/src/openssl/crypto/evp/pbe_scrypt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stddef.h> |
11 | | #include <stdio.h> |
12 | | #include <string.h> |
13 | | #include <openssl/evp.h> |
14 | | #include <openssl/err.h> |
15 | | #include "internal/numbers.h" |
16 | | |
17 | | #ifndef OPENSSL_NO_SCRYPT |
18 | | |
19 | 0 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
20 | | static void salsa208_word_specification(uint32_t inout[16]) |
21 | 0 | { |
22 | 0 | int i; |
23 | 0 | uint32_t x[16]; |
24 | 0 | memcpy(x, inout, sizeof(x)); |
25 | 0 | for (i = 8; i > 0; i -= 2) { |
26 | 0 | x[4] ^= R(x[0] + x[12], 7); |
27 | 0 | x[8] ^= R(x[4] + x[0], 9); |
28 | 0 | x[12] ^= R(x[8] + x[4], 13); |
29 | 0 | x[0] ^= R(x[12] + x[8], 18); |
30 | 0 | x[9] ^= R(x[5] + x[1], 7); |
31 | 0 | x[13] ^= R(x[9] + x[5], 9); |
32 | 0 | x[1] ^= R(x[13] + x[9], 13); |
33 | 0 | x[5] ^= R(x[1] + x[13], 18); |
34 | 0 | x[14] ^= R(x[10] + x[6], 7); |
35 | 0 | x[2] ^= R(x[14] + x[10], 9); |
36 | 0 | x[6] ^= R(x[2] + x[14], 13); |
37 | 0 | x[10] ^= R(x[6] + x[2], 18); |
38 | 0 | x[3] ^= R(x[15] + x[11], 7); |
39 | 0 | x[7] ^= R(x[3] + x[15], 9); |
40 | 0 | x[11] ^= R(x[7] + x[3], 13); |
41 | 0 | x[15] ^= R(x[11] + x[7], 18); |
42 | 0 | x[1] ^= R(x[0] + x[3], 7); |
43 | 0 | x[2] ^= R(x[1] + x[0], 9); |
44 | 0 | x[3] ^= R(x[2] + x[1], 13); |
45 | 0 | x[0] ^= R(x[3] + x[2], 18); |
46 | 0 | x[6] ^= R(x[5] + x[4], 7); |
47 | 0 | x[7] ^= R(x[6] + x[5], 9); |
48 | 0 | x[4] ^= R(x[7] + x[6], 13); |
49 | 0 | x[5] ^= R(x[4] + x[7], 18); |
50 | 0 | x[11] ^= R(x[10] + x[9], 7); |
51 | 0 | x[8] ^= R(x[11] + x[10], 9); |
52 | 0 | x[9] ^= R(x[8] + x[11], 13); |
53 | 0 | x[10] ^= R(x[9] + x[8], 18); |
54 | 0 | x[12] ^= R(x[15] + x[14], 7); |
55 | 0 | x[13] ^= R(x[12] + x[15], 9); |
56 | 0 | x[14] ^= R(x[13] + x[12], 13); |
57 | 0 | x[15] ^= R(x[14] + x[13], 18); |
58 | 0 | } |
59 | 0 | for (i = 0; i < 16; ++i) |
60 | 0 | inout[i] += x[i]; |
61 | 0 | OPENSSL_cleanse(x, sizeof(x)); |
62 | 0 | } |
63 | | |
64 | | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
65 | 0 | { |
66 | 0 | uint64_t i, j; |
67 | 0 | uint32_t X[16], *pB; |
68 | 0 |
|
69 | 0 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
70 | 0 | pB = B; |
71 | 0 | for (i = 0; i < r * 2; i++) { |
72 | 0 | for (j = 0; j < 16; j++) |
73 | 0 | X[j] ^= *pB++; |
74 | 0 | salsa208_word_specification(X); |
75 | 0 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
76 | 0 | } |
77 | 0 | OPENSSL_cleanse(X, sizeof(X)); |
78 | 0 | } |
79 | | |
80 | | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
81 | | uint32_t *X, uint32_t *T, uint32_t *V) |
82 | 0 | { |
83 | 0 | unsigned char *pB; |
84 | 0 | uint32_t *pV; |
85 | 0 | uint64_t i, k; |
86 | 0 |
