem_contract(felem out, const felem in)
899
0
{
900
0
    limb is_p, is_greater, sign;
901
0
    static const limb two58 = ((limb) 1) << 58;
902
0
903
0
    felem_assign(out, in);
904
0
905
0
    out[0] += out[8] >> 57;
906
0
    out[8] &= bottom57bits;
907
0
    /* out[8] < 2^57 */
908
0
    out[1] += out[0] >> 58;
909
0
    out[0] &= bottom58bits;
910
0
    out[2] += out[1] >> 58;
911
0
    out[1] &= bottom58bits;
912
0
    out[3] += out[2] >> 58;
913
0
    out[2] &= bottom58bits;
914
0
    out[4] += out[3] >> 58;
915
0
    out[3] &= bottom58bits;
916
0
    out[5] += out[4] >> 58;
917
0
    out[4] &= bottom58bits;
918
0
    out[6] += out[5] >> 58;
919
0
    out[5] &= bottom58bits;
920
0
    out[7] += out[6] >> 58;
921
0
    out[6] &= bottom58bits;
922
0
    out[8] += out[7] >> 58;
923
0
    out[7] &= bottom58bits;
924
0
    /* out[8] < 2^57 + 4 */
925
0
926
0
    /*
927
0
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
928
0
     * out. See the comments in felem_is_zero regarding why we don't test for
929
0
     * other multiples of the prime.
930
0
     */
931
0
932
0
    /*
933
0
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
934
0
     */
935
0
936
0
    is_p = out[0] ^ kPrime[0];
937
0
    is_p |= out[1] ^ kPrime[1];
938
0
    is_p |= out[2] ^ kPrime[2];
939
0
    is_p |= out[3] ^ kPrime[3];
940
0
    is_p |= out[4] ^ kPrime[4];
941
0
    is_p |= out[5] ^ kPrime[5];
942
0
    is_p |= out[6] ^ kPrime[6];
943
0
    is_p |= out[7] ^ kPrime[7];
944
0
    is_p |= out[8] ^ kPrime[8];
945
0
946
0
    is_p--;
947
0
    is_p &= is_p << 32;
948
0
    is_p &= is_p << 16;
949
0
    is_p &= is_p << 8;
950
0
    is_p &= is_p << 4;
951
0
    is_p &= is_p << 2;
952
0
    is_p &= is_p << 1;
953
0
    is_p = 0 - (is_p >> 63);
954
0
    is_p = ~is_p;
955
0
956
0
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
957
0
958
0
    out[0] &= is_p;
959
0
    out[1] &= is_p;
960
0
    out[2] &= is_p;
961
0
    out[3] &= is_p;
962
0
    out[4] &= is_p;
963
0
    out[5] &= is_p;
964
0
    out[6] &= is_p;
965
0
    out[7] &= is_p;
966
0
    out[8] &= is_p;
967
0
968
0
    /*
969
0
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
970
0
     * 57 is greater than zero as (2^521-1) + x >= 2^522
971
0
     */
972
0
    is_greater = out[8] >> 57;
973
0
    is_greater |= is_greater << 32;
974
0
    is_greater |= is_greater << 16;
975
0
    is_greater |= is_greater << 8;
976
0
    is_greater |= is_greater << 4;
977
0
    is_greater |= is_greater << 2;
978
0
    is_greater |= is_greater << 1;
979
0
    is_greater = 0 - (is_greater >> 63);
980
0
981
0
    out[0] -= kPrime[0] & is_greater;
982
0
    out[1] -= kPrime[1] & is_greater;
983
0
    out[2] -= kPrime[2] & is_greater;
984
0
    out[3] -= kPrime[3] & is_greater;
985
0
    out[4] -= kPrime[4] & is_greater;
986
0
    out[5] -= kPrime[5] & is_greater;
987
0
    out[6] -= kPrime[6] & is_greater;
988
0
    out[7] -= kPrime[7] & is_greater;
989
0
    out[8] -= kPrime[8] & is_greater;
990
0
991
0
    /* Eliminate negative coefficients */
992
0
    sign = -(out[0] >> 63);
993
0
    out[0] += (two58 & sign);
994
0
    out[1] -= (1 & sign);
995
0
    sign = -(out[1] >> 63);
996
0
    out[1] += (two58 & sign);
997
0
    out[2] -= (1 & sign);
998
0
    sign = -(out[2] >> 63);
999
0
    out[2] += (two58 & sign);
1000
0
    out[3] -= (1 & sign);
1001
0
    sign = -(out[3] >> 63);
1002
0
    out[3] += (two58 & sign);
1003
0
    out[4] -= (1 & sign);
1004
0
    sign = -(out[4] >> 63);
1005
0
    out[4] += (two58 & sign);
1006
0
    out[5] -= (1 & sign);
1007
0
    sign = -(out[0] >> 63);
1008
0
    out[5] += (two58 & sign);
1009
0
    out[6] -= (1 & sign);
1010
0
    sign = -(out[6] >> 63);
1011
0
    out[6] += (two58 & sign);
1012
0
    out[7] -= (1 & sign);
1013
0
    sign = -(out[7] >> 63);
1014
0
    out[7] += (two58 & sign);
1015
0
    out[8] -= (1 & sign);
1016
0
    sign = -(out[5] >> 63);
1017
0
    out[5] += (two58 & sign);
1018
0
    out[6] -= (1 & sign);
1019
0
    sign = -(out[6] >> 63);
1020
0
    out[6] += (two58 & sign);
1021
0
    out[7] -= (1 & sign);
1022
0
    sign = -(out[7] >> 63);
1023
0
    out[7] += (two58 & sign);
1024
0
    out[8] -= (1 & sign);
1025
0
}
1026
1027
/*-
1028
 * Group operations
1029
 * ----------------
1030
 *
1031
 * Building on top of the field operations we have the operations on the
1032
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1033
 * coordinates */
1034
1035
/*-
