Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/ec/ecp_nistz256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the OpenSSL license (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
#include <string.h>
22
23
#include "internal/cryptlib.h"
24
#include "internal/bn_int.h"
25
#include "ec_lcl.h"
26
#include "internal/refcount.h"
27
28
#if BN_BITS2 != 64
29
# define TOBN(hi,lo)    lo,hi
30
#else
31
0
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
32
#endif
33
34
#if defined(__GNUC__)
35
0
# define ALIGN32        __attribute((aligned(32)))
36
#elif defined(_MSC_VER)
37
# define ALIGN32        __declspec(align(32))
38
#else
39
# define ALIGN32
40
#endif
41
42
0
#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
43
0
#define P256_LIMBS      (256/BN_BITS2)
44
45
typedef unsigned short u16;
46
47
typedef struct {
48
    BN_ULONG X[P256_LIMBS];
49
    BN_ULONG Y[P256_LIMBS];
50
    BN_ULONG Z[P256_LIMBS];
51
} P256_POINT;
52
53
typedef struct {
54
    BN_ULONG X[P256_LIMBS];
55
    BN_ULONG Y[P256_LIMBS];
56
} P256_POINT_AFFINE;
57
58
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
59
60
/* structure for precomputed multiples of the generator */
61
struct nistz256_pre_comp_st {
62
    const EC_GROUP *group;      /* Parent EC_GROUP object */
63
    size_t w;                   /* Window size */
64
    /*
65
     * Constant time access to the X and Y coordinates of the pre-computed,
66
     * generator multiplies, in the Montgomery domain. Pre-calculated
67
     * multiplies are stored in affine form.
68
     */
69
    PRECOMP256_ROW *precomp;
70
    void *precomp_storage;
71
    CRYPTO_REF_COUNT references;
72
    CRYPTO_RWLOCK *lock;
73
};
74
75
/* Functions implemented in assembly */
76
/*
77
 * Most of below mentioned functions *preserve* the property of inputs
78
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
79
 * inputs are fully reduced, then output is too. Note that reverse is
80
 * not true, in sense that given partially reduced inputs output can be
81
 * either, not unlikely reduced. And "most" in first sentence refers to
82
 * the fact that given the calculations flow one can tolerate that
83
 * addition, 1st function below, produces partially reduced result *if*
84
 * multiplications by 2 and 3, which customarily use addition, fully
85
 * reduce it. This effectively gives two options: a) addition produces
86
 * fully reduced result [as long as inputs are, just like remaining
87
 * functions]; b) addition is allowed to produce partially reduced
88
 * result, but multiplications by 2 and 3 perform additional reduction
89
 * step. Choice between the two can be platform-specific, but it was a)
90
 * in all cases so far...
91
 */
92
/* Modular add: res = a+b mod P   */
93
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
94
                      const BN_ULONG a[P256_LIMBS],
95
                      const BN_ULONG b[P256_LIMBS]);
96
/* Modular mul by 2: res = 2*a mod P */
97
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
98
                           const BN_ULONG a[P256_LIMBS]);
99
/* Modular mul by 3: res = 3*a mod P */
100
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
101
                           const BN_ULONG a[P256_LIMBS]);
102
103
/* Modular div by 2: res = a/2 mod P */
104
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
105
                           const BN_ULONG a[P256_LIMBS]);
106
/* Modular sub: res = a-b mod P   */
107
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
108
                      const BN_ULONG a[P256_LIMBS],
109
                      const BN_ULONG b[P256_LIMBS]);
110
/* Modular neg: res = -a mod P    */
111
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
112
/* Montgomery mul: res = a*b*2^-256 mod P */
113
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
114
                           const BN_ULONG a[P256_LIMBS],
115
                           const BN_ULONG b[P256_LIMBS]);
116
/* Montgomery sqr: res = a*a*2^-256 mod P */
117
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
118
                           const BN_ULONG a[P256_LIMBS]);
119
/* Convert a number from Montgomery domain, by multiplying with 1 */
120
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
121
                            const BN_ULONG in[P256_LIMBS]);
122
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
123
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
124
                          const BN_ULONG in[P256_LIMBS]);
125
/* Functions that perform constant time access to the precomputed tables */
126
void ecp_nistz256_scatter_w5(P256_POINT *val,
127
                             const P256_POINT *in_t, int idx);
128
void ecp_nistz256_gather_w5(P256_POINT *val,
129
                            const P256_POINT *in_t, int idx);
130
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
131
                             const P256_POINT_AFFINE *in_t, int idx);
132
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
133
                            const P256_POINT_AFFINE *in_t, int idx);
134
135
/* One converted into the Montgomery domain */
136
static const BN_ULONG ONE[P256_LIMBS] = {
137
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
138
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
139
};
140
141
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
142
143
/* Precomputed tables for the default generator */
144
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
145
146
/* Recode window to a signed digit, see ecp_nistputil.c for details */
147
static unsigned int _booth_recode_w5(unsigned int in)
148
0
{
149
0
    unsigned int s, d;
150
0
151
0
    s = ~((in >> 5) - 1);
152
0
    d = (1 << 6) - in - 1;
153
0
    d = (d & s) | (in & ~s);
154
0
    d = (d >> 1) + (d & 1);
155
0
156
0
    return (d << 1) + (s & 1);
157
0
}
158
159
static unsigned int _booth_recode_w7(unsigned int in)
160
0
{
161
0
    unsigned int s, d;
162
0
163
0
    s = ~((in >> 7) - 1);
164
0
    d = (1 << 8) - in - 1;
165
0
    d = (d & s) | (in & ~s);
166
0
    d = (d >> 1) + (d & 1);
167
0
168
0
    return (d << 1) + (s & 1);
169
0
}
170
171
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
172
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
173
0
{
174
0
    BN_ULONG mask1 = 0-move;
175
0
    BN_ULONG mask2 = ~mask1;
176
0
177
0
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
178
0
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
179
0
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
180
0
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
181
0
    if (P256_LIMBS == 8) {
182
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
183
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
184
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
185
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
186
0
    }
187
0
}
188
189
static BN_ULONG is_zero(BN_ULONG in)
190
0
{
191
0
    in |= (0 - in);
192
0
    in = ~in;
193
0
    in >>= BN_BITS2 - 1;
194
0
    return in;
195
0
}
196
197
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
198
                         const BN_ULONG b[P256_LIMBS])
199
0
{
200
0
    BN_ULONG res;
201
0
202
0
    res = a[0] ^ b[0];
203
0
    res |= a[1] ^ b[1];
204
0
    res |= a[2] ^ b[2];
205
0
    res |= a[3] ^ b[3];
206
0
    if (P256_LIMBS == 8) {
207
0
        res |= a[4] ^ b[4];
208
0
        res |= a[5] ^ b[5];
209
0
        res |= a[6] ^ b[6];
210
0
        res |= a[7] ^ b[7];
211
0
    }
212
0
213
0
    return is_zero(res);
214
0
}
215
216
static BN_ULONG is_one(const BIGNUM *z)
217
0
{
218
0
    BN_ULONG res = 0;
219
0
    BN_ULONG *a = bn_get_words(z);
220
0
221
0
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
222
0
        res = a[0] ^ ONE[0];
223
0
        res |= a[1] ^ ONE[1];
224
0
        res |= a[2] ^ ONE[2];
225
0
        res |= a[3] ^ ONE[3];
226
0
        if (P256_LIMBS == 8) {
227
0
            res |= a[4] ^ ONE[4];
228
0
            res |= a[5] ^ ONE[5];
229
0
            res |= a[6] ^ ONE[6];
230
0
            /*
231
0
             * no check for a[7] (being zero) on 32-bit platforms,
232
0
             * because value of "one" takes only 7 limbs.
