/src/openssl/crypto/ec/ecp_smpl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <openssl/err.h> |
12 | | #include <openssl/symhacks.h> |
13 | | |
14 | | #include "ec_lcl.h" |
15 | | |
16 | | const EC_METHOD *EC_GFp_simple_method(void) |
17 | 0 | { |
18 | 0 | static const EC_METHOD ret = { |
19 | 0 | EC_FLAGS_DEFAULT_OCT, |
20 | 0 | NID_X9_62_prime_field, |
21 | 0 | ec_GFp_simple_group_init, |
22 | 0 | ec_GFp_simple_group_finish, |
23 | 0 | ec_GFp_simple_group_clear_finish, |
24 | 0 | ec_GFp_simple_group_copy, |
25 | 0 | ec_GFp_simple_group_set_curve, |
26 | 0 | ec_GFp_simple_group_get_curve, |
27 | 0 | ec_GFp_simple_group_get_degree, |
28 | 0 | ec_group_simple_order_bits, |
29 | 0 | ec_GFp_simple_group_check_discriminant, |
30 | 0 | ec_GFp_simple_point_init, |
31 | 0 | ec_GFp_simple_point_finish, |
32 | 0 | ec_GFp_simple_point_clear_finish, |
33 | 0 | ec_GFp_simple_point_copy, |
34 | 0 | ec_GFp_simple_point_set_to_infinity, |
35 | 0 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
36 | 0 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
37 | 0 | ec_GFp_simple_point_set_affine_coordinates, |
38 | 0 | ec_GFp_simple_point_get_affine_coordinates, |
39 | 0 | 0, 0, 0, |
40 | 0 | ec_GFp_simple_add, |
41 | 0 | ec_GFp_simple_dbl, |
42 | 0 | ec_GFp_simple_invert, |
43 | 0 | ec_GFp_simple_is_at_infinity, |
44 | 0 | ec_GFp_simple_is_on_curve, |
45 | 0 | ec_GFp_simple_cmp, |
46 | 0 | ec_GFp_simple_make_affine, |
47 | 0 | ec_GFp_simple_points_make_affine, |
48 | 0 | 0 /* mul */ , |
49 | 0 | 0 /* precompute_mult */ , |
50 | 0 | 0 /* have_precompute_mult */ , |
51 | 0 | ec_GFp_simple_field_mul, |
52 | 0 | ec_GFp_simple_field_sqr, |
53 | 0 | 0 /* field_div */ , |
54 | 0 | 0 /* field_encode */ , |
55 | 0 | 0 /* field_decode */ , |
56 | 0 | 0, /* field_set_to_one */ |
57 | 0 | ec_key_simple_priv2oct, |
58 | 0 | ec_key_simple_oct2priv, |
59 | 0 | 0, /* set private */ |
60 | 0 | ec_key_simple_generate_key, |
61 | 0 | ec_key_simple_check_key, |
62 | 0 | ec_key_simple_generate_public_key, |
63 | 0 | 0, /* keycopy */ |
64 | 0 | 0, /* keyfinish */ |
65 | 0 | ecdh_simple_compute_key, |
66 | 0 | 0, /* field_inverse_mod_ord */ |
67 | 0 | ec_GFp_simple_blind_coordinates, |
68 | 0 | ec_GFp_simple_ladder_pre, |
69 | 0 | ec_GFp_simple_ladder_step, |
70 | 0 | ec_GFp_simple_ladder_post |
71 | 0 | }; |
72 | 0 |
|
73 | 0 | return &ret; |
74 | 0 | } |
75 | | |
76 | | /* |
77 | | * Most method functions in this file are designed to work with |
78 | | * non-trivial representations of field elements if necessary |
79 | | * (see ecp_mont.c): while standard modular addition and subtraction |
80 | | * are used, the field_mul and field_sqr methods will be used for |
81 | | * multiplication, and field_encode and field_decode (if defined) |
82 | | * will be used for converting between representations. |
83 | | * |
84 | | * Functions ec_GFp_simple_points_make_affine() and |
85 | | * ec_GFp_simple_point_get_affine_coordinates() specifically assume |
86 | | * that if a non-trivial representation is used, it is a Montgomery |
87 | | * representation (i.e. 'encoding' means multiplying by some factor R). |
88 | | */ |
89 | | |
90 | | int ec_GFp_simple_group_init(EC_GROUP *group) |
91 | 0 | { |
92 | 0 | group->field = BN_new(); |
93 | 0 | group->a = BN_new(); |
94 | 0 | group->b = BN_new(); |
95 | 0 | if (group->field == NULL || group->a == NULL || group->b == NULL) { |
96 | 0 | BN_free(group->field); |
97 | 0 | BN_free(group->a); |
98 | 0 | BN_free(group->b); |
99 | 0 | return 0; |
100 | 0 | } |
101 | 0 | group->a_is_minus3 = 0; |
102 | 0 | return 1; |
103 | 0 | } |
104 | | |
105 | | void ec_GFp_simple_group_finish(EC_GROUP *group) |
106 | 0 | { |
107 | 0 | BN_free(group->field); |
108 | 0 | BN_free(group->a); |
109 | 0 | BN_free(group->b); |
110 | 0 | } |
111 | | |
112 | | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) |
113 | 0 | { |
114 | 0 | BN_clear_free(group->field); |
115 | 0 | BN_clear_free(group->a); |
116 | 0 | BN_clear_free(group->b); |
117 | 0 | } |
118 | | |
119 | | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
120 | 0 | { |
121 | 0 | if (!BN_copy(dest->field, src->field)) |
122 | 0 | return 0; |
123 | 0 | if (!BN_copy(dest->a, src->a)) |
124 | 0 | return 0; |
125 | 0 | if (!BN_copy(dest->b, src->b)) |
126 | 0 | return 0; |
127 | 0 | |
128 | 0 | dest->a_is_minus3 = src->a_is_minus3; |
129 | 0 |
|
130 | 0 | return 1; |
131 | 0 | } |
132 | | |
133 | | int ec_GFp_simple_group_set_curve(EC_GROUP *group, |
134 | | const BIGNUM *p, const BIGNUM *a, |
135 | | const BIGNUM *b, BN_CTX *ctx) |
136 | 0 | { |
137 | 0 | int ret = 0; |
138 | 0 | BN_CTX *new_ctx = NULL; |
139 | 0 | BIGNUM *tmp_a; |
140 | 0 |
|
141 | 0 | /* p must be a prime > 3 */ |
142 | 0 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
143 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); |
144 | 0 | return 0; |
145 | 0 | } |
146 | 0 |
|
147 | 0 | if (ctx == NULL) { |
148 | 0 | ctx = new_ctx = BN_CTX_new(); |
149 | 0 | if (ctx == NULL) |
150 | 0 | return 0; |
151 | 0 | } |
152 | 0 | |
153 | 0 | BN_CTX_start(ctx); |
154 | 0 | tmp_a = BN_CTX_get(ctx); |
155 | 0 | if (tmp_a == NULL) |
156 | 0 | goto err; |
157 | 0 | |
158 | 0 | /* group->field */ |
159 | 0 | if (!BN_copy(group->field, p)) |
160 | 0 | goto err; |
161 | 0 | BN_set_negative(group->field, 0); |
162 | 0 |
|
163 | 0 | /* group->a */ |
164 | 0 | if (!BN_nnmod(tmp_a, a, p, ctx)) |
165 | 0 | goto err; |
166 | 0 | if (group->meth->field_encode) { |
167 | 0 | if (!group->meth->field_encode(group, group->a, tmp_a, ctx)) |
168 | 0 | goto err; |
169 | 0 | } else if (!BN_copy(group->a, tmp_a)) |
170 | 0 | goto err; |
171 | 0 | |
172 | 0 | /* group->b */ |
173 | 0 | if (!BN_nnmod(group->b, b, p, ctx)) |
174 | 0 | goto err; |
175 | 0 | if (group->meth->field_encode) |
176 | 0 | if (!group->meth->field_encode(group, group->b, group->b, ctx)) |
177 | 0 | goto err; |
178 | 0 | |
179 | 0 | /* group->a_is_minus3 */ |
180 | 0 | if (!BN_add_word(tmp_a, 3)) |
181 | 0 | goto err; |
182 | 0 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field)); |
183 | 0 |
|
184 | 0 | ret = 1; |
185 | 0 |
|
186 | 0 | err: |
187 | 0 | BN_CTX_end(ctx); |
188 | 0 | BN_CTX_free(new_ctx); |
189 | 0 | return ret; |
190 | 0 | } |
191 | | |
192 | | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
193 | | BIGNUM *b, BN_CTX *ctx) |
194 | 0 | { |
195 | 0 | int ret = 0; |
196 | 0 | BN_CTX *new_ctx = NULL; |
197 | 0 |
|
198 | 0 | if (p != NULL) { |
199 | 0 | if (!BN_copy(p, group->field)) |
200 | 0 | return 0; |
201 | 0 | } |
202 | 0 | |
203 | 0 | if (a != NULL || b != NULL) { |
204 | 0 | if (group->meth->field_decode) { |
205 | 0 | if (ctx == NULL) { |
206 | 0 | ctx = new_ctx = BN_CTX_new(); |
207 | 0 | if (ctx == NULL) |
208 | 0 | return 0; |
209 | 0 | } |
210 | 0 | if (a != NULL) { |
211 | 0 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
212 | 0 | goto err; |
213 | 0 | } |
214 | 0 | if (b != NULL) { |