1036
 * point_double calculates 2*(x_in, y_in, z_in)
1037
 *
1038
 * The method is taken from:
1039
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1040
 *
1041
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1042
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1043
static void
1044
point_double(felem x_out, felem y_out, felem z_out,
1045
             const felem x_in, const felem y_in, const felem z_in)
1046
0
{
1047
0
    largefelem tmp, tmp2;
1048
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1049
0
1050
0
    felem_assign(ftmp, x_in);
1051
0
    felem_assign(ftmp2, x_in);
1052
0
1053
0
    /* delta = z^2 */
1054
0
    felem_square(tmp, z_in);
1055
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1056
0
1057
0
    /* gamma = y^2 */
1058
0
    felem_square(tmp, y_in);
1059
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1060
0
1061
0
    /* beta = x*gamma */
1062
0
    felem_mul(tmp, x_in, gamma);
1063
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1064
0
1065
0
    /* alpha = 3*(x-delta)*(x+delta) */
1066
0
    felem_diff64(ftmp, delta);
1067
0
    /* ftmp[i] < 2^61 */
1068
0
    felem_sum64(ftmp2, delta);
1069
0
    /* ftmp2[i] < 2^60 + 2^15 */
1070
0
    felem_scalar64(ftmp2, 3);
1071
0
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1072
0
    felem_mul(tmp, ftmp, ftmp2);
1073
0
    /*-
1074
0
     * tmp[i] < 17(3*2^121 + 3*2^76)
1075
0
     *        = 61*2^121 + 61*2^76
1076
0
     *        < 64*2^121 + 64*2^76
1077
0
     *        = 2^127 + 2^82
1078
0
     *        < 2^128
1079
0
     */
1080
0
    felem_reduce(alpha, tmp);
1081
0
1082
0
    /* x' = alpha^2 - 8*beta */
1083
0
    felem_square(tmp, alpha);
1084
0
    /*
1085
0
     * tmp[i] < 17*2^120 < 2^125
1086
0
     */
1087
0
    felem_assign(ftmp, beta);
1088
0
    felem_scalar64(ftmp, 8);
1089
0
    /* ftmp[i] < 2^62 + 2^17 */
1090
0
    felem_diff_128_64(tmp, ftmp);
1091
0
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1092
0
    felem_reduce(x_out, tmp);
1093
0
1094
0
    /* z' = (y + z)^2 - gamma - delta */
1095
0
    felem_sum64(delta, gamma);
1096
0
    /* delta[i] < 2^60 + 2^15 */
1097
0
    felem_assign(ftmp, y_in);
1098
0
    felem_sum64(ftmp, z_in);
1099
0
    /* ftmp[i] < 2^60 + 2^15 */
1100
0
    felem_square(tmp, ftmp);
1101
0
    /*
1102
0
     * tmp[i] < 17(2^122) < 2^127
1103
0
     */
1104
0
    felem_diff_128_64(tmp, delta);
1105
0
    /* tmp[i] < 2^127 + 2^63 */
1106
0
    felem_reduce(z_out, tmp);
1107
0
1108
0
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1109
0
    felem_scalar64(beta, 4);
1110
0
    /* beta[i] < 2^61 + 2^16 */
1111
0
    felem_diff64(beta, x_out);
1112
0
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1113
0
    felem_mul(tmp, alpha, beta);
1114
0
    /*-
1115
0
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1116
0
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1117
0
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1118
0
     *        < 2^128
1119
0
     */
1120
0
    felem_square(tmp2, gamma);
1121
0
    /*-
1122
0
     * tmp2[i] < 17*(2^59 + 2^14)^2
1123
0
     *         = 17*(2^118 + 2^74 + 2^28)
1124
0
     */
1125
0
    felem_scalar128(tmp2, 8);
1126
0
    /*-
1127
0
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1128
0
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1129
0
     *         < 2^126
1130
0
     */
1131
0
    felem_diff128(tmp, tmp2);
1132
0
    /*-
1133
0
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1134
0
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1135
0
     *          2^74 + 2^69 + 2^34 + 2^30
1136
0
     *        < 2^128
1137
0
     */
1138
0
    felem_reduce(y_out, tmp);
1139
0
}
1140
1141
/* copy_conditional copies in to out iff mask is all ones. */
1142
static void copy_conditional(felem out, const felem in, limb mask)
1143
0
{
1144
0
    unsigned i;
1145
0
    for (i = 0; i < NLIMBS; ++i) {
1146
0
        const limb tmp = mask & (in[i] ^ out[i]);
1147
0
        out[i] ^= tmp;
1148
0
    }
1149
0
}
1150
1151
/*-
1152
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1153
 *
1154
 * The method is taken from
1155
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1156
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1157
 *
1158
 * This function includes a branch for checking whether the two input points
1159
 * are equal (while not equal to the point at infinity). See comment below
1160
 * on constant-time.