233
0
             */
234
0
        }
235
0
        res = is_zero(res);
236
0
    }
237
0
238
0
    return res;
239
0
}
240
241
/*
242
 * For reference, this macro is used only when new ecp_nistz256 assembly
243
 * module is being developed.  For example, configure with
244
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
245
 * performing simplest arithmetic operations on 256-bit vectors. Then
246
 * work on implementation of higher-level functions performing point
247
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
248
 * and never define it again. (The correct macro denoting presence of
249
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
250
 */
251
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
252
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
253
void ecp_nistz256_point_add(P256_POINT *r,
254
                            const P256_POINT *a, const P256_POINT *b);
255
void ecp_nistz256_point_add_affine(P256_POINT *r,
256
                                   const P256_POINT *a,
257
                                   const P256_POINT_AFFINE *b);
258
#else
259
/* Point double: r = 2*a */
260
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
261
{
262
    BN_ULONG S[P256_LIMBS];
263
    BN_ULONG M[P256_LIMBS];
264
    BN_ULONG Zsqr[P256_LIMBS];
265
    BN_ULONG tmp0[P256_LIMBS];
266
267
    const BN_ULONG *in_x = a->X;
268
    const BN_ULONG *in_y = a->Y;
269
    const BN_ULONG *in_z = a->Z;
270
271
    BN_ULONG *res_x = r->X;
272
    BN_ULONG *res_y = r->Y;
273
    BN_ULONG *res_z = r->Z;
274
275
    ecp_nistz256_mul_by_2(S, in_y);
276
277
    ecp_nistz256_sqr_mont(Zsqr, in_z);
278
279
    ecp_nistz256_sqr_mont(S, S);
280
281
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
282
    ecp_nistz256_mul_by_2(res_z, res_z);
283
284
    ecp_nistz256_add(M, in_x, Zsqr);
285
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
286
287
    ecp_nistz256_sqr_mont(res_y, S);
288
    ecp_nistz256_div_by_2(res_y, res_y);
289
290
    ecp_nistz256_mul_mont(M, M, Zsqr);
291
    ecp_nistz256_mul_by_3(M, M);
292
293
    ecp_nistz256_mul_mont(S, S, in_x);
294
    ecp_nistz256_mul_by_2(tmp0, S);
295
296
    ecp_nistz256_sqr_mont(res_x, M);
297
298
    ecp_nistz256_sub(res_x, res_x, tmp0);
299
    ecp_nistz256_sub(S, S, res_x);
300
301
    ecp_nistz256_mul_mont(S, S, M);
302
    ecp_nistz256_sub(res_y, S, res_y);
303
}
304
305
/* Point addition: r = a+b */
306
static void ecp_nistz256_point_add(P256_POINT *r,
307
                                   const P256_POINT *a, const P256_POINT *b)
308
{
309
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
310
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
311
    BN_ULONG Z1sqr[P256_LIMBS];
312
    BN_ULONG Z2sqr[P256_LIMBS];
313
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
314
    BN_ULONG Hsqr[P256_LIMBS];
315
    BN_ULONG Rsqr[P256_LIMBS];
316
    BN_ULONG Hcub[P256_LIMBS];
317
318
    BN_ULONG res_x[P256_LIMBS];
319
    BN_ULONG res_y[P256_LIMBS];
320
    BN_ULONG res_z[P256_LIMBS];
321
322
    BN_ULONG in1infty, in2infty;
323
324
    const BN_ULONG *in1_x = a->X;
325
    const BN_ULONG *in1_y = a->Y;
326
    const BN_ULONG *in1_z = a->Z;
327
328
    const BN_ULONG *in2_x = b->X;
329
    const BN_ULONG *in2_y = b->Y;
330
    const BN_ULONG *in2_z = b->Z;
331
332
    /*
333
     * Infinity in encoded as (,,0)
334
     */
335
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
336
    if (P256_LIMBS == 8)
337
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
338
339
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
340
    if (P256_LIMBS == 8)
341
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
342
343
    in1infty = is_zero(in1infty);
344
    in2infty = is_zero(in2infty);
345
346
    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
347
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
348
349
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
350
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
351
352
    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
353
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
354
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
355
356
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
357
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
358
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
359
360
    /*
361
     * This should not happen during sign/ecdh, so no constant time violation
362
     */
363
    if (is_equal(U1, U2) && !in1infty && !in2infty) {
364
        if (is_equal(S1, S2)) {
365
            ecp_nistz256_point_double(r, a);
366
            return;
367
        } else {
368
            memset(r, 0, sizeof(*r));
369
            return;
370
        }
371
    }
372
373
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
374
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
375
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
376
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
377
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
378
379
    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
380
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
381
382
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
383
    ecp_nistz256_sub(res_x, res_x, Hcub);
384
385
    ecp_nistz256_sub(res_y, U2, res_x);
386
387
    ecp_nistz256_mul_mont(S2, S1, Hcub);
388
    ecp_nistz256_mul_mont(res_y, R, res_y);
389
    ecp_nistz256_sub(res_y, res_y, S2);
390
391
    copy_conditional(res_x, in2_x, in1infty);
392
    copy_conditional(res_y, in2_y, in1infty);
393
    copy_conditional(res_z, in2_z, in1infty);
394
395
    copy_conditional(res_x, in1_x, in2infty);
396
    copy_conditional(res_y, in1_y, in2infty);
397
    copy_conditional(res_z, in1_z, in2infty);
398
399
    memcpy(r->X, res_x, sizeof(res_x));
400
    memcpy(r->Y, res_y, sizeof(res_y));
401
    memcpy(r->Z, res_z, sizeof(res_z));