215 | 0 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
216 | 0 | goto err; |
217 | 0 | } |
218 | 0 | } else { |
219 | 0 | if (a != NULL) { |
220 | 0 | if (!BN_copy(a, group->a)) |
221 | 0 | goto err; |
222 | 0 | } |
223 | 0 | if (b != NULL) { |
224 | 0 | if (!BN_copy(b, group->b)) |
225 | 0 | goto err; |
226 | 0 | } |
227 | 0 | } |
228 | 0 | } |
229 | 0 | |
230 | 0 | ret = 1; |
231 | 0 |
|
232 | 0 | err: |
233 | 0 | BN_CTX_free(new_ctx); |
234 | 0 | return ret; |
235 | 0 | } |
236 | | |
237 | | int ec_GFp_simple_group_get_degree(const EC_GROUP *group) |
238 | 0 | { |
239 | 0 | return BN_num_bits(group->field); |
240 | 0 | } |
241 | | |
242 | | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) |
243 | 0 | { |
244 | 0 | int ret = 0; |
245 | 0 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; |
246 | 0 | const BIGNUM *p = group->field; |
247 | 0 | BN_CTX *new_ctx = NULL; |
248 | 0 |
|
249 | 0 | if (ctx == NULL) { |
250 | 0 | ctx = new_ctx = BN_CTX_new(); |
251 | 0 | if (ctx == NULL) { |
252 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
253 | 0 | ERR_R_MALLOC_FAILURE); |
254 | 0 | goto err; |
255 | 0 | } |
256 | 0 | } |
257 | 0 | BN_CTX_start(ctx); |
258 | 0 | a = BN_CTX_get(ctx); |
259 | 0 | b = BN_CTX_get(ctx); |
260 | 0 | tmp_1 = BN_CTX_get(ctx); |
261 | 0 | tmp_2 = BN_CTX_get(ctx); |
262 | 0 | order = BN_CTX_get(ctx); |
263 | 0 | if (order == NULL) |
264 | 0 | goto err; |
265 | 0 | |
266 | 0 | if (group->meth->field_decode) { |
267 | 0 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
268 | 0 | goto err; |
269 | 0 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
270 | 0 | goto err; |
271 | 0 | } else { |
272 | 0 | if (!BN_copy(a, group->a)) |
273 | 0 | goto err; |
274 | 0 | if (!BN_copy(b, group->b)) |
275 | 0 | goto err; |
276 | 0 | } |
277 | 0 | |
278 | 0 | /*- |
279 | 0 | * check the discriminant: |
280 | 0 | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) |
281 | 0 | * 0 =< a, b < p |
282 | 0 | */ |
283 | 0 | if (BN_is_zero(a)) { |
284 | 0 | if (BN_is_zero(b)) |
285 | 0 | goto err; |
286 | 0 | } else if (!BN_is_zero(b)) { |
287 | 0 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) |
288 | 0 | goto err; |
289 | 0 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) |
290 | 0 | goto err; |
291 | 0 | if (!BN_lshift(tmp_1, tmp_2, 2)) |
292 | 0 | goto err; |
293 | 0 | /* tmp_1 = 4*a^3 */ |
294 | 0 | |
295 | 0 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) |
296 | 0 | goto err; |
297 | 0 | if (!BN_mul_word(tmp_2, 27)) |
298 | 0 | goto err; |
299 | 0 | /* tmp_2 = 27*b^2 */ |
300 | 0 | |
301 | 0 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) |
302 | 0 | goto err; |
303 | 0 | if (BN_is_zero(a)) |
304 | 0 | goto err; |
305 | 0 | } |
306 | 0 | ret = 1; |
307 | 0 |
|
308 | 0 | err: |
309 | 0 | if (ctx != NULL) |
310 | 0 | BN_CTX_end(ctx); |
311 | 0 | BN_CTX_free(new_ctx); |
312 | 0 | return ret; |
313 | 0 | } |
314 | | |
315 | | int ec_GFp_simple_point_init(EC_POINT *point) |
316 | 0 | { |
317 | 0 | point->X = BN_new(); |
318 | 0 | point->Y = BN_new(); |
319 | 0 | point->Z = BN_new(); |
320 | 0 | point->Z_is_one = 0; |
321 | 0 |
|
322 | 0 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
323 | 0 | BN_free(point->X); |
324 | 0 | BN_free(point->Y); |
325 | 0 | BN_free(point->Z); |
326 | 0 | return 0; |
327 | 0 | } |
328 | 0 | return 1; |
329 | 0 | } |
330 | | |
331 | | void ec_GFp_simple_point_finish(EC_POINT *point) |
332 | 0 | { |
333 | 0 | BN_free(point->X); |
334 | 0 | BN_free(point->Y); |
335 | 0 | BN_free(point->Z); |
336 | 0 | } |
337 | | |
338 | | void ec_GFp_simple_point_clear_finish(EC_POINT *point) |
339 | 0 | { |
340 | 0 | BN_clear_free(point->X); |
341 | 0 | BN_clear_free(point->Y); |
342 | 0 | BN_clear_free(point->Z); |
343 | 0 | point->Z_is_one = 0; |
344 | 0 | } |
345 | | |
346 | | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
347 | 0 | { |
348 | 0 | if (!BN_copy(dest->X, src->X)) |
349 | 0 | return 0; |
350 | 0 | if (!BN_copy(dest->Y, src->Y)) |
351 | 0 | return 0; |
352 | 0 | if (!BN_copy(dest->Z, src->Z)) |
353 | 0 | return 0; |
354 | 0 | dest->Z_is_one = src->Z_is_one; |
355 | 0 | dest->curve_name = src->curve_name; |
356 | 0 |
|
357 | 0 | return 1; |
358 | 0 | } |
359 | | |
360 | | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
361 | | EC_POINT *point) |
362 | 0 | { |
363 | 0 | point->Z_is_one = 0; |
364 | 0 | BN_zero(point->Z); |
365 | 0 | return 1; |
366 | 0 | } |
367 | | |
368 | | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, |
369 | | EC_POINT *point, |
370 | | const BIGNUM *x, |
371 | | const BIGNUM *y, |
372 | | const BIGNUM *z, |
373 | | BN_CTX *ctx) |
374 | 0 | { |
375 | 0 | BN_CTX *new_ctx = NULL; |
376 | 0 | int ret = 0; |
377 | 0 |
|
378 | 0 | if (ctx == NULL) { |
379 | 0 | ctx = new_ctx = BN_CTX_new(); |
380 | 0 | if (ctx == NULL) |
381 | 0 | return 0; |
382 | 0 | } |
383 | 0 | |
384 | 0 | if (x != NULL) { |
385 | 0 | if (!BN_nnmod(point->X, x, group->field, ctx)) |
386 | 0 | goto err; |
387 | 0 | if (group->meth->field_encode) { |
388 | 0 | if (!group->meth->field_encode(group, point->X, point->X, ctx)) |
389 | 0 | goto err; |
390 | 0 | } |
391 | 0 | } |
392 | 0 | |
393 | 0 | if (y != NULL) { |
394 | 0 | if (!BN_nnmod(point->Y, y, group->field, ctx)) |
395 | 0 | goto err; |
396 | 0 | if (group->meth->field_encode) { |
397 | 0 | if (!group->meth->field_encode(group, point->Y, point->Y, ctx)) |
398 | 0 | goto err; |
399 | 0 | } |
400 | 0 | } |
401 | 0 | |
402 | 0 | if (z != NULL) { |
403 | 0 | int Z_is_one; |
404 | 0 |
|
405 | 0 | if (!BN_nnmod(point->Z, z, group->field, ctx)) |
406 | 0 | goto err; |
407 | 0 | Z_is_one = BN_is_one(point->Z); |
408 | 0 | if (group->meth->field_encode) { |
409 | 0 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { |
410 | 0 | if (!group->meth->field_set_to_one(group, point->Z, ctx)) |
411 | 0 | goto err; |
412 | 0 | } else { |
413 | 0 | if (!group-> |
414 | 0 | meth->field_encode(group, point->Z, point->Z, ctx)) |
415 | 0 | goto err; |
416 | 0 | } |
417 | 0 | } |
418 | 0 | point->Z_is_one = Z_is_one; |
419 | 0 | } |
420 | 0 |
|
421 | 0 | ret = 1; |
422 | 0 |
|
423 | 0 | err: |
424 | 0 | BN_CTX_free(new_ctx); |
425 | 0 | return ret; |
426 | 0 | } |
427 | | |
428 | | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, |
429 | | const EC_POINT *point, |
430 | | BIGNUM *x, BIGNUM *y, |
431 | | BIGNUM *z, BN_CTX *ctx) |
432 | 0 | { |
433 | 0 | BN_CTX *new_ctx = NULL; |
434 | 0 | int ret = 0; |
435 | 0 |
|
436 | 0 | if (group->meth->field_decode != 0) { |
437 | 0 | if (ctx == NULL) { |
438 | 0 | ctx = new_ctx = BN_CTX_new(); |
439 | 0 | if (ctx == NULL) |
440 | 0 | return 0; |
441 | 0 | } |
442 | 0 | |
443 | 0 | if (x != NULL) { |
444 | 0 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
445 | 0 | goto err; |
446 | 0 | } |
447 | 0 | if (y != NULL) { |
448 | 0 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
449 | 0 | goto err; |