1161
 */
1162
static void point_add(felem x3, felem y3, felem z3,
1163
                      const felem x1, const felem y1, const felem z1,
1164
                      const int mixed, const felem x2, const felem y2,
1165
                      const felem z2)
1166
0
{
1167
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1168
0
    largefelem tmp, tmp2;
1169
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1170
0
1171
0
    z1_is_zero = felem_is_zero(z1);
1172
0
    z2_is_zero = felem_is_zero(z2);
1173
0
1174
0
    /* ftmp = z1z1 = z1**2 */
1175
0
    felem_square(tmp, z1);
1176
0
    felem_reduce(ftmp, tmp);
1177
0
1178
0
    if (!mixed) {
1179
0
        /* ftmp2 = z2z2 = z2**2 */
1180
0
        felem_square(tmp, z2);
1181
0
        felem_reduce(ftmp2, tmp);
1182
0
1183
0
        /* u1 = ftmp3 = x1*z2z2 */
1184
0
        felem_mul(tmp, x1, ftmp2);
1185
0
        felem_reduce(ftmp3, tmp);
1186
0
1187
0
        /* ftmp5 = z1 + z2 */
1188
0
        felem_assign(ftmp5, z1);
1189
0
        felem_sum64(ftmp5, z2);
1190
0
        /* ftmp5[i] < 2^61 */
1191
0
1192
0
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1193
0
        felem_square(tmp, ftmp5);
1194
0
        /* tmp[i] < 17*2^122 */
1195
0
        felem_diff_128_64(tmp, ftmp);
1196
0
        /* tmp[i] < 17*2^122 + 2^63 */
1197
0
        felem_diff_128_64(tmp, ftmp2);
1198
0
        /* tmp[i] < 17*2^122 + 2^64 */
1199
0
        felem_reduce(ftmp5, tmp);
1200
0
1201
0
        /* ftmp2 = z2 * z2z2 */
1202
0
        felem_mul(tmp, ftmp2, z2);
1203
0
        felem_reduce(ftmp2, tmp);
1204
0
1205
0
        /* s1 = ftmp6 = y1 * z2**3 */
1206
0
        felem_mul(tmp, y1, ftmp2);
1207
0
        felem_reduce(ftmp6, tmp);
1208
0
    } else {
1209
0
        /*
1210
0
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1211
0
         */
1212
0
1213
0
        /* u1 = ftmp3 = x1*z2z2 */
1214
0
        felem_assign(ftmp3, x1);
1215
0
1216
0
        /* ftmp5 = 2*z1z2 */
1217
0
        felem_scalar(ftmp5, z1, 2);
1218
0
1219
0
        /* s1 = ftmp6 = y1 * z2**3 */
1220
0
        felem_assign(ftmp6, y1);
1221
0
    }
1222
0
1223
0
    /* u2 = x2*z1z1 */
1224
0
    felem_mul(tmp, x2, ftmp);
1225
0
    /* tmp[i] < 17*2^120 */
1226
0
1227
0
    /* h = ftmp4 = u2 - u1 */
1228
0
    felem_diff_128_64(tmp, ftmp3);
1229
0
    /* tmp[i] < 17*2^120 + 2^63 */
1230
0
    felem_reduce(ftmp4, tmp);
1231
0
1232
0
    x_equal = felem_is_zero(ftmp4);
1233
0
1234
0
    /* z_out = ftmp5 * h */
1235
0
    felem_mul(tmp, ftmp5, ftmp4);
1236
0
    felem_reduce(z_out, tmp);
1237
0
1238
0
    /* ftmp = z1 * z1z1 */
1239
0
    felem_mul(tmp, ftmp, z1);
1240
0
    felem_reduce(ftmp, tmp);
1241
0
1242
0
    /* s2 = tmp = y2 * z1**3 */
1243
0
    felem_mul(tmp, y2, ftmp);
1244
0
    /* tmp[i] < 17*2^120 */
1245
0
1246
0
    /* r = ftmp5 = (s2 - s1)*2 */
1247
0
    felem_diff_128_64(tmp, ftmp6);
1248
0
    /* tmp[i] < 17*2^120 + 2^63 */
1249
0
    felem_reduce(ftmp5, tmp);
1250
0
    y_equal = felem_is_zero(ftmp5);
1251
0
    felem_scalar64(ftmp5, 2);
1252
0
    /* ftmp5[i] < 2^61 */
1253
0
1254
0
    if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1255
0
        /*
1256
0
         * This is obviously not constant-time but it will almost-never happen
1257
0
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1258
0
         * where the intermediate value gets very close to the group order.
1259
0
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1260
0
         * the scalar, it's possible for the intermediate value to be a small
1261
0
         * negative multiple of the base point, and for the final signed digit
1262
0
         * to be the same value. We believe that this only occurs for the scalar
1263
0
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1264
0
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1265
0
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1266
0
         * the final digit is also -9G. Since this only happens for a single
1267
0
         * scalar, the timing leak is irrelevent. (Any attacker who wanted to
1268
0
         * check whether a secret scalar was that exact value, can already do
1269
0
         * so.)