402
}
403
404
/* Point addition when b is known to be affine: r = a+b */
405
static void ecp_nistz256_point_add_affine(P256_POINT *r,
406
                                          const P256_POINT *a,
407
                                          const P256_POINT_AFFINE *b)
408
{
409
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
410
    BN_ULONG Z1sqr[P256_LIMBS];
411
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
412
    BN_ULONG Hsqr[P256_LIMBS];
413
    BN_ULONG Rsqr[P256_LIMBS];
414
    BN_ULONG Hcub[P256_LIMBS];
415
416
    BN_ULONG res_x[P256_LIMBS];
417
    BN_ULONG res_y[P256_LIMBS];
418
    BN_ULONG res_z[P256_LIMBS];
419
420
    BN_ULONG in1infty, in2infty;
421
422
    const BN_ULONG *in1_x = a->X;
423
    const BN_ULONG *in1_y = a->Y;
424
    const BN_ULONG *in1_z = a->Z;
425
426
    const BN_ULONG *in2_x = b->X;
427
    const BN_ULONG *in2_y = b->Y;
428
429
    /*
430
     * Infinity in encoded as (,,0)
431
     */
432
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
433
    if (P256_LIMBS == 8)
434
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
435
436
    /*
437
     * In affine representation we encode infinity as (0,0), which is
438
     * not on the curve, so it is OK
439
     */
440
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
441
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
442
    if (P256_LIMBS == 8)
443
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
444
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
445
446
    in1infty = is_zero(in1infty);
447
    in2infty = is_zero(in2infty);
448
449
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
450
451
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
452
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
453
454
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
455
456
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
457
458
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
459
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
460
461
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
462
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
463
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
464
465
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
466
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
467
468
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
469
    ecp_nistz256_sub(res_x, res_x, Hcub);
470
    ecp_nistz256_sub(H, U2, res_x);
471
472
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
473
    ecp_nistz256_mul_mont(H, H, R);
474
    ecp_nistz256_sub(res_y, H, S2);
475
476
    copy_conditional(res_x, in2_x, in1infty);
477
    copy_conditional(res_x, in1_x, in2infty);
478
479
    copy_conditional(res_y, in2_y, in1infty);
480
    copy_conditional(res_y, in1_y, in2infty);
481
482
    copy_conditional(res_z, ONE, in1infty);
483
    copy_conditional(res_z, in1_z, in2infty);
484
485
    memcpy(r->X, res_x, sizeof(res_x));
486
    memcpy(r->Y, res_y, sizeof(res_y));
487
    memcpy(r->Z, res_z, sizeof(res_z));
488
}
489
#endif
490
491
/* r = in^-1 mod p */
492
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
493
                                     const BN_ULONG in[P256_LIMBS])
494
0
{
495
0
    /*
496
0
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
497
0
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
498
0
     */
499
0
    BN_ULONG p2[P256_LIMBS];
500
0
    BN_ULONG p4[P256_LIMBS];
501
0
    BN_ULONG p8[P256_LIMBS];
502
0
    BN_ULONG p16[P256_LIMBS];
503
0
    BN_ULONG p32[P256_LIMBS];
504
0
    BN_ULONG res[P256_LIMBS];
505
0
    int i;
506
0
507
0
    ecp_nistz256_sqr_mont(res, in);
508
0
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
509
0
510
0
    ecp_nistz256_sqr_mont(res, p2);
511
0
    ecp_nistz256_sqr_mont(res, res);
512
0
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
513
0
514
0
    ecp_nistz256_sqr_mont(res, p4);
515
0
    ecp_nistz256_sqr_mont(res, res);
516
0
    ecp_nistz256_sqr_mont(res, res);
517
0
    ecp_nistz256_sqr_mont(res, res);
518
0
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
519
0
520
0
    ecp_nistz256_sqr_mont(res, p8);
521
0
    for (i = 0; i < 7; i++)
522
0
        ecp_nistz256_sqr_mont(res, res);
523
0
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
524
0
525
0
    ecp_nistz256_sqr_mont(res, p16);
526
0
    for (i = 0; i < 15; i++)
527
0
        ecp_nistz256_sqr_mont(res, res);
528
0
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
529
0
530
0
    ecp_nistz256_sqr_mont(res, p32);
531
0
    for (i = 0; i < 31; i++)
532
0
        ecp_nistz256_sqr_mont(res, res);
533
0
    ecp_nistz256_mul_mont(res, res, in);
534
0
535
0
    for (i = 0; i < 32 * 4; i++)
536
0
        ecp_nistz256_sqr_mont(res, res);
537
0
    ecp_nistz256_mul_mont(res, res, p32);
538
0
539
0
    for (i = 0; i < 32; i++)
540
0
        ecp_nistz256_sqr_mont(res, res);
541
0
    ecp_nistz256_mul_mont(res, res, p32);
542
0
543
0
    for (i = 0; i < 16; i++)
544
0
        ecp_nistz256_sqr_mont(res, res);
545
0
    ecp_nistz256_mul_mont(res, res, p16);
546
0
547
0
    for (i = 0; i < 8; i++)
548
0
        ecp_nistz256_sqr_mont(res, res);
549
0
    ecp_nistz256_mul_mont(res, res, p8);
550
0
551
0
    ecp_nistz256_sqr_mont(res, res);
552
0
    ecp_nistz256_sqr_mont(res, res);
553
0
    ecp_nistz256_sqr_mont(res, res);
554
0
    ecp_nistz256_sqr_mont(res, res);
555
0
    ecp_nistz256_mul_mont(res, res, p4);
556
0
557
0
    ecp_nistz256_sqr_mont(res, res);
558
0
    ecp_nistz256_sqr_mont(res, res);
559
0
    ecp_nistz256_mul_mont(res, res, p2);
560
0
561
0
    ecp_nistz256_sqr_mont(res, res);
562
0
    ecp_nistz256_sqr_mont(res, res);
563
0
    ecp_nistz256_mul_mont(res, res, in);
564
0
565
0
    memcpy(r, res, sizeof(res));
566
0
}
567
568
/*
569
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
570
 * returns one if it fits. Otherwise it returns zero.