450 | 0 | } |
451 | 0 | if (z != NULL) { |
452 | 0 | if (!group->meth->field_decode(group, z, point->Z, ctx)) |
453 | 0 | goto err; |
454 | 0 | } |
455 | 0 | } else { |
456 | 0 | if (x != NULL) { |
457 | 0 | if (!BN_copy(x, point->X)) |
458 | 0 | goto err; |
459 | 0 | } |
460 | 0 | if (y != NULL) { |
461 | 0 | if (!BN_copy(y, point->Y)) |
462 | 0 | goto err; |
463 | 0 | } |
464 | 0 | if (z != NULL) { |
465 | 0 | if (!BN_copy(z, point->Z)) |
466 | 0 | goto err; |
467 | 0 | } |
468 | 0 | } |
469 | 0 | |
470 | 0 | ret = 1; |
471 | 0 |
|
472 | 0 | err: |
473 | 0 | BN_CTX_free(new_ctx); |
474 | 0 | return ret; |
475 | 0 | } |
476 | | |
477 | | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
478 | | EC_POINT *point, |
479 | | const BIGNUM *x, |
480 | | const BIGNUM *y, BN_CTX *ctx) |
481 | 0 | { |
482 | 0 | if (x == NULL || y == NULL) { |
483 | 0 | /* |
484 | 0 | * unlike for projective coordinates, we do not tolerate this |
485 | 0 | */ |
486 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
487 | 0 | ERR_R_PASSED_NULL_PARAMETER); |
488 | 0 | return 0; |
489 | 0 | } |
490 | 0 |
|
491 | 0 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, |
492 | 0 | BN_value_one(), ctx); |
493 | 0 | } |
494 | | |
495 | | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, |
496 | | const EC_POINT *point, |
497 | | BIGNUM *x, BIGNUM *y, |
498 | | BN_CTX *ctx) |
499 | 0 | { |
500 | 0 | BN_CTX *new_ctx = NULL; |
501 | 0 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; |
502 | 0 | const BIGNUM *Z_; |
503 | 0 | int ret = 0; |
504 | 0 |
|
505 | 0 | if (EC_POINT_is_at_infinity(group, point)) { |
506 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
507 | 0 | EC_R_POINT_AT_INFINITY); |
508 | 0 | return 0; |
509 | 0 | } |
510 | 0 |
|
511 | 0 | if (ctx == NULL) { |
512 | 0 | ctx = new_ctx = BN_CTX_new(); |
513 | 0 | if (ctx == NULL) |
514 | 0 | return 0; |
515 | 0 | } |
516 | 0 | |
517 | 0 | BN_CTX_start(ctx); |
518 | 0 | Z = BN_CTX_get(ctx); |
519 | 0 | Z_1 = BN_CTX_get(ctx); |
520 | 0 | Z_2 = BN_CTX_get(ctx); |
521 | 0 | Z_3 = BN_CTX_get(ctx); |
522 | 0 | if (Z_3 == NULL) |
523 | 0 | goto err; |
524 | 0 | |
525 | 0 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ |
526 | 0 | |
527 | 0 | if (group->meth->field_decode) { |
528 | 0 | if (!group->meth->field_decode(group, Z, point->Z, ctx)) |
529 | 0 | goto err; |
530 | 0 | Z_ = Z; |
531 | 0 | } else { |
532 | 0 | Z_ = point->Z; |
533 | 0 | } |
534 | 0 |
|
535 | 0 | if (BN_is_one(Z_)) { |
536 | 0 | if (group->meth->field_decode) { |
537 | 0 | if (x != NULL) { |
538 | 0 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
539 | 0 | goto err; |
540 | 0 | } |
541 | 0 | if (y != NULL) { |
542 | 0 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
543 | 0 | goto err; |
544 | 0 | } |
545 | 0 | } else { |
546 | 0 | if (x != NULL) { |
547 | 0 | if (!BN_copy(x, point->X)) |
548 | 0 | goto err; |
549 | 0 | } |
550 | 0 | if (y != NULL) { |
551 | 0 | if (!BN_copy(y, point->Y)) |
552 | 0 | goto err; |
553 | 0 | } |
554 | 0 | } |
555 | 0 | } else { |
556 | 0 | if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) { |
557 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
558 | 0 | ERR_R_BN_LIB); |
559 | 0 | goto err; |
560 | 0 | } |
561 | 0 |
|
562 | 0 | if (group->meth->field_encode == 0) { |
563 | 0 | /* field_sqr works on standard representation */ |
564 | 0 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) |
565 | 0 | goto err; |
566 | 0 | } else { |
567 | 0 | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx)) |
568 | 0 | goto err; |
569 | 0 | } |
570 | 0 | |
571 | 0 | if (x != NULL) { |
572 | 0 | /* |
573 | 0 | * in the Montgomery case, field_mul will cancel out Montgomery |
574 | 0 | * factor in X: |
575 | 0 | */ |
576 | 0 | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx)) |
577 | 0 | goto err; |
578 | 0 | } |
579 | 0 | |
580 | 0 | if (y != NULL) { |
581 | 0 | if (group->meth->field_encode == 0) { |
582 | 0 | /* |
583 | 0 | * field_mul works on standard representation |
584 | 0 | */ |
585 | 0 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) |
586 | 0 | goto err; |
587 | 0 | } else { |
588 | 0 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx)) |
589 | 0 | goto err; |
590 | 0 | } |
591 | 0 | |
592 | 0 | /* |
593 | 0 | * in the Montgomery case, field_mul will cancel out Montgomery |
594 | 0 | * factor in Y: |
595 | 0 | */ |
596 | 0 | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx)) |
597 | 0 | goto err; |
598 | 0 | } |
599 | 0 | } |
600 | 0 | |
601 | 0 | ret = 1; |
602 | 0 |
|
603 | 0 | err: |
604 | 0 | BN_CTX_end(ctx); |
605 | 0 | BN_CTX_free(new_ctx); |
606 | 0 | return ret; |
607 | 0 | } |
608 | | |
609 | | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
610 | | const EC_POINT *b, BN_CTX *ctx) |
611 | 0 | { |
612 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
613 | 0 | const BIGNUM *, BN_CTX *); |
614 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
615 | 0 | const BIGNUM *p; |
616 | 0 | BN_CTX *new_ctx = NULL; |
617 | 0 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; |
618 | 0 | int ret = 0; |
619 | 0 |
|
620 | 0 | if (a == b) |
621 | 0 | return EC_POINT_dbl(group, r, a, ctx); |
622 | 0 | if (EC_POINT_is_at_infinity(group, a)) |
623 | 0 | return EC_POINT_copy(r, b); |
624 | 0 | if (EC_POINT_is_at_infinity(group, b)) |
625 | 0 | return EC_POINT_copy(r, a); |
626 | 0 | |
627 | 0 | field_mul = group->meth->field_mul; |
628 | 0 | field_sqr = group->meth->field_sqr; |
629 | 0 | p = group->field; |
630 | 0 |
|
631 | 0 | if (ctx == NULL) { |
632 | 0 | ctx = new_ctx = BN_CTX_new(); |
633 | 0 | if (ctx == NULL) |
634 | 0 | return 0; |
635 | 0 | } |
636 | 0 | |
637 | 0 | BN_CTX_start(ctx); |
638 | 0 | n0 = BN_CTX_get(ctx); |
639 | 0 | n1 = BN_CTX_get(ctx); |
640 | 0 | n2 = BN_CTX_get(ctx); |
641 | 0 | n3 = BN_CTX_get(ctx); |
642 | 0 | n4 = BN_CTX_get(ctx); |
643 | 0 | n5 = BN_CTX_get(ctx); |
644 | 0 | n6 = BN_CTX_get(ctx); |
645 | 0 | if (n6 == NULL) |
646 | 0 | goto end; |
647 | 0 | |
648 | 0 | /* |
649 | 0 | * Note that in this function we must not read components of 'a' or 'b' |
650 | 0 | * once we have written the corresponding components of 'r'. ('r' might |
651 | 0 | * be one of 'a' or 'b'.) |
652 | 0 | */ |
653 | 0 | |
654 | 0 | /* n1, n2 */ |
655 | 0 | if (b->Z_is_one) { |
656 | 0 | if (!BN_copy(n1, a->X)) |
657 | 0 | goto end; |
658 | 0 | if (!BN_copy(n2, a->Y)) |
659 | 0 | goto end; |
660 | 0 | /* n1 = X_a */ |
661 | 0 | /* n2 = Y_a */ |
662 | 0 | } else { |
663 | 0 | if (!field_sqr(group, n0, b->Z, ctx)) |
664 | 0 | goto end; |
665 | 0 | if (!field_mul(group, n1, a->X, n0, ctx)) |
666 | 0 | goto end; |
667 | 0 | /* n1 = X_a * Z_b^2 */ |
668 | 0 | |
669 | 0 | if (!field_mul(group, n0, n0, b->Z, ctx)) |
670 | 0 | goto end; |
671 | 0 | if (!field_mul(group, n2, a->Y, n0, ctx)) |
672 | 0 | goto end; |
673 | 0 | /* n2 = Y_a * Z_b^3 */ |
674 | 0 | } |
675 | 0 | |
676 | 0 | /* n3, n4 */ |