1270
0
         */
1271
0
        point_double(x3, y3, z3, x1, y1, z1);
1272
0
        return;
1273
0
    }
1274
0
1275
0
    /* I = ftmp = (2h)**2 */
1276
0
    felem_assign(ftmp, ftmp4);
1277
0
    felem_scalar64(ftmp, 2);
1278
0
    /* ftmp[i] < 2^61 */
1279
0
    felem_square(tmp, ftmp);
1280
0
    /* tmp[i] < 17*2^122 */
1281
0
    felem_reduce(ftmp, tmp);
1282
0
1283
0
    /* J = ftmp2 = h * I */
1284
0
    felem_mul(tmp, ftmp4, ftmp);
1285
0
    felem_reduce(ftmp2, tmp);
1286
0
1287
0
    /* V = ftmp4 = U1 * I */
1288
0
    felem_mul(tmp, ftmp3, ftmp);
1289
0
    felem_reduce(ftmp4, tmp);
1290
0
1291
0
    /* x_out = r**2 - J - 2V */
1292
0
    felem_square(tmp, ftmp5);
1293
0
    /* tmp[i] < 17*2^122 */
1294
0
    felem_diff_128_64(tmp, ftmp2);
1295
0
    /* tmp[i] < 17*2^122 + 2^63 */
1296
0
    felem_assign(ftmp3, ftmp4);
1297
0
    felem_scalar64(ftmp4, 2);
1298
0
    /* ftmp4[i] < 2^61 */
1299
0
    felem_diff_128_64(tmp, ftmp4);
1300
0
    /* tmp[i] < 17*2^122 + 2^64 */
1301
0
    felem_reduce(x_out, tmp);
1302
0
1303
0
    /* y_out = r(V-x_out) - 2 * s1 * J */
1304
0
    felem_diff64(ftmp3, x_out);
1305
0
    /*
1306
0
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1307
0
     */
1308
0
    felem_mul(tmp, ftmp5, ftmp3);
1309
0
    /* tmp[i] < 17*2^122 */
1310
0
    felem_mul(tmp2, ftmp6, ftmp2);
1311
0
    /* tmp2[i] < 17*2^120 */
1312
0
    felem_scalar128(tmp2, 2);
1313
0
    /* tmp2[i] < 17*2^121 */
1314
0
    felem_diff128(tmp, tmp2);
1315
0
        /*-
1316
0
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1317
0
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1318
0
         *        < 2^127
1319
0
         */
1320
0
    felem_reduce(y_out, tmp);
1321
0
1322
0
    copy_conditional(x_out, x2, z1_is_zero);
1323
0
    copy_conditional(x_out, x1, z2_is_zero);
1324
0
    copy_conditional(y_out, y2, z1_is_zero);
1325
0
    copy_conditional(y_out, y1, z2_is_zero);
1326
0
    copy_conditional(z_out, z2, z1_is_zero);
1327
0
    copy_conditional(z_out, z1, z2_is_zero);
1328
0
    felem_assign(x3, x_out);
1329
0
    felem_assign(y3, y_out);
1330
0
    felem_assign(z3, z_out);
1331
0
}
1332
1333
/*-
1334
 * Base point pre computation
1335
 * --------------------------
1336
 *
1337
 * Two different sorts of precomputed tables are used in the following code.
1338
 * Each contain various points on the curve, where each point is three field
1339
 * elements (x, y, z).
1340
 *
1341
 * For the base point table, z is usually 1 (0 for the point at infinity).
1342
 * This table has 16 elements:
1343
 * index | bits    | point
1344
 * ------+---------+------------------------------
1345
 *     0 | 0 0 0 0 | 0G
1346
 *     1 | 0 0 0 1 | 1G
1347
 *     2 | 0 0 1 0 | 2^130G
1348
 *     3 | 0 0 1 1 | (2^130 + 1)G
1349
 *     4 | 0 1 0 0 | 2^260G
1350
 *     5 | 0 1 0 1 | (2^260 + 1)G
1351
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1352
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1353
 *     8 | 1 0 0 0 | 2^390G
1354
 *     9 | 1 0 0 1 | (2^390 + 1)G
1355
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1356
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1357
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1358
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1359
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1360
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1361
 *
1362
 * The reason for this is so that we can clock bits into four different
1363
 * locations when doing simple scalar multiplies against the base point.
1364
 *
1365
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1366
1367
/* gmul is the table of precomputed base points */
1368
static const felem gmul[16][3] = {
1369
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1370
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1371
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1372
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1373
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1374
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1375
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1376
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1377
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1378
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1379
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1380
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1381
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1382
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1383
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1384
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1385
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1386
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1387
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1388
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1389
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1390
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1391
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1392
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1393
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1394
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1395
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1396
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1397
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1398
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1399
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1400
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1401
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1402
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1403
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1404
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1405
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1406
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1407
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1408
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1409
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1410
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1411
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1412
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1413
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1414
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1415
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1416
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1417
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1418
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1419
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1420
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1421
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1422
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1423
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1424
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1425
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1426
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1427
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1428
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1429
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1430
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1431
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1432
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1433
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1434
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1435
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1436
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1437
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1438
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1439
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1440
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1441
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1442
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1443
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1444
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1445
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1446
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1447
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1448
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1449
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1450
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1451
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1452
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1453
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1454
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1455
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1456
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1457
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1458
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1459
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1460
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1461
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1462
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1463
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1464
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1465
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1466
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1467
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1468
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1469
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1470
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1471
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1472
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1473
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1474
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1475
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1476
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1477
};
1478
1479
/*
1480
 * select_point selects the |idx|th point from a precomputation table and
1481
 * copies it to out.
1482
 */
1483
 /* pre_comp below is of the size provided in |size| */
1484
static void select_point(const limb idx, unsigned int size,
1485
                         const felem pre_comp[][3], felem out[3])
1486
0
{
1487
0
    unsigned i, j;
1488
0
    limb *outlimbs = &out[0][0];
1489
0
1490
0
    memset(out, 0, sizeof(*out) * 3);
1491
0
1492
0
    for (i = 0; i < size; i++) {
1493
0
        const limb *inlimbs = &pre_comp[i][0][0];
1494
0
        limb mask = i ^ idx;
1495
0
        mask |= mask >> 4;
1496
0
        mask |= mask >> 2;
1497
0
        mask |= mask >> 1;
1498
0
        mask &= 1;
1499
0
        mask--;
1500
0
        for (j = 0; j < NLIMBS * 3; j++)
1501
0
            outlimbs[j] |= inlimbs[j] & mask;
1502
0
    }
1503
0
}
1504
1505
/* get_bit returns the |i|th bit in |in| */
1506
static char get_bit(const felem_bytearray in, int i)
1507
0
{
1508
0
    if (i < 0)
1509
0
        return 0;
1510
0
    return (in[i >> 3] >> (i & 7)) & 1;
1511
0
}
1512
1513
/*
1514
 * Interleaved point multiplication using precomputed point multiples: The
1515
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1516
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1517
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1518
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1519
 */
1520
static void batch_mul(felem x_out, felem y_out, felem z_out,
1521
                      const felem_bytearray scalars[],
1522
                      const unsigned num_points, const u8 *g_scalar,
1523
                      const int mixed, const felem pre_comp[][17][3],
1524
                      const felem g_pre_comp[16][3])
1525
0
{
1526
0
    int i, skip;
1527
0
    unsigned num, gen_mul = (g_scalar != NULL);
1528
0
    felem nq[3], tmp[4];
1529
0
    limb bits;
1530
0
    u8 sign, digit;
1531
0
1532
0
    /* set nq to the point at infinity */
1533
0
    memset(nq, 0, sizeof(nq));
1534
0
1535
0
    /*
1536
0
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1537
0
     * of the generator (last quarter of rounds) and additions of other
1538
0
     * points multiples (every 5th round).