571
 */
572
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
573
                                                    const BIGNUM *in)
574
0
{
575
0
    return bn_copy_words(out, in, P256_LIMBS);
576
0
}
577
578
/* r = sum(scalar[i]*point[i]) */
579
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
580
                                            P256_POINT *r,
581
                                            const BIGNUM **scalar,
582
                                            const EC_POINT **point,
583
                                            size_t num, BN_CTX *ctx)
584
0
{
585
0
    size_t i;
586
0
    int j, ret = 0;
587
0
    unsigned int idx;
588
0
    unsigned char (*p_str)[33] = NULL;
589
0
    const unsigned int window_size = 5;
590
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
591
0
    unsigned int wvalue;
592
0
    P256_POINT *temp;           /* place for 5 temporary points */
593
0
    const BIGNUM **scalars = NULL;
594
0
    P256_POINT (*table)[16] = NULL;
595
0
    void *table_storage = NULL;
596
0
597
0
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
598
0
        || (table_storage =
599
0
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
600
0
        || (p_str =
601
0
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
602
0
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
603
0
        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
604
0
        goto err;
605
0
    }
606
0
607
0
    table = (void *)ALIGNPTR(table_storage, 64);
608
0
    temp = (P256_POINT *)(table + num);
609
0
610
0
    for (i = 0; i < num; i++) {
611
0
        P256_POINT *row = table[i];
612
0
613
0
        /* This is an unusual input, we don't guarantee constant-timeness. */
614
0
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
615
0
            BIGNUM *mod;
616
0
617
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
618
0
                goto err;
619
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
620
0
                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
621
0
                goto err;
622
0
            }
623
0
            scalars[i] = mod;
624
0
        } else
625
0
            scalars[i] = scalar[i];
626
0
627
0
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
628
0
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
629
0
630
0
            p_str[i][j + 0] = (unsigned char)d;
631
0
            p_str[i][j + 1] = (unsigned char)(d >> 8);
632
0
            p_str[i][j + 2] = (unsigned char)(d >> 16);
633
0
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
634
0
            if (BN_BYTES == 8) {
635
0
                d >>= 8;
636
0
                p_str[i][j + 4] = (unsigned char)d;
637
0
                p_str[i][j + 5] = (unsigned char)(d >> 8);
638
0
                p_str[i][j + 6] = (unsigned char)(d >> 16);
639
0
                p_str[i][j + 7] = (unsigned char)(d >> 24);
640
0
            }
641
0
        }
642
0
        for (; j < 33; j++)
643
0
            p_str[i][j] = 0;
644
0
645
0
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
646
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
647
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
648
0
            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
649
0
                  EC_R_COORDINATES_OUT_OF_RANGE);
650
0
            goto err;
651
0
        }
652
0
653
0
        /*
654
0
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
655
0
         * is not stored. All other values are actually stored with an offset
656
0
         * of -1 in table.
657
0
         */
658
0
659
0
        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
660
0
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
661
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
662
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
663
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
664
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
665
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
666
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
667
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
668
0
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
669
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
670
0
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
671
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
672
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
673
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
674
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
675
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
676
0
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
677
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
678
0
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
679
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
680
0
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
681
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
682
0
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
683
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
684
0
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
685
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
686
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
687
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
688
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
689
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
690
0
    }
691
0
692
0
    idx = 255;
693
0
694
0
    wvalue = p_str[0][(idx - 1) / 8];
695
0
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
696
0
697
0
    /*
698
0
     * We gather to temp[0], because we know it's position relative
699
0
     * to table
700
0
     */
701
0
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
702
0
    memcpy(r, &temp[0], sizeof(temp[0]));
703
0
704
0
    while (idx >= 5) {
705
0
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
706
0
            unsigned int off = (idx - 1) / 8;
707
0
708
0
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
709
0
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
710
0
711
0
            wvalue = _booth_recode_w5(wvalue);
712
0
713
0
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
714
0
715
0
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
716
0
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
717
0
718
0
            ecp_nistz256_point_add(r, r, &temp[0]);
719
0
        }
720
0
721
0
        idx -= window_size;
722
0
723
0
        ecp_nistz256_point_double(r, r);
724
0
        ecp_nistz256_point_double(r, r);
725
0
        ecp_nistz256_point_double(r, r);
726
0
        ecp_nistz256_point_double(r, r);
727
0
        ecp_nistz256_point_double(r, r);
728
0
    }
729
0
730
0
    /* Final window */
731
0
    for (i = 0; i < num; i++) {
732
0
        wvalue = p_str[i][0];
733
0
        wvalue = (wvalue << 1) & mask;
734
0
735
0
        wvalue = _booth_recode_w5(wvalue);
736
0
737
0
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
738
0
739
0
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
740
0
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
741
0
742
0
        ecp_nistz256_point_add(r, r, &temp[0]);
743
0
    }
744
0
745
0
    ret = 1;
746
0
 err:
747
0
    OPENSSL_free(table_storage);
748
0
    OPENSSL_free(p_str);
749
0
    OPENSSL_free(scalars);
750
0
    return ret;
751
0
}
752
753
/* Coordinates of G, for which we have precomputed tables */
754
static const BN_ULONG def_xG[P256_LIMBS] = {
755
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
756
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
757
};
758
759
static const BN_ULONG def_yG[P256_LIMBS] = {
760
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
761
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
762
};
763
764
/*
765
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
766
 * generator.
767
 */
768
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
769
0
{
770
0
    return (bn_get_top(generator->X) == P256_LIMBS) &&
771
0
        (bn_get_top(generator->Y) == P256_LIMBS) &&
772
0
        is_equal(bn_get_words(generator->X), def_xG) &&
773
0
        is_equal(bn_get_words(generator->Y), def_yG) &&
774
0
        is_one(generator->Z);
775
0
}
776
777
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
778
0
{
779
0
    /*
780
0
     * We precompute a table for a Booth encoded exponent (wNAF) based
781
0
     * computation. Each table holds 64 values for safe access, with an
782
0
     * implicit value of infinity at index zero. We use window of size 7, and
783
0
     * therefore require ceil(256/7) = 37 tables.
784
0
     */
785
0
    const BIGNUM *order;
786
0
    EC_POINT *P = NULL, *T = NULL;
787
0
    const EC_POINT *generator;
788
0
    NISTZ256_PRE_COMP *pre_comp;
789
0
    BN_CTX *new_ctx = NULL;
790
0
    int i, j, k, ret = 0;
791
0
    size_t w;
792
0
793
0
    PRECOMP256_ROW *preComputedTable = NULL;
794
0
    unsigned char *precomp_storage = NULL;
795
0
796
0
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
797
0
    EC_pre_comp_free(group);
798
0
    generator = EC_GROUP_get0_generator(group);
799
0
    if (generator == NULL) {
800
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
801
0
        return 0;
802
0
    }
803
0
804
0
    if (ecp_nistz256_is_affine_G(generator)) {
805
0
        /*
806
0
         * No need to calculate tables for the standard generator because we
807
0
         * have them statically.
808
0
         */
809
0
        return 1;
810
0
    }
811
0
812
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
813
0
        return 0;
814
0
815
0
    if (ctx == NULL) {
816
0
        ctx = new_ctx = BN_CTX_new();
817
0
        if (ctx == NULL)
818
0
            goto err;
819
0
    }
820
0
821
0
    BN_CTX_start(ctx);
822
0
823
0
    order = EC_GROUP_get0_order(group);
824
0
    if (order == NULL)
825
0
        goto err;
826
0
827
0
    if (BN_is_zero(order)) {
828
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
829
0
        goto err;
830
0
    }
831
0
832
0
    w = 7;
833
0
834
0
    if ((precomp_storage =
835
0
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
836
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
837
0
        goto err;
838
0
    }
839
0
840
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
841
0
842
0
    P = EC_POINT_new(group);
843
0
    T = EC_POINT_new(group);
844
0
    if (P == NULL || T == NULL)
845
0
        goto err;
846
0
847
0
    /*
848
0
     * The zero entry is implicitly infinity, and we skip it, storing other
849
0
     * values with -1 offset.