677 | 0 | if (a->Z_is_one) { |
678 | 0 | if (!BN_copy(n3, b->X)) |
679 | 0 | goto end; |
680 | 0 | if (!BN_copy(n4, b->Y)) |
681 | 0 | goto end; |
682 | 0 | /* n3 = X_b */ |
683 | 0 | /* n4 = Y_b */ |
684 | 0 | } else { |
685 | 0 | if (!field_sqr(group, n0, a->Z, ctx)) |
686 | 0 | goto end; |
687 | 0 | if (!field_mul(group, n3, b->X, n0, ctx)) |
688 | 0 | goto end; |
689 | 0 | /* n3 = X_b * Z_a^2 */ |
690 | 0 | |
691 | 0 | if (!field_mul(group, n0, n0, a->Z, ctx)) |
692 | 0 | goto end; |
693 | 0 | if (!field_mul(group, n4, b->Y, n0, ctx)) |
694 | 0 | goto end; |
695 | 0 | /* n4 = Y_b * Z_a^3 */ |
696 | 0 | } |
697 | 0 | |
698 | 0 | /* n5, n6 */ |
699 | 0 | if (!BN_mod_sub_quick(n5, n1, n3, p)) |
700 | 0 | goto end; |
701 | 0 | if (!BN_mod_sub_quick(n6, n2, n4, p)) |
702 | 0 | goto end; |
703 | 0 | /* n5 = n1 - n3 */ |
704 | 0 | /* n6 = n2 - n4 */ |
705 | 0 | |
706 | 0 | if (BN_is_zero(n5)) { |
707 | 0 | if (BN_is_zero(n6)) { |
708 | 0 | /* a is the same point as b */ |
709 | 0 | BN_CTX_end(ctx); |
710 | 0 | ret = EC_POINT_dbl(group, r, a, ctx); |
711 | 0 | ctx = NULL; |
712 | 0 | goto end; |
713 | 0 | } else { |
714 | 0 | /* a is the inverse of b */ |
715 | 0 | BN_zero(r->Z); |
716 | 0 | r->Z_is_one = 0; |
717 | 0 | ret = 1; |
718 | 0 | goto end; |
719 | 0 | } |
720 | 0 | } |
721 | 0 |
|
722 | 0 | /* 'n7', 'n8' */ |
723 | 0 | if (!BN_mod_add_quick(n1, n1, n3, p)) |
724 | 0 | goto end; |
725 | 0 | if (!BN_mod_add_quick(n2, n2, n4, p)) |
726 | 0 | goto end; |
727 | 0 | /* 'n7' = n1 + n3 */ |
728 | 0 | /* 'n8' = n2 + n4 */ |
729 | 0 | |
730 | 0 | /* Z_r */ |
731 | 0 | if (a->Z_is_one && b->Z_is_one) { |
732 | 0 | if (!BN_copy(r->Z, n5)) |
733 | 0 | goto end; |
734 | 0 | } else { |
735 | 0 | if (a->Z_is_one) { |
736 | 0 | if (!BN_copy(n0, b->Z)) |
737 | 0 | goto end; |
738 | 0 | } else if (b->Z_is_one) { |
739 | 0 | if (!BN_copy(n0, a->Z)) |
740 | 0 | goto end; |
741 | 0 | } else { |
742 | 0 | if (!field_mul(group, n0, a->Z, b->Z, ctx)) |
743 | 0 | goto end; |
744 | 0 | } |
745 | 0 | if (!field_mul(group, r->Z, n0, n5, ctx)) |
746 | 0 | goto end; |
747 | 0 | } |
748 | 0 | r->Z_is_one = 0; |
749 | 0 | /* Z_r = Z_a * Z_b * n5 */ |
750 | 0 |
|
751 | 0 | /* X_r */ |
752 | 0 | if (!field_sqr(group, n0, n6, ctx)) |
753 | 0 | goto end; |
754 | 0 | if (!field_sqr(group, n4, n5, ctx)) |
755 | 0 | goto end; |
756 | 0 | if (!field_mul(group, n3, n1, n4, ctx)) |
757 | 0 | goto end; |
758 | 0 | if (!BN_mod_sub_quick(r->X, n0, n3, p)) |
759 | 0 | goto end; |
760 | 0 | /* X_r = n6^2 - n5^2 * 'n7' */ |
761 | 0 | |
762 | 0 | /* 'n9' */ |
763 | 0 | if (!BN_mod_lshift1_quick(n0, r->X, p)) |
764 | 0 | goto end; |
765 | 0 | if (!BN_mod_sub_quick(n0, n3, n0, p)) |
766 | 0 | goto end; |
767 | 0 | /* n9 = n5^2 * 'n7' - 2 * X_r */ |
768 | 0 | |
769 | 0 | /* Y_r */ |
770 | 0 | if (!field_mul(group, n0, n0, n6, ctx)) |
771 | 0 | goto end; |
772 | 0 | if (!field_mul(group, n5, n4, n5, ctx)) |
773 | 0 | goto end; /* now n5 is n5^3 */ |
774 | 0 | if (!field_mul(group, n1, n2, n5, ctx)) |
775 | 0 | goto end; |
776 | 0 | if (!BN_mod_sub_quick(n0, n0, n1, p)) |
777 | 0 | goto end; |
778 | 0 | if (BN_is_odd(n0)) |
779 | 0 | if (!BN_add(n0, n0, p)) |
780 | 0 | goto end; |
781 | 0 | /* now 0 <= n0 < 2*p, and n0 is even */ |
782 | 0 | if (!BN_rshift1(r->Y, n0)) |
783 | 0 | goto end; |
784 | 0 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ |
785 | 0 | |
786 | 0 | ret = 1; |
787 | 0 |
|
788 | 0 | end: |
789 | 0 | if (ctx) /* otherwise we already called BN_CTX_end */ |
790 | 0 | BN_CTX_end(ctx); |
791 | 0 | BN_CTX_free(new_ctx); |
792 | 0 | return ret; |
793 | 0 | } |
794 | | |
795 | | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
796 | | BN_CTX *ctx) |
797 | 0 | { |
798 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
799 | 0 | const BIGNUM *, BN_CTX *); |
800 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
801 | 0 | const BIGNUM *p; |
802 | 0 | BN_CTX *new_ctx = NULL; |
803 | 0 | BIGNUM *n0, *n1, *n2, *n3; |
804 | 0 | int ret = 0; |
805 | 0 |
|
806 | 0 | if (EC_POINT_is_at_infinity(group, a)) { |
807 | 0 | BN_zero(r->Z); |
808 | 0 | r->Z_is_one = 0; |
809 | 0 | return 1; |
810 | 0 | } |
811 | 0 |
|
812 | 0 | field_mul = group->meth->field_mul; |
813 | 0 | field_sqr = group->meth->field_sqr; |
814 | 0 | p = group->field; |
815 | 0 |
|
816 | 0 | if (ctx == NULL) { |
817 | 0 | ctx = new_ctx = BN_CTX_new(); |
818 | 0 | if (ctx == NULL) |
819 | 0 | return 0; |
820 | 0 | } |
821 | 0 | |
822 | 0 | BN_CTX_start(ctx); |
823 | 0 | n0 = BN_CTX_get(ctx); |
824 | 0 | n1 = BN_CTX_get(ctx); |
825 | 0 | n2 = BN_CTX_get(ctx); |
826 | 0 | n3 = BN_CTX_get(ctx); |
827 | 0 | if (n3 == NULL) |
828 | 0 | goto err; |
829 | 0 | |
830 | 0 | /* |
831 | 0 | * Note that in this function we must not read components of 'a' once we |
832 | 0 | * have written the corresponding components of 'r'. ('r' might the same |
833 | 0 | * as 'a'.) |
834 | 0 | */ |
835 | 0 | |
836 | 0 | /* n1 */ |
837 | 0 | if (a->Z_is_one) { |
838 | 0 | if (!field_sqr(group, n0, a->X, ctx)) |
839 | 0 | goto err; |
840 | 0 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
841 | 0 | goto err; |
842 | 0 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
843 | 0 | goto err; |
844 | 0 | if (!BN_mod_add_quick(n1, n0, group->a, p)) |
845 | 0 | goto err; |
846 | 0 | /* n1 = 3 * X_a^2 + a_curve */ |
847 | 0 | } else if (group->a_is_minus3) { |
848 | 0 | if (!field_sqr(group, n1, a->Z, ctx)) |
849 | 0 | goto err; |
850 | 0 | if (!BN_mod_add_quick(n0, a->X, n1, p)) |
851 | 0 | goto err; |
852 | 0 | if (!BN_mod_sub_quick(n2, a->X, n1, p)) |
853 | 0 | goto err; |
854 | 0 | if (!field_mul(group, n1, n0, n2, ctx)) |
855 | 0 | goto err; |
856 | 0 | if (!BN_mod_lshift1_quick(n0, n1, p)) |
857 | 0 | goto err; |
858 | 0 | if (!BN_mod_add_quick(n1, n0, n1, p)) |
859 | 0 | goto err; |
860 | 0 | /*- |
861 | 0 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) |
862 | 0 | * = 3 * X_a^2 - 3 * Z_a^4 |
863 | 0 | */ |
864 | 0 | } else { |
865 | 0 | if (!field_sqr(group, n0, a->X, ctx)) |
866 | 0 | goto err; |
867 | 0 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
868 | 0 | goto err; |
869 | 0 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
870 | 0 | goto err; |
871 | 0 | if (!field_sqr(group, n1, a->Z, ctx)) |
872 | 0 | goto err; |
873 | 0 | if (!field_sqr(group, n1, n1, ctx)) |
874 | 0 | goto err; |
875 | 0 | if (!field_mul(group, n1, n1, group->a, ctx)) |
876 | 0 | goto err; |
877 | 0 | if (!BN_mod_add_quick(n1, n1, n0, p)) |
878 | 0 | goto err; |
879 | 0 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ |
880 | 0 | } |
881 | 0 | |
882 | 0 | /* Z_r */ |
883 | 0 | if (a->Z_is_one) { |
884 | 0 | if (!BN_copy(n0, a->Y)) |
885 | 0 | goto err; |
886 | 0 | } else { |
887 | 0 | if (!field_mul(group, n0, a->Y, a->Z, ctx)) |
888 | 0 | goto err; |
889 | 0 | } |
890 | 0 | if (!BN_mod_lshift1_quick(r->Z, n0, p)) |
891 | 0 | goto err; |
892 | 0 | r->Z_is_one = 0; |