1539
0
     */
1540
0
    skip = 1;                   /* save two point operations in the first
1541
0
                                 * round */
1542
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1543
0
        /* double */
1544
0
        if (!skip)
1545
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1546
0
1547
0
        /* add multiples of the generator */
1548
0
        if (gen_mul && (i <= 130)) {
1549
0
            bits = get_bit(g_scalar, i + 390) << 3;
1550
0
            if (i < 130) {
1551
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1552
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1553
0
                bits |= get_bit(g_scalar, i);
1554
0
            }
1555
0
            /* select the point to add, in constant time */
1556
0
            select_point(bits, 16, g_pre_comp, tmp);
1557
0
            if (!skip) {
1558
0
                /* The 1 argument below is for "mixed" */
1559
0
                point_add(nq[0], nq[1], nq[2],
1560
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1561
0
            } else {
1562
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1563
0
                skip = 0;
1564
0
            }
1565
0
        }
1566
0
1567
0
        /* do other additions every 5 doublings */
1568
0
        if (num_points && (i % 5 == 0)) {
1569
0
            /* loop over all scalars */
1570
0
            for (num = 0; num < num_points; ++num) {
1571
0
                bits = get_bit(scalars[num], i + 4) << 5;
1572
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1573
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1574
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1575
0
                bits |= get_bit(scalars[num], i) << 1;
1576
0
                bits |= get_bit(scalars[num], i - 1);
1577
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1578
0
1579
0
                /*
1580
0
                 * select the point to add or subtract, in constant time
1581
0
                 */
1582
0
                select_point(digit, 17, pre_comp[num], tmp);
1583
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1584
0
                                            * point */
1585
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1586
0
1587
0
                if (!skip) {
1588
0
                    point_add(nq[0], nq[1], nq[2],
1589
0
                              nq[0], nq[1], nq[2],
1590
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1591
0
                } else {
1592
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1593
0
                    skip = 0;
1594
0
                }
1595
0
            }
1596
0
        }
1597
0
    }
1598
0
    felem_assign(x_out, nq[0]);
1599
0
    felem_assign(y_out, nq[1]);
1600
0
    felem_assign(z_out, nq[2]);
1601
0
}
1602
1603
/* Precomputation for the group generator. */
1604
struct nistp521_pre_comp_st {
1605
    felem g_pre_comp[16][3];
1606
    CRYPTO_REF_COUNT references;
1607
    CRYPTO_RWLOCK *lock;
1608
};
1609
1610
const EC_METHOD *EC_GFp_nistp521_method(void)
1611
0
{
1612
0
    static const EC_METHOD ret = {
1613
0
        EC_FLAGS_DEFAULT_OCT,
1614
0
        NID_X9_62_prime_field,
1615
0
        ec_GFp_nistp521_group_init,
1616
0
        ec_GFp_simple_group_finish,
1617
0
        ec_GFp_simple_group_clear_finish,
1618
0
        ec_GFp_nist_group_copy,
1619
0
        ec_GFp_nistp521_group_set_curve,
1620
0
        ec_GFp_simple_group_get_curve,
1621
0
        ec_GFp_simple_group_get_degree,
1622
0
        ec_group_simple_order_bits,
1623
0
        ec_GFp_simple_group_check_discriminant,
1624
0
        ec_GFp_simple_point_init,
1625
0
        ec_GFp_simple_point_finish,
1626
0
        ec_GFp_simple_point_clear_finish,
1627
0
        ec_GFp_simple_point_copy,
1628
0
        ec_GFp_simple_point_set_to_infinity,
1629
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1630
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1631
0
        ec_GFp_simple_point_set_affine_coordinates,
1632
0
        ec_GFp_nistp521_point_get_affine_coordinates,
1633
0
        0 /* point_set_compressed_coordinates */ ,
1634
0
        0 /* point2oct */ ,
1635
0
        0 /* oct2point */ ,
1636
0
        ec_GFp_simple_add,
1637
0
        ec_GFp_simple_dbl,
1638
0
        ec_GFp_simple_invert,
1639
0
        ec_GFp_simple_is_at_infinity,
1640
0
        ec_GFp_simple_is_on_curve,
1641
0
        ec_GFp_simple_cmp,
1642
0
        ec_GFp_simple_make_affine,
1643
0
        ec_GFp_simple_points_make_affine,
1644
0
        ec_GFp_nistp521_points_mul,
1645
0
        ec_GFp_nistp521_precompute_mult,
1646
0
        ec_GFp_nistp521_have_precompute_mult,
1647
0
        ec_GFp_nist_field_mul,
1648
0
        ec_GFp_nist_field_sqr,
1649
0
        0 /* field_div */ ,
1650
0
        0 /* field_encode */ ,
1651
0
        0 /* field_decode */ ,
1652
0
        0,                      /* field_set_to_one */
1653
0
        ec_key_simple_priv2oct,
1654
0
        ec_key_simple_oct2priv,
1655
0
        0, /* set private */
1656
0
        ec_key_simple_generate_key,
1657
0
        ec_key_simple_check_key,
1658
0
        ec_key_simple_generate_public_key,
1659
0
        0, /* keycopy */
1660
0
        0, /* keyfinish */
1661
0
        ecdh_simple_compute_key,
1662
0
        0, /* field_inverse_mod_ord */
1663
0
        0, /* blind_coordinates */
1664
0
        0, /* ladder_pre */
1665
0
        0, /* ladder_step */
1666
0
        0  /* ladder_post */
1667
0
    };
1668
0
1669
0
    return &ret;
1670
0
}
1671
1672
/******************************************************************************/
1673
/*
1674
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1675
 */
1676
1677
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1678
0
{
1679
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1680
0
1681
0
    if (ret == NULL) {
1682
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1683
0
        return ret;
1684
0
    }
1685
0
1686
0
    ret->references = 1;
1687
0
1688
0
    ret->lock = CRYPTO_THREAD_lock_new();
1689
0
    if (ret->lock == NULL) {
1690