850
0
     */
851
0
    if (!EC_POINT_copy(T, generator))
852
0
        goto err;
853
0
854
0
    for (k = 0; k < 64; k++) {
855
0
        if (!EC_POINT_copy(P, T))
856
0
            goto err;
857
0
        for (j = 0; j < 37; j++) {
858
0
            P256_POINT_AFFINE temp;
859
0
            /*
860
0
             * It would be faster to use EC_POINTs_make_affine and
861
0
             * make multiple points affine at the same time.
862
0
             */
863
0
            if (!EC_POINT_make_affine(group, P, ctx))
864
0
                goto err;
865
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
866
0
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
867
0
                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
868
0
                      EC_R_COORDINATES_OUT_OF_RANGE);
869
0
                goto err;
870
0
            }
871
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
872
0
            for (i = 0; i < 7; i++) {
873
0
                if (!EC_POINT_dbl(group, P, P, ctx))
874
0
                    goto err;
875
0
            }
876
0
        }
877
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
878
0
            goto err;
879
0
    }
880
0
881
0
    pre_comp->group = group;
882
0
    pre_comp->w = w;
883
0
    pre_comp->precomp = preComputedTable;
884
0
    pre_comp->precomp_storage = precomp_storage;
885
0
    precomp_storage = NULL;
886
0
    SETPRECOMP(group, nistz256, pre_comp);
887
0
    pre_comp = NULL;
888
0
    ret = 1;
889
0
890
0
 err:
891
0
    if (ctx != NULL)
892
0
        BN_CTX_end(ctx);
893
0
    BN_CTX_free(new_ctx);
894
0
895
0
    EC_nistz256_pre_comp_free(pre_comp);
896
0
    OPENSSL_free(precomp_storage);
897
0
    EC_POINT_free(P);
898
0
    EC_POINT_free(T);
899
0
    return ret;
900
0
}
901
902
/*
903
 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
904
 * code processing 4 points in parallel, corresponding serial operation
905
 * is several times slower, because it uses 29x29=58-bit multiplication
906
 * as opposite to 64x64=128-bit in integer-only scalar case. As result
907
 * it doesn't provide *significant* performance improvement. Note that
908
 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
909
 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
910
 */
911
#if defined(ECP_NISTZ256_AVX2)
912
# if !(defined(__x86_64) || defined(__x86_64__) || \
913
       defined(_M_AMD64) || defined(_M_X64)) || \
914
     !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
915
#  undef ECP_NISTZ256_AVX2
916
# else
917
/* Constant time access, loading four values, from four consecutive tables */
918
void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
919
                                       int index0, int index1, int index2,
920
                                       int index3);
921
void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
922
void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
923
void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
924
                                           const void *Bx4);
925
void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
926
                                            const void *Bx4);
927
void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
928
void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
929
void ecp_nistz256_avx2_set1(void *RESULTx4);
930
int ecp_nistz_avx2_eligible(void);
931
932
static void booth_recode_w7(unsigned char *sign,
933
                            unsigned char *digit, unsigned char in)
934
{
935
    unsigned char s, d;
936
937
    s = ~((in >> 7) - 1);
938
    d = (1 << 8) - in - 1;
939
    d = (d & s) | (in & ~s);
940
    d = (d >> 1) + (d & 1);
941
942
    *sign = s & 1;
943
    *digit = d;
944
}
945
946
/*
947
 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
948
 * precomputed table. It does 4 affine point additions in parallel,
949
 * significantly speeding up point multiplication for a fixed value.
950
 */
951
static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
952
                                    unsigned char p_str[33],
953
                                    const P256_POINT_AFFINE(*preComputedTable)[64])
954
{
955
    const unsigned int window_size = 7;
956
    const unsigned int mask = (1 << (window_size + 1)) - 1;
957
    unsigned int wvalue;
958
    /* Using 4 windows at a time */
959
    unsigned char sign0, digit0;
960
    unsigned char sign1, digit1;
961
    unsigned char sign2, digit2;
962
    unsigned char sign3, digit3;
963
    unsigned int idx = 0;
964
    BN_ULONG tmp[P256_LIMBS];
965
    int i;
966
967
    ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
968
    ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
969
    ALIGN32 P256_POINT_AFFINE point_arr[4];
970
    ALIGN32 P256_POINT res_point_arr[4];
971
972
    /* Initial four windows */
973
    wvalue = *((u16 *) & p_str[0]);
974
    wvalue = (wvalue << 1) & mask;
975
    idx += window_size;
976
    booth_recode_w7(&sign0, &digit0, wvalue);
977
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
978
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
979
    idx += window_size;
980
    booth_recode_w7(&sign1, &digit1, wvalue);
981
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
982
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
983
    idx += window_size;
984
    booth_recode_w7(&sign2, &digit2, wvalue);
985
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
986
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
987
    idx += window_size;
988
    booth_recode_w7(&sign3, &digit3, wvalue);
989
990
    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
991
                                      digit0, digit1, digit2, digit3);
992
993
    ecp_nistz256_neg(tmp, point_arr[0].Y);
994
    copy_conditional(point_arr[0].Y, tmp, sign0);
995
    ecp_nistz256_neg(tmp, point_arr[1].Y);
996
    copy_conditional(point_arr[1].Y, tmp, sign1);
997
    ecp_nistz256_neg(tmp, point_arr[2].Y);
998
    copy_conditional(point_arr[2].Y, tmp, sign2);
999
    ecp_nistz256_neg(tmp, point_arr[3].Y);
1000
    copy_conditional(point_arr[3].Y, tmp, sign3);
1001
1002
    ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
1003
    ecp_nistz256_avx2_to_mont(aX4, aX4);
1004
    ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
1005
    ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
1006
1007
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1008
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1009
    idx += window_size;
1010
    booth_recode_w7(&sign0, &digit0, wvalue);
1011
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1012
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1013
    idx += window_size;
1014
    booth_recode_w7(&sign1, &digit1, wvalue);
1015
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1016
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1017
    idx += window_size;
1018
    booth_recode_w7(&sign2, &digit2, wvalue);
1019
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1020
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1021
    idx += window_size;
1022
    booth_recode_w7(&sign3, &digit3, wvalue);
1023
1024
    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
1025
                                      digit0, digit1, digit2, digit3);
1026
1027
    ecp_nistz256_neg(tmp, point_arr[0].Y);
1028
    copy_conditional(point_arr[0].Y, tmp, sign0);
1029
    ecp_nistz256_neg(tmp, point_arr[1].Y);
1030
    copy_conditional(point_arr[1].Y, tmp, sign1);
1031
    ecp_nistz256_neg(tmp, point_arr[2].Y);
1032
    copy_conditional(point_arr[2].Y, tmp, sign2);
1033
    ecp_nistz256_neg(tmp, point_arr[3].Y);
1034
    copy_conditional(point_arr[3].Y, tmp, sign3);
1035
1036
    ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1037
    ecp_nistz256_avx2_to_mont(bX4, bX4);
1038
    ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1039
    /* Optimized when both inputs are affine */
1040
    ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1041
1042
    for (i = 2; i < 9; i++) {
1043
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1044
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1045
        idx += window_size;
1046
        booth_recode_w7(&sign0, &digit0, wvalue);
1047
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1048
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1049