893 | 0 | /* Z_r = 2 * Y_a * Z_a */ |
894 | 0 |
|
895 | 0 | /* n2 */ |
896 | 0 | if (!field_sqr(group, n3, a->Y, ctx)) |
897 | 0 | goto err; |
898 | 0 | if (!field_mul(group, n2, a->X, n3, ctx)) |
899 | 0 | goto err; |
900 | 0 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) |
901 | 0 | goto err; |
902 | 0 | /* n2 = 4 * X_a * Y_a^2 */ |
903 | 0 | |
904 | 0 | /* X_r */ |
905 | 0 | if (!BN_mod_lshift1_quick(n0, n2, p)) |
906 | 0 | goto err; |
907 | 0 | if (!field_sqr(group, r->X, n1, ctx)) |
908 | 0 | goto err; |
909 | 0 | if (!BN_mod_sub_quick(r->X, r->X, n0, p)) |
910 | 0 | goto err; |
911 | 0 | /* X_r = n1^2 - 2 * n2 */ |
912 | 0 | |
913 | 0 | /* n3 */ |
914 | 0 | if (!field_sqr(group, n0, n3, ctx)) |
915 | 0 | goto err; |
916 | 0 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) |
917 | 0 | goto err; |
918 | 0 | /* n3 = 8 * Y_a^4 */ |
919 | 0 | |
920 | 0 | /* Y_r */ |
921 | 0 | if (!BN_mod_sub_quick(n0, n2, r->X, p)) |
922 | 0 | goto err; |
923 | 0 | if (!field_mul(group, n0, n1, n0, ctx)) |
924 | 0 | goto err; |
925 | 0 | if (!BN_mod_sub_quick(r->Y, n0, n3, p)) |
926 | 0 | goto err; |
927 | 0 | /* Y_r = n1 * (n2 - X_r) - n3 */ |
928 | 0 | |
929 | 0 | ret = 1; |
930 | 0 |
|
931 | 0 | err: |
932 | 0 | BN_CTX_end(ctx); |
933 | 0 | BN_CTX_free(new_ctx); |
934 | 0 | return ret; |
935 | 0 | } |
936 | | |
937 | | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
938 | 0 | { |
939 | 0 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
940 | 0 | /* point is its own inverse */ |
941 | 0 | return 1; |
942 | 0 | |
943 | 0 | return BN_usub(point->Y, group->field, point->Y); |
944 | 0 | } |
945 | | |
946 | | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) |
947 | 0 | { |
948 | 0 | return BN_is_zero(point->Z); |
949 | 0 | } |
950 | | |
951 | | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
952 | | BN_CTX *ctx) |
953 | 0 | { |
954 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
955 | 0 | const BIGNUM *, BN_CTX *); |
956 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
957 | 0 | const BIGNUM *p; |
958 | 0 | BN_CTX *new_ctx = NULL; |
959 | 0 | BIGNUM *rh, *tmp, *Z4, *Z6; |
960 | 0 | int ret = -1; |
961 | 0 |
|
962 | 0 | if (EC_POINT_is_at_infinity(group, point)) |
963 | 0 | return 1; |
964 | 0 | |
965 | 0 | field_mul = group->meth->field_mul; |
966 | 0 | field_sqr = group->meth->field_sqr; |
967 | 0 | p = group->field; |
968 | 0 |
|
969 | 0 | if (ctx == NULL) { |
970 | 0 | ctx = new_ctx = BN_CTX_new(); |
971 | 0 | if (ctx == NULL) |
972 | 0 | return -1; |
973 | 0 | } |
974 | 0 | |
975 | 0 | BN_CTX_start(ctx); |
976 | 0 | rh = BN_CTX_get(ctx); |
977 | 0 | tmp = BN_CTX_get(ctx); |
978 | 0 | Z4 = BN_CTX_get(ctx); |
979 | 0 | Z6 = BN_CTX_get(ctx); |
980 | 0 | if (Z6 == NULL) |
981 | 0 | goto err; |
982 | 0 | |
983 | 0 | /*- |
984 | 0 | * We have a curve defined by a Weierstrass equation |
985 | 0 | * y^2 = x^3 + a*x + b. |
986 | 0 | * The point to consider is given in Jacobian projective coordinates |
987 | 0 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
988 | 0 | * Substituting this and multiplying by Z^6 transforms the above equation into |
989 | 0 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
990 | 0 | * To test this, we add up the right-hand side in 'rh'. |
991 | 0 | */ |
992 | 0 | |
993 | 0 | /* rh := X^2 */ |
994 | 0 | if (!field_sqr(group, rh, point->X, ctx)) |
995 | 0 | goto err; |
996 | 0 | |
997 | 0 | if (!point->Z_is_one) { |
998 | 0 | if (!field_sqr(group, tmp, point->Z, ctx)) |
999 | 0 | goto err; |
1000 | 0 | if (!field_sqr(group, Z4, tmp, ctx)) |
1001 | 0 | goto err; |
1002 | 0 | if (!field_mul(group, Z6, Z4, tmp, ctx)) |
1003 | 0 | goto err; |
1004 | 0 | |
1005 | 0 | /* rh := (rh + a*Z^4)*X */ |
1006 | 0 | if (group->a_is_minus3) { |
1007 | 0 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) |
1008 | 0 | goto err; |
1009 | 0 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) |
1010 | 0 | goto err; |
1011 | 0 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) |
1012 | 0 | goto err; |
1013 | 0 | if (!field_mul(group, rh, rh, point->X, ctx)) |
1014 | 0 | goto err; |
1015 | 0 | } else { |
1016 | 0 | if (!field_mul(group, tmp, Z4, group->a, ctx)) |
1017 | 0 | goto err; |
1018 | 0 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
1019 | 0 | goto err; |
1020 | 0 | if (!field_mul(group, rh, rh, point->X, ctx)) |
1021 | 0 | goto err; |
1022 | 0 | } |
1023 | 0 | |
1024 | 0 | /* rh := rh + b*Z^6 */ |
1025 | 0 | if (!field_mul(group, tmp, group->b, Z6, ctx)) |
1026 | 0 | goto err; |
1027 | 0 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
1028 | 0 | goto err; |
1029 | 0 | } else { |
1030 | 0 | /* point->Z_is_one */ |
1031 | 0 |
|
1032 | 0 | /* rh := (rh + a)*X */ |
1033 | 0 | if (!BN_mod_add_quick(rh, rh, group->a, p)) |
1034 | 0 | goto err; |
1035 | 0 | if (!field_mul(group, rh, rh, point->X, ctx)) |
1036 | 0 | goto err; |
1037 | 0 | /* rh := rh + b */ |
1038 | 0 | if (!BN_mod_add_quick(rh, rh, group->b, p)) |
1039 | 0 | goto err; |
1040 | 0 | } |
1041 | 0 | |
1042 | 0 | /* 'lh' := Y^2 */ |
1043 | 0 | if (!field_sqr(group, tmp, point->Y, ctx)) |
1044 | 0 | goto err; |
1045 | 0 | |
1046 | 0 | ret = (0 == BN_ucmp(tmp, rh)); |
1047 | 0 |
|
1048 | 0 | err: |
1049 | 0 | BN_CTX_end(ctx); |
1050 | 0 | BN_CTX_free(new_ctx); |
1051 | 0 | return ret; |
1052 | 0 | } |
1053 | | |
1054 | | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
1055 | | const EC_POINT *b, BN_CTX *ctx) |
1056 | 0 | { |
1057 | 0 | /*- |
1058 | 0 | * return values: |
1059 | 0 | * -1 error |
1060 | 0 | * 0 equal (in affine coordinates) |
1061 | 0 | * 1 not equal |
1062 | 0 | */ |
1063 | 0 |
|
1064 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
1065 | 0 | const BIGNUM *, BN_CTX *); |
1066 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
1067 | 0 | BN_CTX *new_ctx = NULL; |
1068 | 0 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; |
1069 | 0 | const BIGNUM *tmp1_, *tmp2_; |
1070 | 0 | int ret = -1; |
1071 | 0 |
|
1072 | 0 | if (EC_POINT_is_at_infinity(group, a)) { |
1073 | 0 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
1074 | 0 | } |
1075 | 0 |
|
1076 | 0 | if (EC_POINT_is_at_infinity(group, b)) |
1077 | 0 | return 1; |
1078 | 0 | |
1079 | 0 | if (a->Z_is_one && b->Z_is_one) { |
1080 | 0 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
1081 | 0 | } |
1082 | 0 |
|
1083 | 0 | field_mul = group->meth->field_mul; |
1084 | 0 | field_sqr = group->meth->field_sqr; |
1085 | 0 |
|
1086 | 0 | if (ctx == NULL) { |
1087 | 0 | ctx = new_ctx = BN_CTX_new(); |
1088 | 0 | if (ctx == NULL) |
1089 | 0 | return -1; |
1090 | 0 | } |
1091 | 0 | |
1092 | 0 | BN_CTX_start(ctx); |
1093 | 0 | tmp1 = BN_CTX_get(ctx); |
1094 | 0 | tmp2 = BN_CTX_get(ctx); |
1095 | 0 | Za23 = BN_CTX_get(ctx); |
1096 | 0 | Zb23 = BN_CTX_get(ctx); |
1097 | 0 | if (Zb23 == NULL) |
1098 | 0 | goto end; |
1099 | 0 | |
1100 | 0 | /*- |
1101 | 0 | * We have to decide whether |