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1691
0
        OPENSSL_free(ret);
1692
0
        return NULL;
1693
0
    }
1694
0
    return ret;
1695
0
}
1696
1697
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1698
0
{
1699
0
    int i;
1700
0
    if (p != NULL)
1701
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1702
0
    return p;
1703
0
}
1704
1705
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1706
0
{
1707
0
    int i;
1708
0
1709
0
    if (p == NULL)
1710
0
        return;
1711
0
1712
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1713
0
    REF_PRINT_COUNT("EC_nistp521", x);
1714
0
    if (i > 0)
1715
0
        return;
1716
0
    REF_ASSERT_ISNT(i < 0);
1717
0
1718
0
    CRYPTO_THREAD_lock_free(p->lock);
1719
0
    OPENSSL_free(p);
1720
0
}
1721
1722
/******************************************************************************/
1723
/*
1724
 * OPENSSL EC_METHOD FUNCTIONS
1725
 */
1726
1727
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1728
0
{
1729
0
    int ret;
1730
0
    ret = ec_GFp_simple_group_init(group);
1731
0
    group->a_is_minus3 = 1;
1732
0
    return ret;
1733
0
}
1734
1735
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1736
                                    const BIGNUM *a, const BIGNUM *b,
1737
                                    BN_CTX *ctx)
1738
0
{
1739
0
    int ret = 0;
1740
0
    BN_CTX *new_ctx = NULL;
1741
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1742
0
1743
0
    if (ctx == NULL)
1744
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1745
0
            return 0;
1746
0
    BN_CTX_start(ctx);
1747
0
    curve_p = BN_CTX_get(ctx);
1748
0
    curve_a = BN_CTX_get(ctx);
1749
0
    curve_b = BN_CTX_get(ctx);
1750
0
    if (curve_b == NULL)
1751
0
        goto err;
1752
0
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1753
0
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1754
0
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1755
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1756
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1757
0
              EC_R_WRONG_CURVE_PARAMETERS);
1758
0
        goto err;
1759
0
    }
1760
0
    group->field_mod_func = BN_nist_mod_521;
1761
0
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1762
0
 err:
1763
0
    BN_CTX_end(ctx);
1764
0
    BN_CTX_free(new_ctx);
1765
0
    return ret;
1766
0
}
1767
1768
/*
1769
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1770
 * (X/Z^2, Y/Z^3)
1771
 */
1772
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1773
                                                 const EC_POINT *point,
1774
                                                 BIGNUM *x, BIGNUM *y,
1775
                                                 BN_CTX *ctx)
1776
0
{
1777
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1778
0
    largefelem tmp;
1779
0
1780
0
    if (EC_POINT_is_at_infinity(group, point)) {
1781
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1782
0
              EC_R_POINT_AT_INFINITY);
1783
0
        return 0;
1784
0
    }
1785
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1786
0
        (!BN_to_felem(z1, point->Z)))
1787
0
        return 0;
1788
0
    felem_inv(z2, z1);
1789
0
    felem_square(tmp, z2);
1790
0
    felem_reduce(z1, tmp);
1791
0
    felem_mul(tmp, x_in, z1);
1792
0
    felem_reduce(x_in, tmp);
1793
0
    felem_contract(x_out, x_in);
1794
0
    if (x != NULL) {
1795
0
        if (!felem_to_BN(x, x_out)) {
1796
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1797
0
                  ERR_R_BN_LIB);
1798
0
            return 0;
1799
0
        }
1800
0
    }
1801
0
    felem_mul(tmp, z1, z2);
1802
0
    felem_reduce(z1, tmp);
1803
0
    felem_mul(tmp, y_in, z1);
1804
0
    felem_reduce(y_in, tmp);
1805
0
    felem_contract(y_out, y_in);
1806
0
    if (y != NULL) {
1807
0
        if (!felem_to_BN(y, y_out)) {
1808
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1809
0
                  ERR_R_BN_LIB);
1810
0
            return 0;
1811
0
        }
1812
0
    }
1813
0
    return 1;
1814
0
}
1815
1816
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1817
static void make_points_affine(size_t num, felem points[][3],
1818
                               felem tmp_felems[])
1819
0
{
1820
0
    /*
1821
0
     * Runs in constant time, unless an input is the point at infinity (which
1822
0
     * normally shouldn't happen).
1823
0
     */
1824
0
    ec_GFp_nistp_points_make_affine_internal(num,
1825
0
                                             points,
1826
0
                                             sizeof(felem),
1827
0
                                             tmp_felems,
1828
0
                                             (void (*)(void *))felem_one,
1829
0
                                             felem_is_zero_int,
1830
0
                                             (void (*)(void *, const void *))
1831
0
                                             felem_assign,
1832
0
                                             (void (*)(void *, const void *))
1833
0
                                             felem_square_reduce, (void (*)
1834
0
                                                                   (void *,
1835
0
                                                                    const void
1836
0
                                                                    *,
1837
0
                                                                    const void
1838
0
                                                                    *))
1839
0
                                             felem_mul_reduce,
1840
0
                                             (void (*)(void *, const void *))
1841
0
                                             felem_inv,
1842
0
                                             (void (*)(void *, const void *))
1843
0
                                             felem_contract);
1844
0
}
1845
1846
/*
1847
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1848
 * values Result is stored in r (r can equal one of the inputs).