        idx += window_size;
1050
        booth_recode_w7(&sign1, &digit1, wvalue);
1051
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1052
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1053
        idx += window_size;
1054
        booth_recode_w7(&sign2, &digit2, wvalue);
1055
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1056
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1057
        idx += window_size;
1058
        booth_recode_w7(&sign3, &digit3, wvalue);
1059
1060
        ecp_nistz256_avx2_multi_gather_w7(point_arr,
1061
                                          preComputedTable[4 * i],
1062
                                          digit0, digit1, digit2, digit3);
1063
1064
        ecp_nistz256_neg(tmp, point_arr[0].Y);
1065
        copy_conditional(point_arr[0].Y, tmp, sign0);
1066
        ecp_nistz256_neg(tmp, point_arr[1].Y);
1067
        copy_conditional(point_arr[1].Y, tmp, sign1);
1068
        ecp_nistz256_neg(tmp, point_arr[2].Y);
1069
        copy_conditional(point_arr[2].Y, tmp, sign2);
1070
        ecp_nistz256_neg(tmp, point_arr[3].Y);
1071
        copy_conditional(point_arr[3].Y, tmp, sign3);
1072
1073
        ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1074
        ecp_nistz256_avx2_to_mont(bX4, bX4);
1075
        ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1076
1077
        ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1078
    }
1079
1080
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1081
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1082
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1083
1084
    ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1085
    /* Last window is performed serially */
1086
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1087
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1088
    booth_recode_w7(&sign0, &digit0, wvalue);
1089
    ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
1090
                           preComputedTable[36], digit0);
1091
    ecp_nistz256_neg(tmp, r->Y);
1092
    copy_conditional(r->Y, tmp, sign0);
1093
    memcpy(r->Z, ONE, sizeof(ONE));
1094
    /* Sum the four windows */
1095
    ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1096
    ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1097
    ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1098
    ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1099
}
1100
# endif
1101
#endif
1102
1103
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1104
                                               const P256_POINT_AFFINE *in,
1105
                                               BN_CTX *ctx)
1106
0
{
1107
0
    int ret = 0;
1108
0
1109
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
1110
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
1111
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
1112
0
        out->Z_is_one = 1;
1113
0
1114
0
    return ret;
1115
0
}
1116
1117
/* r = scalar*G + sum(scalars[i]*points[i]) */
1118
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
1119
                                          EC_POINT *r,
1120
                                          const BIGNUM *scalar,
1121
                                          size_t num,
1122
                                          const EC_POINT *points[],
1123
                                          const BIGNUM *scalars[], BN_CTX *ctx)
1124
0
{
1125
0
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1126
0
    unsigned char p_str[33] = { 0 };
1127
0
    const PRECOMP256_ROW *preComputedTable = NULL;
1128
0
    const NISTZ256_PRE_COMP *pre_comp = NULL;
1129
0
    const EC_POINT *generator = NULL;
1130
0
    const BIGNUM **new_scalars = NULL;
1131
0
    const EC_POINT **new_points = NULL;
1132
0
    unsigned int idx = 0;
1133
0
    const unsigned int window_size = 7;
1134
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
1135
0
    unsigned int wvalue;
1136
0
    ALIGN32 union {
1137
0
        P256_POINT p;
1138
0
        P256_POINT_AFFINE a;
1139
0
    } t, p;
1140
0
    BIGNUM *tmp_scalar;
1141
0
1142
0
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
1143
0
        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1144
0
        return 0;
1145
0
    }
1146
0
1147
0
    BN_CTX_start(ctx);
1148
0
1149
0
    if (scalar) {
1150
0
        generator = EC_GROUP_get0_generator(group);
1151
0
        if (generator == NULL) {
1152
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
1153
0
            goto err;
1154
0
        }
1155
0
1156
0
        /* look if we can use precomputed multiples of generator */
1157
0
        pre_comp = group->pre_comp.nistz256;
1158
0
1159
0
        if (pre_comp) {
1160
0
            /*
1161
0
             * If there is a precomputed table for the generator, check that
1162
0
             * it was generated with the same generator.
1163
0
             */
1164
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
1165
0
            if (pre_comp_generator == NULL)
1166
0
                goto err;
1167
0
1168
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1169
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1170
0
                                              group, &p.a, ctx)) {
1171
0
                EC_POINT_free(pre_comp_generator);
1172
0
                goto err;
1173
0
            }
1174
0
1175
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1176
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1177
0
1178
0
            EC_POINT_free(pre_comp_generator);
1179
0
        }
1180
0
1181
0
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1182
0
            /*
1183
0
             * If there is no precomputed data, but the generator is the
1184
0
             * default, a hardcoded table of precomputed data is used. This
1185
0
             * is because applications, such as Apache, do not use
1186
0
             * EC_KEY_precompute_mult.
1187
0
             */
1188
0
            preComputedTable = ecp_nistz256_precomputed;
1189
0
        }
1190
0
1191
0
        if (preComputedTable) {
1192
0
            if ((BN_num_bits(scalar) > 256)
1193
0
                || BN_is_negative(scalar)) {
1194
0
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1195
0
                    goto err;
1196
0
1197
0
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1198
0
                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1199
0
                    goto err;
1200
0
                }
1201
0
                scalar = tmp_scalar;
1202
0
            }
1203
0
1204
0
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1205
0
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1206
0
1207
0
                p_str[i + 0] = (unsigned char)d;
1208
0
                p_str[i + 1] = (unsigned char)(d >> 8);
1209
0
                p_str[i + 2] = (unsigned char)(d >> 16);
1210
0
                p_str[i + 3] = (unsigned char)(d >>= 24);
1211
0
                if (BN_BYTES == 8) {
1212
0
                    d >>= 8;
1213
0
                    p_str[i + 4] = (unsigned char)d;
1214
0
                    p_str[i + 5] = (unsigned char)(d >> 8);
1215
0
                    p_str[i + 6] = (unsigned char)(d >> 16);
1216
0
                    p_str[i + 7] = (unsigned char)(d >> 24);
1217
0
                }
1218
0
            }
1219
0
1220
0
            for (; i < 33; i++)
1221
0
                p_str[i] = 0;
1222
0
1223
#if defined(ECP_NISTZ256_AVX2)
1224
            if (ecp_nistz_avx2_eligible()) {
1225
                ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1226
            } else
1227
#endif
1228
            {
1229
0
                BN_ULONG infty;
1230
0
1231
0
                /* First window */
1232
0
                wvalue = (p_str[0] << 1) & mask;
1233
0
                idx += window_size;
1234
0
1235
0
                wvalue = _booth_recode_w7(wvalue);
1236
0
1237
0
                ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1238
0
                                       wvalue >> 1);
1239
0
1240
0
                ecp_nistz256_neg(p.p.Z, p.p.Y);
1241
0
                copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1242
0
1243
0
                /*
1244
0
                 * Since affine infinity is encoded as (0,0) and
1245
0
                 * Jacobian ias (,,0), we need to harmonize them
1246
0
                 * by assigning "one" or zero to Z.