1102 | 0 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
1103 | 0 | * or equivalently, whether |
1104 | 0 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
1105 | 0 | */ |
1106 | 0 | |
1107 | 0 | if (!b->Z_is_one) { |
1108 | 0 | if (!field_sqr(group, Zb23, b->Z, ctx)) |
1109 | 0 | goto end; |
1110 | 0 | if (!field_mul(group, tmp1, a->X, Zb23, ctx)) |
1111 | 0 | goto end; |
1112 | 0 | tmp1_ = tmp1; |
1113 | 0 | } else |
1114 | 0 | tmp1_ = a->X; |
1115 | 0 | if (!a->Z_is_one) { |
1116 | 0 | if (!field_sqr(group, Za23, a->Z, ctx)) |
1117 | 0 | goto end; |
1118 | 0 | if (!field_mul(group, tmp2, b->X, Za23, ctx)) |
1119 | 0 | goto end; |
1120 | 0 | tmp2_ = tmp2; |
1121 | 0 | } else |
1122 | 0 | tmp2_ = b->X; |
1123 | 0 |
|
1124 | 0 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ |
1125 | 0 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
1126 | 0 | ret = 1; /* points differ */ |
1127 | 0 | goto end; |
1128 | 0 | } |
1129 | 0 | |
1130 | 0 | if (!b->Z_is_one) { |
1131 | 0 | if (!field_mul(group, Zb23, Zb23, b->Z, ctx)) |
1132 | 0 | goto end; |
1133 | 0 | if (!field_mul(group, tmp1, a->Y, Zb23, ctx)) |
1134 | 0 | goto end; |
1135 | 0 | /* tmp1_ = tmp1 */ |
1136 | 0 | } else |
1137 | 0 | tmp1_ = a->Y; |
1138 | 0 | if (!a->Z_is_one) { |
1139 | 0 | if (!field_mul(group, Za23, Za23, a->Z, ctx)) |
1140 | 0 | goto end; |
1141 | 0 | if (!field_mul(group, tmp2, b->Y, Za23, ctx)) |
1142 | 0 | goto end; |
1143 | 0 | /* tmp2_ = tmp2 */ |
1144 | 0 | } else |
1145 | 0 | tmp2_ = b->Y; |
1146 | 0 |
|
1147 | 0 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ |
1148 | 0 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
1149 | 0 | ret = 1; /* points differ */ |
1150 | 0 | goto end; |
1151 | 0 | } |
1152 | 0 | |
1153 | 0 | /* points are equal */ |
1154 | 0 | ret = 0; |
1155 | 0 |
|
1156 | 0 | end: |
1157 | 0 | BN_CTX_end(ctx); |
1158 | 0 | BN_CTX_free(new_ctx); |
1159 | 0 | return ret; |
1160 | 0 | } |
1161 | | |
1162 | | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
1163 | | BN_CTX *ctx) |
1164 | 0 | { |
1165 | 0 | BN_CTX *new_ctx = NULL; |
1166 | 0 | BIGNUM *x, *y; |
1167 | 0 | int ret = 0; |
1168 | 0 |
|
1169 | 0 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
1170 | 0 | return 1; |
1171 | 0 | |
1172 | 0 | if (ctx == NULL) { |
1173 | 0 | ctx = new_ctx = BN_CTX_new(); |
1174 | 0 | if (ctx == NULL) |
1175 | 0 | return 0; |
1176 | 0 | } |
1177 | 0 | |
1178 | 0 | BN_CTX_start(ctx); |
1179 | 0 | x = BN_CTX_get(ctx); |
1180 | 0 | y = BN_CTX_get(ctx); |
1181 | 0 | if (y == NULL) |
1182 | 0 | goto err; |
1183 | 0 | |
1184 | 0 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
1185 | 0 | goto err; |
1186 | 0 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) |
1187 | 0 | goto err; |
1188 | 0 | if (!point->Z_is_one) { |
1189 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); |
1190 | 0 | goto err; |
1191 | 0 | } |
1192 | 0 |
|
1193 | 0 | ret = 1; |
1194 | 0 |
|
1195 | 0 | err: |
1196 | 0 | BN_CTX_end(ctx); |
1197 | 0 | BN_CTX_free(new_ctx); |
1198 | 0 | return ret; |
1199 | 0 | } |
1200 | | |
1201 | | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, |
1202 | | EC_POINT *points[], BN_CTX *ctx) |
1203 | 0 | { |
1204 | 0 | BN_CTX *new_ctx = NULL; |
1205 | 0 | BIGNUM *tmp, *tmp_Z; |
1206 | 0 | BIGNUM **prod_Z = NULL; |
1207 | 0 | size_t i; |
1208 | 0 | int ret = 0; |
1209 | 0 |
|
1210 | 0 | if (num == 0) |
1211 | 0 | return 1; |
1212 | 0 | |
1213 | 0 | if (ctx == NULL) { |
1214 | 0 | ctx = new_ctx = BN_CTX_new(); |
1215 | 0 | if (ctx == NULL) |
1216 | 0 | return 0; |
1217 | 0 | } |
1218 | 0 | |
1219 | 0 | BN_CTX_start(ctx); |
1220 | 0 | tmp = BN_CTX_get(ctx); |
1221 | 0 | tmp_Z = BN_CTX_get(ctx); |
1222 | 0 | if (tmp_Z == NULL) |
1223 | 0 | goto err; |
1224 | 0 | |
1225 | 0 | prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); |
1226 | 0 | if (prod_Z == NULL) |
1227 | 0 | goto err; |
1228 | 0 | for (i = 0; i < num; i++) { |
1229 | 0 | prod_Z[i] = BN_new(); |
1230 | 0 | if (prod_Z[i] == NULL) |
1231 | 0 | goto err; |
1232 | 0 | } |
1233 | 0 |
|
1234 | 0 | /* |
1235 | 0 | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, |
1236 | 0 | * skipping any zero-valued inputs (pretend that they're 1). |
1237 | 0 | */ |
1238 | 0 |
|
1239 | 0 | if (!BN_is_zero(points[0]->Z)) { |
1240 | 0 | if (!BN_copy(prod_Z[0], points[0]->Z)) |
1241 | 0 | goto err; |
1242 | 0 | } else { |
1243 | 0 | if (group->meth->field_set_to_one != 0) { |
1244 | 0 | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) |
1245 | 0 | goto err; |
1246 | 0 | } else { |
1247 | 0 | if (!BN_one(prod_Z[0])) |
1248 | 0 | goto err; |
1249 | 0 | } |
1250 | 0 | } |
1251 | 0 | |
1252 | 0 | for (i = 1; i < num; i++) { |
1253 | 0 | if (!BN_is_zero(points[i]->Z)) { |
1254 | 0 | if (!group-> |
1255 | 0 | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z, |
1256 | 0 | ctx)) |
1257 | 0 | goto err; |
1258 | 0 | } else { |
1259 | 0 | if (!BN_copy(prod_Z[i], prod_Z[i - 1])) |
1260 | 0 | goto err; |
1261 | 0 | } |
1262 | 0 | } |
1263 | 0 |
|
1264 | 0 | /* |
1265 | 0 | * Now use a single explicit inversion to replace every non-zero |
1266 | 0 | * points[i]->Z by its inverse. |
1267 | 0 | */ |
1268 | 0 |
|
1269 | 0 | if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) { |
1270 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); |
1271 | 0 | goto err; |
1272 | 0 | } |
1273 | 0 | if (group->meth->field_encode != 0) { |
1274 | 0 | /* |
1275 | 0 | * In the Montgomery case, we just turned R*H (representing H) into |
1276 | 0 | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to |
1277 | 0 | * multiply by the Montgomery factor twice. |
1278 | 0 | */ |
1279 | 0 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
1280 | 0 | goto err; |
1281 | 0 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
1282 | 0 | goto err; |
1283 | 0 | } |
1284 | 0 | |
1285 | 0 | for (i = num - 1; i > 0; --i) { |
1286 | 0 | /* |
1287 | 0 | * Loop invariant: tmp is the product of the inverses of points[0]->Z |
1288 | 0 | * .. points[i]->Z (zero-valued inputs skipped). |
1289 | 0 | */ |
1290 | 0 | if (!BN_is_zero(points[i]->Z)) { |
1291 | 0 | /* |
1292 | 0 | * Set tmp_Z to the inverse of points[i]->Z (as product of Z |
1293 | 0 | * inverses 0 .. i, Z values 0 .. i - 1). |
1294 | 0 | */ |
1295 | 0 | if (!group-> |
1296 | 0 | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) |
1297 | 0 | goto err; |
1298 | 0 | /* |
1299 | 0 | * Update tmp to satisfy the loop invariant for i - 1. |
1300 | 0 | */ |
1301 | 0 | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx)) |
1302 | 0 | goto err; |
1303 | 0 | /* Replace points[i]->Z by its inverse. */ |
1304 | 0 | if (!BN_copy(points[i]->Z, tmp_Z)) |
1305 | 0 | goto err; |
1306 | 0 | } |
1307 | 0 | } |
1308 | 0 |
|
1309 | 0 | if (!BN_is_zero(points[0]->Z)) { |
1310 | 0 | /* Replace points[0]->Z by its inverse. */ |
1311 | 0 | if (!BN_copy(points[0]->Z, tmp)) |
1312 | 0 | goto err; |