1849
 */
1850
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1851
                               const BIGNUM *scalar, size_t num,
1852
                               const EC_POINT *points[],
1853
                               const BIGNUM *scalars[], BN_CTX *ctx)
1854
0
{
1855
0
    int ret = 0;
1856
0
    int j;
1857
0
    int mixed = 0;
1858
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1859
0
    felem_bytearray g_secret;
1860
0
    felem_bytearray *secrets = NULL;
1861
0
    felem (*pre_comp)[17][3] = NULL;
1862
0
    felem *tmp_felems = NULL;
1863
0
    felem_bytearray tmp;
1864
0
    unsigned i, num_bytes;
1865
0
    int have_pre_comp = 0;
1866
0
    size_t num_points = num;
1867
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1868
0
    NISTP521_PRE_COMP *pre = NULL;
1869
0
    felem(*g_pre_comp)[3] = NULL;
1870
0
    EC_POINT *generator = NULL;
1871
0
    const EC_POINT *p = NULL;
1872
0
    const BIGNUM *p_scalar = NULL;
1873
0
1874
0
    BN_CTX_start(ctx);
1875
0
    x = BN_CTX_get(ctx);
1876
0
    y = BN_CTX_get(ctx);
1877
0
    z = BN_CTX_get(ctx);
1878
0
    tmp_scalar = BN_CTX_get(ctx);
1879
0
    if (tmp_scalar == NULL)
1880
0
        goto err;
1881
0
1882
0
    if (scalar != NULL) {
1883
0
        pre = group->pre_comp.nistp521;
1884
0
        if (pre)
1885
0
            /* we have precomputation, try to use it */
1886
0
            g_pre_comp = &pre->g_pre_comp[0];
1887
0
        else
1888
0
            /* try to use the standard precomputation */
1889
0
            g_pre_comp = (felem(*)[3]) gmul;
1890
0
        generator = EC_POINT_new(group);
1891
0
        if (generator == NULL)
1892
0
            goto err;
1893
0
        /* get the generator from precomputation */
1894
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1895
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1896
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1897
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1898
0
            goto err;
1899
0
        }
1900
0
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1901
0
                                                      generator, x, y, z,
1902
0
                                                      ctx))
1903
0
            goto err;
1904
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1905
0
            /* precomputation matches generator */
1906
0
            have_pre_comp = 1;
1907
0
        else
1908
0
            /*
1909
0
             * we don't have valid precomputation: treat the generator as a
1910
0
             * random point
1911
0
             */
1912
0
            num_points++;
1913
0
    }
1914
0
1915
0
    if (num_points > 0) {
1916
0
        if (num_points >= 2) {
1917
0
            /*
1918
0
             * unless we precompute multiples for just one point, converting
1919
0
             * those into affine form is time well spent
1920
0
             */
1921
0
            mixed = 1;
1922
0
        }
1923
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1924
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1925
0
        if (mixed)
1926
0
            tmp_felems =
1927
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1928
0
        if ((secrets == NULL) || (pre_comp == NULL)
1929
0
            || (mixed && (tmp_felems == NULL))) {
1930
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1931
0
            goto err;
1932
0
        }
1933
0
1934
0
        /*
1935
0
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1936
0
         * i.e., they contribute nothing to the linear combination
1937
0
         */
1938
0
        for (i = 0; i < num_points; ++i) {
1939
0
            if (i == num)
1940
0
                /*
1941
0
                 * we didn't have a valid precomputation, so we pick the
1942
0
                 * generator
1943
0
                 */
1944
0
            {
1945
0
                p = EC_GROUP_get0_generator(group);
1946
0
                p_scalar = scalar;
1947
0
            } else
1948
0
                /* the i^th point */
1949
0
            {
1950
0
                p = points[i];
1951
0
                p_scalar = scalars[i];
1952
0
            }
1953
0
            if ((p_scalar != NULL) && (p != NULL)) {
1954
0
                /* reduce scalar to 0 <= scalar < 2^521 */
1955
0
                if ((BN_num_bits(p_scalar) > 521)
1956
0
                    || (BN_is_negative(p_scalar))) {
1957
0
                    /*
1958
0
                     * this is an unusual input, and we don't guarantee
1959
0
                     * constant-timeness
1960
0
                     */
1961
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1962
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1963
0
                        goto err;
1964
0
                    }
1965
0
                    num_bytes = BN_bn2bin(tmp_scalar, tmp);
1966
0
                } else
1967
0
                    num_bytes = BN_bn2bin(p_scalar, tmp);
1968
0
                flip_endian(secrets[i], tmp, num_bytes);
1969
0
                /* precompute multiples */
1970
0
                if ((!BN_to_felem(x_out, p->X)) ||
1971
0
                    (!BN_to_felem(y_out, p->Y)) ||
1972
0
                    (!BN_to_felem(z_out, p->Z)))
1973
0
                    goto err;
1974
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1975
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1976
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1977
0
                for (j = 2; j <= 16; ++j) {
1978
0
                    if (j & 1) {
1979
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1980
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1981
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1982
0
                                  pre_comp[i][j - 1][0],
1983
0
                                  pre_comp[i][j - 1][1],
1984
0
                                  pre_comp[i][j - 1][2]);
1985
0
                    } else {
1986
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1987
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1988
0
                                     pre_comp[i][j / 2][1],
1989
0
                                     pre_comp[i][j / 2][2]);
1990
0
                    }
1991
0
                }
1992
0
            }
1993
0
        }
1994
0
        if (mixed)
1995
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1996
0
    }
1997
0
1998
0
    /* the scalar for the generator */
1999
0
    if ((scalar != NULL) && (have_pre_comp)) {
2000
0
        memset(g_secret, 0, sizeof(g_secret));
2001
0