1247
0
                 */
1248
0
                infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1249
0
                         p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1250
0
                if (P256_LIMBS == 8)
1251
0
                    infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1252
0
                              p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1253
0
1254
0
                infty = 0 - is_zero(infty);
1255
0
                infty = ~infty;
1256
0
1257
0
                p.p.Z[0] = ONE[0] & infty;
1258
0
                p.p.Z[1] = ONE[1] & infty;
1259
0
                p.p.Z[2] = ONE[2] & infty;
1260
0
                p.p.Z[3] = ONE[3] & infty;
1261
0
                if (P256_LIMBS == 8) {
1262
0
                    p.p.Z[4] = ONE[4] & infty;
1263
0
                    p.p.Z[5] = ONE[5] & infty;
1264
0
                    p.p.Z[6] = ONE[6] & infty;
1265
0
                    p.p.Z[7] = ONE[7] & infty;
1266
0
                }
1267
0
1268
0
                for (i = 1; i < 37; i++) {
1269
0
                    unsigned int off = (idx - 1) / 8;
1270
0
                    wvalue = p_str[off] | p_str[off + 1] << 8;
1271
0
                    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1272
0
                    idx += window_size;
1273
0
1274
0
                    wvalue = _booth_recode_w7(wvalue);
1275
0
1276
0
                    ecp_nistz256_gather_w7(&t.a,
1277
0
                                           preComputedTable[i], wvalue >> 1);
1278
0
1279
0
                    ecp_nistz256_neg(t.p.Z, t.a.Y);
1280
0
                    copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1281
0
1282
0
                    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1283
0
                }
1284
0
            }
1285
0
        } else {
1286
0
            p_is_infinity = 1;
1287
0
            no_precomp_for_generator = 1;
1288
0
        }
1289
0
    } else
1290
0
        p_is_infinity = 1;
1291
0
1292
0
    if (no_precomp_for_generator) {
1293
0
        /*
1294
0
         * Without a precomputed table for the generator, it has to be
1295
0
         * handled like a normal point.
1296
0
         */
1297
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1298
0
        if (new_scalars == NULL) {
1299
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1300
0
            goto err;
1301
0
        }
1302
0
1303
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1304
0
        if (new_points == NULL) {
1305
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1306
0
            goto err;
1307
0
        }
1308
0
1309
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1310
0
        new_scalars[num] = scalar;
1311
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1312
0
        new_points[num] = generator;
1313
0
1314
0
        scalars = new_scalars;
1315
0
        points = new_points;
1316
0
        num++;
1317
0
    }
1318
0
1319
0
    if (num) {
1320
0
        P256_POINT *out = &t.p;
1321
0
        if (p_is_infinity)
1322
0
            out = &p.p;
1323
0
1324
0
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1325
0
            goto err;
1326
0
1327
0
        if (!p_is_infinity)
1328
0
            ecp_nistz256_point_add(&p.p, &p.p, out);
1329
0
    }
1330
0
1331
0
    /* Not constant-time, but we're only operating on the public output. */
1332
0
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1333
0
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1334
0
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1335
0
        goto err;
1336
0
    }
1337
0
    r->Z_is_one = is_one(r->Z) & 1;
1338
0
1339
0
    ret = 1;
1340
0
1341
0
err:
1342
0
    BN_CTX_end(ctx);
1343
0
    OPENSSL_free(new_points);
1344
0
    OPENSSL_free(new_scalars);
1345
0
    return ret;
1346
0
}
1347
1348
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1349
                                          const EC_POINT *point,
1350
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1351
0
{
1352
0
    BN_ULONG z_inv2[P256_LIMBS];
1353
0
    BN_ULONG z_inv3[P256_LIMBS];
1354
0
    BN_ULONG x_aff[P256_LIMBS];
1355
0
    BN_ULONG y_aff[P256_LIMBS];
1356
0
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1357
0
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1358
0
1359
0
    if (EC_POINT_is_at_infinity(group, point)) {
1360
0
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1361
0
        return 0;
1362
0
    }
1363
0
1364
0
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1365
0
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1366
0
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1367
0
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1368
0
        return 0;
1369
0
    }
1370
0
1371
0
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1372
0
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1373
0
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1374
0
1375
0
    if (x != NULL) {
1376
0
        ecp_nistz256_from_mont(x_ret, x_aff);
1377
0
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1378
0
            return 0;
1379
0
    }
1380
0
1381
0
    if (y != NULL) {
1382
0
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1383
0
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1384
0
        ecp_nistz256_from_mont(y_ret, y_aff);
1385
0
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1386
0
            return 0;
1387
0
    }
1388
0
1389
0
    return 1;
1390
0
}
1391
1392
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1393
0
{
1394
0
    NISTZ256_PRE_COMP *ret = NULL;
1395
0
1396
0
    if (!group)
1397
0
        return NULL;
1398
0
1399
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1400
0
1401
0
    if (ret == NULL) {
1402
0
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1403
0
        return ret;
1404
0
    }
1405
0
1406
0
    ret->group = group;
1407
0
    ret->w = 6;                 /* default */
1408
0
    ret->references = 1;
1409
0
1410
0
    ret->lock = CRYPTO_THREAD_lock_new();
1411
0
    if (ret->lock == NULL) {
1412
0
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1413
0
        OPENSSL_free(ret);
1414
0
        return NULL;
1415
0
    }
1416
0
    return ret;
1417
0
}
1418
1419
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1420
0
{
1421
0
    int i;
1422
0
    if (p != NULL)
1423
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1424
0
    return p;
1425
0
}
1426
1427
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1428
0
{
1429
0
    int i;
1430
0
1431
0
    if (pre == NULL)
1432
0
        return;
1433
0
1434
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1435
0
    REF_PRINT_COUNT("EC_nistz256", x);
1436
0
    if (i > 0)
1437
0
        return;
1438
0
    REF_ASSERT_ISNT(i < 0);
1439
0
1440
0
    OPENSSL_free(pre->precomp_storage);
1441
0
    CRYPTO_THREAD_lock_free(pre->lock);
1442
0
    OPENSSL_free(pre);
1443
0
}
1444
1445
1446
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1447
0
{
1448
0
    /* There is a hard-coded table for the default generator. */
1449
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1450
0
1451
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1452
0
        /* There is a hard-coded table for the default generator. */
1453
0
        return 1;
1454
0
    }
1455
0
1456
0
    return HAVEPRECOMP(group, nistz256);
1457
0
}
1458
1459
#if defined(__x86_64) || defined(__x86_64__) || \
1460
    defined(_M_AMD64) || defined(_M_X64) || \
1461
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1462
    defined(__aarch64__)
1463
/*
1464
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1465
 */
1466
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1467
                               const BN_ULONG a[P256_LIMBS],
1468
                               const BN_ULONG b[P256_LIMBS]);
1469
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1470
                               const BN_ULONG a[P256_LIMBS],
1471
                               int rep);
1472
1473
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1474
                                    const BIGNUM *x, BN_CTX *ctx)
1475
0
{
1476
0
    /* RR = 2^512 mod ord(p256) */
1477
0
    static const BN_ULONG RR[P256_LIMBS]  = {
1478
0
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1479
0
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1480
0
    };
1481
0
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1482
0
    static const BN_ULONG one[P256_LIMBS] = {
1483
0
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1484
0
    };
1485
0
    /*
1486
0
     * We don't use entry 0 in the table, so we omit it and address
1487
0
     * with -1 offset.