1313 | 0 | } |
1314 | 0 | |
1315 | 0 | /* Finally, fix up the X and Y coordinates for all points. */ |
1316 | 0 | |
1317 | 0 | for (i = 0; i < num; i++) { |
1318 | 0 | EC_POINT *p = points[i]; |
1319 | 0 |
|
1320 | 0 | if (!BN_is_zero(p->Z)) { |
1321 | 0 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ |
1322 | 0 |
|
1323 | 0 | if (!group->meth->field_sqr(group, tmp, p->Z, ctx)) |
1324 | 0 | goto err; |
1325 | 0 | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx)) |
1326 | 0 | goto err; |
1327 | 0 | |
1328 | 0 | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx)) |
1329 | 0 | goto err; |
1330 | 0 | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx)) |
1331 | 0 | goto err; |
1332 | 0 | |
1333 | 0 | if (group->meth->field_set_to_one != 0) { |
1334 | 0 | if (!group->meth->field_set_to_one(group, p->Z, ctx)) |
1335 | 0 | goto err; |
1336 | 0 | } else { |
1337 | 0 | if (!BN_one(p->Z)) |
1338 | 0 | goto err; |
1339 | 0 | } |
1340 | 0 | p->Z_is_one = 1; |
1341 | 0 | } |
1342 | 0 | } |
1343 | 0 |
|
1344 | 0 | ret = 1; |
1345 | 0 |
|
1346 | 0 | err: |
1347 | 0 | BN_CTX_end(ctx); |
1348 | 0 | BN_CTX_free(new_ctx); |
1349 | 0 | if (prod_Z != NULL) { |
1350 | 0 | for (i = 0; i < num; i++) { |
1351 | 0 | if (prod_Z[i] == NULL) |
1352 | 0 | break; |
1353 | 0 | BN_clear_free(prod_Z[i]); |
1354 | 0 | } |
1355 | 0 | OPENSSL_free(prod_Z); |
1356 | 0 | } |
1357 | 0 | return ret; |
1358 | 0 | } |
1359 | | |
1360 | | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
1361 | | const BIGNUM *b, BN_CTX *ctx) |
1362 | 0 | { |
1363 | 0 | return BN_mod_mul(r, a, b, group->field, ctx); |
1364 | 0 | } |
1365 | | |
1366 | | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
1367 | | BN_CTX *ctx) |
1368 | 0 | { |
1369 | 0 | return BN_mod_sqr(r, a, group->field, ctx); |
1370 | 0 | } |
1371 | | |
1372 | | /*- |
1373 | | * Apply randomization of EC point projective coordinates: |
1374 | | * |
1375 | | * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z) |
1376 | | * lambda = [1,group->field) |
1377 | | * |
1378 | | */ |
1379 | | int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, |
1380 | | BN_CTX *ctx) |
1381 | 0 | { |
1382 | 0 | int ret = 0; |
1383 | 0 | BIGNUM *lambda = NULL; |
1384 | 0 | BIGNUM *temp = NULL; |
1385 | 0 |
|
1386 | 0 | BN_CTX_start(ctx); |
1387 | 0 | lambda = BN_CTX_get(ctx); |
1388 | 0 | temp = BN_CTX_get(ctx); |
1389 | 0 | if (temp == NULL) { |
1390 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE); |
1391 | 0 | goto err; |
1392 | 0 | } |
1393 | 0 |
|
1394 | 0 | /* make sure lambda is not zero */ |
1395 | 0 | do { |
1396 | 0 | if (!BN_priv_rand_range(lambda, group->field)) { |
1397 | 0 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB); |
1398 | 0 | goto err; |
1399 | 0 | } |
1400 | 0 | } while (BN_is_zero(lambda)); |
1401 | 0 |
|
1402 | 0 | /* if field_encode defined convert between representations */ |
1403 | 0 | if (group->meth->field_encode != NULL |
1404 | 0 | && !group->meth->field_encode(group, lambda, lambda, ctx)) |
1405 | 0 | goto err; |
1406 | 0 | if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)) |
1407 | 0 | goto err; |
1408 | 0 | if (!group->meth->field_sqr(group, temp, lambda, ctx)) |
1409 | 0 | goto err; |
1410 | 0 | if (!group->meth->field_mul(group, p->X, p->X, temp, ctx)) |
1411 | 0 | goto err; |
1412 | 0 | if (!group->meth->field_mul(group, temp, temp, lambda, ctx)) |
1413 | 0 | goto err; |
1414 | 0 | if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx)) |
1415 | 0 | goto err; |
1416 | 0 | p->Z_is_one = 0; |
1417 | 0 |
|
1418 | 0 | ret = 1; |
1419 | 0 |
|
1420 | 0 | err: |
1421 | 0 | BN_CTX_end(ctx); |
1422 | 0 | return ret; |
1423 | 0 | } |
1424 | | |
1425 | | /*- |
1426 | | * Set s := p, r := 2p. |
1427 | | * |
1428 | | * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve |
1429 | | * multiplication resistant against side channel attacks" appendix, as described |
1430 | | * at |
1431 | | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 |
1432 | | * |
1433 | | * The input point p will be in randomized Jacobian projective coords: |
1434 | | * x = X/Z**2, y=Y/Z**3 |
1435 | | * |
1436 | | * The output points p, s, and r are converted to standard (homogeneous) |
1437 | | * projective coords: |
1438 | | * x = X/Z, y=Y/Z |
1439 | | */ |
1440 | | int ec_GFp_simple_ladder_pre(const EC_GROUP *group, |
1441 | | EC_POINT *r, EC_POINT *s, |
1442 | | EC_POINT *p, BN_CTX *ctx) |
1443 | 0 | { |
1444 | 0 | BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
1445 | 0 |
|
1446 | 0 | t1 = r->Z; |
1447 | 0 | t2 = r->Y; |
1448 | 0 | t3 = s->X; |
1449 | 0 | t4 = r->X; |
1450 | 0 | t5 = s->Y; |
1451 | 0 | t6 = s->Z; |
1452 | 0 |
|
1453 | 0 | /* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */ |
1454 | 0 | if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx) |
1455 | 0 | || !group->meth->field_sqr(group, t1, p->Z, ctx) |
1456 | 0 | || !group->meth->field_mul(group, p->Z, p->Z, t1, ctx) |
1457 | 0 | /* r := 2p */ |
1458 | 0 | || !group->meth->field_sqr(group, t2, p->X, ctx) |
1459 | 0 | || !group->meth->field_sqr(group, t3, p->Z, ctx) |
1460 | 0 | || !group->meth->field_mul(group, t4, t3, group->a, ctx) |
1461 | 0 | || !BN_mod_sub_quick(t5, t2, t4, group->field) |
1462 | 0 | || !BN_mod_add_quick(t2, t2, t4, group->field) |
1463 | 0 | || !group->meth->field_sqr(group, t5, t5, ctx) |
1464 | 0 | || !group->meth->field_mul(group, t6, t3, group->b, ctx) |
1465 | 0 | || !group->meth->field_mul(group, t1, p->X, p->Z, ctx) |
1466 | 0 | || !group->meth->field_mul(group, t4, t1, t6, ctx) |
1467 | 0 | || !BN_mod_lshift_quick(t4, t4, 3, group->field) |
1468 | 0 | /* r->X coord output */ |
1469 | 0 | || !BN_mod_sub_quick(r->X, t5, t4, group->field) |
1470 | 0 | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
1471 | 0 | || !group->meth->field_mul(group, t2, t3, t6, ctx) |
1472 | 0 | || !BN_mod_add_quick(t1, t1, t2, group->field) |
1473 | 0 | /* r->Z coord output */ |
1474 | 0 | || !BN_mod_lshift_quick(r->Z, t1, 2, group->field) |
1475 | 0 | || !EC_POINT_copy(s, p)) |
1476 | 0 | return 0; |
1477 | 0 | |
1478 | 0 | r->Z_is_one = 0; |
1479 | 0 | s->Z_is_one = 0; |
1480 | 0 | p->Z_is_one = 0; |
1481 | 0 |
|
1482 | 0 | return 1; |
1483 | 0 | } |
1484 | | |
1485 | | /*- |
1486 | | * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi |
1487 | | * "A fast parallel elliptic curve multiplication resistant against side channel |
1488 | | * attacks", as described at |
1489 | | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4 |
1490 | | */ |
1491 | | int ec_GFp_simple_ladder_step(const EC_GROUP *group, |
1492 | | EC_POINT *r, EC_POINT *s, |
1493 | | EC_POINT *p, BN_CTX *ctx) |
1494 | 0 | { |
1495 | 0 | int ret = 0; |
1496 | 0 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL; |
1497 | 0 |
|
1498 | 0 | BN_CTX_start(ctx); |
1499 | 0 | t0 = BN_CTX_get(ctx); |
1500 | 0 | t1 = BN_CTX_get(ctx); |
1501 | 0 | t2 = BN_CTX_get(ctx); |