        /* reduce scalar to 0 <= scalar < 2^521 */
2002
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2003
0
            /*
2004
0
             * this is an unusual input, and we don't guarantee
2005
0
             * constant-timeness
2006
0
             */
2007
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2008
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2009
0
                goto err;
2010
0
            }
2011
0
            num_bytes = BN_bn2bin(tmp_scalar, tmp);
2012
0
        } else
2013
0
            num_bytes = BN_bn2bin(scalar, tmp);
2014
0
        flip_endian(g_secret, tmp, num_bytes);
2015
0
        /* do the multiplication with generator precomputation */
2016
0
        batch_mul(x_out, y_out, z_out,
2017
0
                  (const felem_bytearray(*))secrets, num_points,
2018
0
                  g_secret,
2019
0
                  mixed, (const felem(*)[17][3])pre_comp,
2020
0
                  (const felem(*)[3])g_pre_comp);
2021
0
    } else
2022
0
        /* do the multiplication without generator precomputation */
2023
0
        batch_mul(x_out, y_out, z_out,
2024
0
                  (const felem_bytearray(*))secrets, num_points,
2025
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2026
0
    /* reduce the output to its unique minimal representation */
2027
0
    felem_contract(x_in, x_out);
2028
0
    felem_contract(y_in, y_out);
2029
0
    felem_contract(z_in, z_out);
2030
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2031
0
        (!felem_to_BN(z, z_in))) {
2032
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2033
0
        goto err;
2034
0
    }
2035
0
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2036
0
2037
0
 err:
2038
0
    BN_CTX_end(ctx);
2039
0
    EC_POINT_free(generator);
2040
0
    OPENSSL_free(secrets);
2041
0
    OPENSSL_free(pre_comp);
2042
0
    OPENSSL_free(tmp_felems);
2043
0
    return ret;
2044
0
}
2045
2046
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2047
0
{
2048
0
    int ret = 0;
2049
0
    NISTP521_PRE_COMP *pre = NULL;
2050
0
    int i, j;
2051
0
    BN_CTX *new_ctx = NULL;
2052
0
    BIGNUM *x, *y;
2053
0
    EC_POINT *generator = NULL;
2054
0
    felem tmp_felems[16];
2055
0
2056
0
    /* throw away old precomputation */
2057
0
    EC_pre_comp_free(group);
2058
0
    if (ctx == NULL)
2059
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2060
0
            return 0;
2061
0
    BN_CTX_start(ctx);
2062
0
    x = BN_CTX_get(ctx);
2063
0
    y = BN_CTX_get(ctx);
2064
0
    if (y == NULL)
2065
0
        goto err;
2066
0
    /* get the generator */
2067
0
    if (group->generator == NULL)
2068
0
        goto err;
2069
0
    generator = EC_POINT_new(group);
2070
0
    if (generator == NULL)
2071
0
        goto err;
2072
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2073
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2074
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2075
0
        goto err;
2076
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2077
0
        goto err;
2078
0
    /*
2079
0
     * if the generator is the standard one, use built-in precomputation
2080
0
     */
2081
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2082
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2083
0
        goto done;
2084
0
    }
2085
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2086
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2087
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2088
0
        goto err;
2089
0
    /* compute 2^130*G, 2^260*G, 2^390*G */
2090
0
    for (i = 1; i <= 4; i <<= 1) {
2091
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2092
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2093
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2094
0
        for (j = 0; j < 129; ++j) {
2095
0
            point_double(pre->g_pre_comp[2 * i][0],
2096
0
                         pre->g_pre_comp[2 * i][1],
2097
0
                         pre->g_pre_comp[2 * i][2],
2098
0
                         pre->g_pre_comp[2 * i][0],
2099
0
                         pre->g_pre_comp[2 * i][1],
2100
0
                         pre->g_pre_comp[2 * i][2]);
2101
0
        }
2102
0
    }
2103
0
    /* g_pre_comp[0] is the point at infinity */
2104
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2105
0
    /* the remaining multiples */
2106
0
    /* 2^130*G + 2^260*G */
2107
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2108
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2109
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2110
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2111
0
              pre->g_pre_comp[2][2]);
2112
0
    /* 2^130*G + 2^390*G */
2113
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2114
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2115
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2116
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2117
0
              pre->g_pre_comp[2][2]);
2118
0
    /* 2^260*G + 2^390*G */
2119
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2120
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2121
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2122
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2123
0
              pre->g_pre_comp[4][2]);
2124
0
    /* 2^130*G + 2^260*G + 2^390*G */
2125
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2126
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2127
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2128
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2129
0
              pre->g_pre_comp[2][2]);
2130
0
    for (i = 1; i < 8; ++i) {
2131
0
        /* odd multiples: add G */
2132
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2133
0
                  pre->g_pre_comp[2 * i + 1][1],
2134
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2135
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2136
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2137
0
                  pre->g_pre_comp[1][2]);
2138
0
    }
2139
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2140
0
2141
0
 done:
2142
0
    SETPRECOMP(group, nistp521, pre);
2143
0
    ret = 1;
2144
0
    pre = NULL;
2145
0
 err:
2146
0
    BN_CTX_end(ctx);
2147
0
    EC_POINT_free(generator);
2148
0
    BN_CTX_free(new_ctx);
2149
0
    EC_nistp521_pre_comp_free(pre);
2150
0
    return ret;
2151
0
}
2152
2153
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2154
0
{
2155
0
    return HAVEPRECOMP(group, nistp521);
2156
0
}
2157
2158
#endif