1488
0
     */
1489
0
    BN_ULONG table[15][P256_LIMBS];
1490
0
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1491
0
    int i, ret = 0;
1492
0
    enum {
1493
0
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1494
0
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1495
0
    };
1496
0
1497
0
    /*
1498
0
     * Catch allocation failure early.
1499
0
     */
1500
0
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1501
0
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1502
0
        goto err;
1503
0
    }
1504
0
1505
0
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1506
0
        BIGNUM *tmp;
1507
0
1508
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1509
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1510
0
            ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1511
0
            goto err;
1512
0
        }
1513
0
        x = tmp;
1514
0
    }
1515
0
1516
0
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1517
0
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1518
0
        goto err;
1519
0
    }
1520
0
1521
0
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1522
#if 0
1523
    /*
1524
     * Original sparse-then-fixed-window algorithm, retained for reference.
1525
     */
1526
    for (i = 2; i < 16; i += 2) {
1527
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1528
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1529
    }
1530
1531
    /*
1532
     * The top 128bit of the exponent are highly redudndant, so we
1533
     * perform an optimized flow
1534
     */
1535
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1536
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1537
1538
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1539
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1540
1541
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1542
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1543
1544
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1545
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1546
1547
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1548
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1549
1550
    /*
1551
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1552
     */
1553
    for(i = 0; i < 32; i++) {
1554
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1555
         * split into nibbles */
1556
        static const unsigned char expLo[32]  = {
1557
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1558
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1559
        };
1560
1561
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1562
        /* The exponent is public, no need in constant-time access */
1563
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1564
    }
1565
#else
1566
    /*
1567
0
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1568
0
     *
1569
0
     * Even though this code path spares 12 squarings, 4.5%, and 13
1570
0
     * multiplications, 25%, on grand scale sign operation is not that
1571
0
     * much faster, not more that 2%...
1572
0
     */
1573
0
1574
0
    /* pre-calculate powers */
1575
0
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1576
0
1577
0
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1578
0
1579
0
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1580
0
1581
0
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1582
0
1583
0
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1584
0
1585
0
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1586
0
1587
0
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1588
0
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1589
0
1590
0
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1591
0
1592
0
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1593
0
1594
0
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1595
0
1596
0
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1597
0
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1598
0
1599
0
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1600
0
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1601
0
1602
0
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1603
0
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1604
0
1605
0
    /* calculations */
1606
0
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1607
0
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1608
0
1609
0
    for (i = 0; i < 27; i++) {
1610
0
        static const struct { unsigned char p, i; } chain[27] = {
1611
0
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1612
0
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1613
0
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1614
0
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1615
0
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1616
0
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1617
0
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1618
0
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1619
0
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1620
0
        };
1621
0
1622
0
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1623
0
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1624
0
    }
1625
0
#endif
1626
0
    ecp_nistz256_ord_mul_mont(out, out, one);
1627
0
1628
0
    /*
1629
0
     * Can't fail, but check return code to be consistent anyway.
1630
0
     */
1631
0
    if (!bn_set_words(r, out, P256_LIMBS))
1632
0
        goto err;
1633
0
1634
0
    ret = 1;
1635
0
err:
1636
0
    return ret;
1637
0
}
1638
#else
1639
# define ecp_nistz256_inv_mod_ord NULL
1640
#endif
1641
1642
const EC_METHOD *EC_GFp_nistz256_method(void)
1643
0
{
1644
0
    static const EC_METHOD ret = {
1645
0
        EC_FLAGS_DEFAULT_OCT,
1646
0
        NID_X9_62_prime_field,
1647
0
        ec_GFp_mont_group_init,
1648
0
        ec_GFp_mont_group_finish,
1649
0
        ec_GFp_mont_group_clear_finish,
1650
0
        ec_GFp_mont_group_copy,
1651
0
        ec_GFp_mont_group_set_curve,
1652
0
        ec_GFp_simple_group_get_curve,
1653
0
        ec_GFp_simple_group_get_degree,
1654
0
        ec_group_simple_order_bits,
1655
0
        ec_GFp_simple_group_check_discriminant,
1656
0
        ec_GFp_simple_point_init,
1657
0
        ec_GFp_simple_point_finish,
1658
0
        ec_GFp_simple_point_clear_finish,
1659
0
        ec_GFp_simple_point_copy,
1660
0
        ec_GFp_simple_point_set_to_infinity,
1661
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1662
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1663
0
        ec_GFp_simple_point_set_affine_coordinates,
1664
0
        ecp_nistz256_get_affine,
1665
0
        0, 0, 0,
1666
0
        ec_GFp_simple_add,
1667
0
        ec_GFp_simple_dbl,
1668
0
        ec_GFp_simple_invert,
1669
0
        ec_GFp_simple_is_at_infinity,
1670
0
        ec_GFp_simple_is_on_curve,
1671
0
        ec_GFp_simple_cmp,
1672
0
        ec_GFp_simple_make_affine,
1673
0
        ec_GFp_simple_points_make_affine,
1674
0
        ecp_nistz256_points_mul,                    /* mul */
1675
0
        ecp_nistz256_mult_precompute,               /* precompute_mult */
1676
0
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1677
0
        ec_GFp_mont_field_mul,
1678
0
        ec_GFp_mont_field_sqr,
1679
0
        0,                                          /* field_div */
1680
0
        ec_GFp_mont_field_encode,
1681
0
        ec_GFp_mont_field_decode,
1682
0
        ec_GFp_mont_field_set_to_one,
1683
0
        ec_key_simple_priv2oct,
1684
0
        ec_key_simple_oct2priv,
1685
0
        0, /* set private */
1686
0
        ec_key_simple_generate_key,
1687
0
        ec_key_simple_check_key,
1688
0
        ec_key_simple_generate_public_key,
1689
0
        0, /* keycopy */
1690
0
        0, /* keyfinish */
1691
0
        ecdh_simple_compute_key,
1692
0
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1693
0
        0,                                          /* blind_coordinates */
1694
0
        0,                                          /* ladder_pre */
1695
0
        0,                                          /* ladder_step */
1696
0
        0                                           /* ladder_post */
1697
0
    };
1698
0
1699
0
    return &ret;
1700
0
}