1502 | 0 | t3 = BN_CTX_get(ctx); |
1503 | 0 | t4 = BN_CTX_get(ctx); |
1504 | 0 | t5 = BN_CTX_get(ctx); |
1505 | 0 | t6 = BN_CTX_get(ctx); |
1506 | 0 | t7 = BN_CTX_get(ctx); |
1507 | 0 |
|
1508 | 0 | if (t7 == NULL |
1509 | 0 | || !group->meth->field_mul(group, t0, r->X, s->X, ctx) |
1510 | 0 | || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx) |
1511 | 0 | || !group->meth->field_mul(group, t2, r->X, s->Z, ctx) |
1512 | 0 | || !group->meth->field_mul(group, t3, r->Z, s->X, ctx) |
1513 | 0 | || !group->meth->field_mul(group, t4, group->a, t1, ctx) |
1514 | 0 | || !BN_mod_add_quick(t0, t0, t4, group->field) |
1515 | 0 | || !BN_mod_add_quick(t4, t3, t2, group->field) |
1516 | 0 | || !group->meth->field_mul(group, t0, t4, t0, ctx) |
1517 | 0 | || !group->meth->field_sqr(group, t1, t1, ctx) |
1518 | 0 | || !BN_mod_lshift_quick(t7, group->b, 2, group->field) |
1519 | 0 | || !group->meth->field_mul(group, t1, t7, t1, ctx) |
1520 | 0 | || !BN_mod_lshift1_quick(t0, t0, group->field) |
1521 | 0 | || !BN_mod_add_quick(t0, t1, t0, group->field) |
1522 | 0 | || !BN_mod_sub_quick(t1, t2, t3, group->field) |
1523 | 0 | || !group->meth->field_sqr(group, t1, t1, ctx) |
1524 | 0 | || !group->meth->field_mul(group, t3, t1, p->X, ctx) |
1525 | 0 | || !group->meth->field_mul(group, t0, p->Z, t0, ctx) |
1526 | 0 | /* s->X coord output */ |
1527 | 0 | || !BN_mod_sub_quick(s->X, t0, t3, group->field) |
1528 | 0 | /* s->Z coord output */ |
1529 | 0 | || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx) |
1530 | 0 | || !group->meth->field_sqr(group, t3, r->X, ctx) |
1531 | 0 | || !group->meth->field_sqr(group, t2, r->Z, ctx) |
1532 | 0 | || !group->meth->field_mul(group, t4, t2, group->a, ctx) |
1533 | 0 | || !BN_mod_add_quick(t5, r->X, r->Z, group->field) |
1534 | 0 | || !group->meth->field_sqr(group, t5, t5, ctx) |
1535 | 0 | || !BN_mod_sub_quick(t5, t5, t3, group->field) |
1536 | 0 | || !BN_mod_sub_quick(t5, t5, t2, group->field) |
1537 | 0 | || !BN_mod_sub_quick(t6, t3, t4, group->field) |
1538 | 0 | || !group->meth->field_sqr(group, t6, t6, ctx) |
1539 | 0 | || !group->meth->field_mul(group, t0, t2, t5, ctx) |
1540 | 0 | || !group->meth->field_mul(group, t0, t7, t0, ctx) |
1541 | 0 | /* r->X coord output */ |
1542 | 0 | || !BN_mod_sub_quick(r->X, t6, t0, group->field) |
1543 | 0 | || !BN_mod_add_quick(t6, t3, t4, group->field) |
1544 | 0 | || !group->meth->field_sqr(group, t3, t2, ctx) |
1545 | 0 | || !group->meth->field_mul(group, t7, t3, t7, ctx) |
1546 | 0 | || !group->meth->field_mul(group, t5, t5, t6, ctx) |
1547 | 0 | || !BN_mod_lshift1_quick(t5, t5, group->field) |
1548 | 0 | /* r->Z coord output */ |
1549 | 0 | || !BN_mod_add_quick(r->Z, t7, t5, group->field)) |
1550 | 0 | goto err; |
1551 | 0 | |
1552 | 0 | ret = 1; |
1553 | 0 |
|
1554 | 0 | err: |
1555 | 0 | BN_CTX_end(ctx); |
1556 | 0 | return ret; |
1557 | 0 | } |
1558 | | |
1559 | | /*- |
1560 | | * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass |
1561 | | * Elliptic Curves and Side-Channel Attacks", modified to work in projective |
1562 | | * coordinates and return r in Jacobian projective coordinates. |
1563 | | * |
1564 | | * X4 = two*Y1*X2*Z3*Z2*Z1; |
1565 | | * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1); |
1566 | | * Z4 = two*Y1*Z3*SQR(Z2)*Z1; |
1567 | | * |
1568 | | * Z4 != 0 because: |
1569 | | * - Z1==0 implies p is at infinity, which would have caused an early exit in |
1570 | | * the caller; |
1571 | | * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); |
1572 | | * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); |
1573 | | * - Y1==0 implies p has order 2, so either r or s are infinity and handled by |
1574 | | * one of the BN_is_zero(...) branches. |
1575 | | */ |
1576 | | int ec_GFp_simple_ladder_post(const EC_GROUP *group, |
1577 | | EC_POINT *r, EC_POINT *s, |
1578 | | EC_POINT *p, BN_CTX *ctx) |
1579 | 0 | { |
1580 | 0 | int ret = 0; |
1581 | 0 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
1582 | 0 |
|
1583 | 0 | if (BN_is_zero(r->Z)) |
1584 | 0 | return EC_POINT_set_to_infinity(group, r); |
1585 | 0 | |
1586 | 0 | if (BN_is_zero(s->Z)) { |
1587 | 0 | /* (X,Y,Z) -> (XZ,YZ**2,Z) */ |
1588 | 0 | if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx) |
1589 | 0 | || !group->meth->field_sqr(group, r->Z, p->Z, ctx) |
1590 | 0 | || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx) |
1591 | 0 | || !BN_copy(r->Z, p->Z) |
1592 | 0 | || !EC_POINT_invert(group, r, ctx)) |
1593 | 0 | return 0; |
1594 | 0 | return 1; |
1595 | 0 | } |
1596 | 0 | |
1597 | 0 | BN_CTX_start(ctx); |
1598 | 0 | t0 = BN_CTX_get(ctx); |
1599 | 0 | t1 = BN_CTX_get(ctx); |
1600 | 0 | t2 = BN_CTX_get(ctx); |
1601 | 0 | t3 = BN_CTX_get(ctx); |
1602 | 0 | t4 = BN_CTX_get(ctx); |
1603 | 0 | t5 = BN_CTX_get(ctx); |
1604 | 0 | t6 = BN_CTX_get(ctx); |
1605 | 0 |
|
1606 | 0 | if (t6 == NULL |
1607 | 0 | || !BN_mod_lshift1_quick(t0, p->Y, group->field) |
1608 | 0 | || !group->meth->field_mul(group, t1, r->X, p->Z, ctx) |
1609 | 0 | || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx) |
1610 | 0 | || !group->meth->field_mul(group, t2, t1, t2, ctx) |
1611 | 0 | || !group->meth->field_mul(group, t3, t2, t0, ctx) |
1612 | 0 | || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx) |
1613 | 0 | || !group->meth->field_sqr(group, t4, t2, ctx) |
1614 | 0 | || !BN_mod_lshift1_quick(t5, group->b, group->field) |
1615 | 0 | || !group->meth->field_mul(group, t4, t4, t5, ctx) |
1616 | 0 | || !group->meth->field_mul(group, t6, t2, group->a, ctx) |
1617 | 0 | || !group->meth->field_mul(group, t5, r->X, p->X, ctx) |
1618 | 0 | || !BN_mod_add_quick(t5, t6, t5, group->field) |
1619 | 0 | || !group->meth->field_mul(group, t6, r->Z, p->X, ctx) |
1620 | 0 | || !BN_mod_add_quick(t2, t6, t1, group->field) |
1621 | 0 | || !group->meth->field_mul(group, t5, t5, t2, ctx) |
1622 | 0 | || !BN_mod_sub_quick(t6, t6, t1, group->field) |
1623 | 0 | || !group->meth->field_sqr(group, t6, t6, ctx) |
1624 | 0 | || !group->meth->field_mul(group, t6, t6, s->X, ctx) |
1625 | 0 | || !BN_mod_add_quick(t4, t5, t4, group->field) |
1626 | 0 | || !group->meth->field_mul(group, t4, t4, s->Z, ctx) |
1627 | 0 | || !BN_mod_sub_quick(t4, t4, t6, group->field) |
1628 | 0 | || !group->meth->field_sqr(group, t5, r->Z, ctx) |
1629 | 0 | || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx) |
1630 | 0 | || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx) |
1631 | 0 | || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx) |
1632 | 0 | /* t3 := X, t4 := Y */ |
1633 | 0 | /* (X,Y,Z) -> (XZ,YZ**2,Z) */ |
1634 | 0 | || !group->meth->field_mul(group, r->X, t3, r->Z, ctx) |
1635 | 0 | || !group->meth->field_sqr(group, t3, r->Z, ctx) |
1636 | 0 | || !group->meth->field_mul(group, r->Y, t4, t3, ctx)) |
1637 | 0 | goto err; |
1638 | 0 | |
1639 | 0 | ret = 1; |
1640 | 0 |
|
1641 | 0 | err: |
1642 | 0 | BN_CTX_end(ctx); |
1643 | 0 | return ret; |
1644 | 0 | } |