|
87 | 0 | /* Convert from little endian input */ |
88 | 0 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
89 | 0 | *pV = *pB++; |
90 | 0 | *pV |= *pB++ << 8; |
91 | 0 | *pV |= *pB++ << 16; |
92 | 0 | *pV |= (uint32_t)*pB++ << 24; |
93 | 0 | } |
94 | 0 |
|
95 | 0 | for (i = 1; i < N; i++, pV += 32 * r) |
96 | 0 | scryptBlockMix(pV, pV - 32 * r, r); |
97 | 0 |
|
98 | 0 | scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
99 | 0 |
|
100 | 0 | for (i = 0; i < N; i++) { |
101 | 0 | uint32_t j; |
102 | 0 | j = X[16 * (2 * r - 1)] % N; |
103 | 0 | pV = V + 32 * r * j; |
104 | 0 | for (k = 0; k < 32 * r; k++) |
105 | 0 | T[k] = X[k] ^ *pV++; |
106 | 0 | scryptBlockMix(X, T, r); |
107 | 0 | } |
108 | 0 | /* Convert output to little endian */ |
109 | 0 | for (i = 0, pB = B; i < 32 * r; i++) { |
110 | 0 | uint32_t xtmp = X[i]; |
111 | 0 | *pB++ = xtmp & 0xff; |
112 | 0 | *pB++ = (xtmp >> 8) & 0xff; |
113 | 0 | *pB++ = (xtmp >> 16) & 0xff; |
114 | 0 | *pB++ = (xtmp >> 24) & 0xff; |
115 | 0 | } |
116 | 0 | } |
117 | | |
118 | | #ifndef SIZE_MAX |
119 | | # define SIZE_MAX ((size_t)-1) |
120 | | #endif |
121 | | |
122 | | /* |
123 | | * Maximum power of two that will fit in uint64_t: this should work on |
124 | | * most (all?) platforms. |
125 | | */ |
126 | | |
127 | 0 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
128 | | |
129 | | /* |
130 | | * Maximum value of p * r: |
131 | | * p <= ((2^32-1) * hLen) / MFLen => |
132 | | * p <= ((2^32-1) * 32) / (128 * r) => |
133 | | * p * r <= (2^30-1) |
134 | | * |
135 | | */ |
136 | | |
137 | 0 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
138 | | |
139 | | /* |
140 | | * Maximum permitted memory allow this to be overridden with Configuration |
141 | | * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. |
142 | | */ |
143 | | |
144 | | #ifdef SCRYPT_MAX_MEM |
145 | | # if SCRYPT_MAX_MEM == 0 |
146 | | # undef SCRYPT_MAX_MEM |
147 | | /* |
148 | | * Although we could theoretically allocate SIZE_MAX memory that would leave |
149 | | * no memory available for anything else so set limit as half that. |
150 | | */ |
151 | | # define SCRYPT_MAX_MEM (SIZE_MAX/2) |
152 | | # endif |
153 | | #else |
154 | | /* Default memory limit: 32 MB */ |
155 | 0 | # define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
156 | | #endif |
157 | | |
158 | | int EVP_PBE_scrypt(const char *pass, size_t passlen, |
159 | | const unsigned char *salt, size_t saltlen, |
160 | | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
161 | | unsigned char *key, size_t keylen) |
162 | 0 | { |
163 | 0 | int rv = 0; |
164 | 0 | unsigned char *B; |
165 | 0 | uint32_t *X, *V, *T; |
166 | 0 | uint64_t i, Blen, Vlen; |
167 | 0 |
|
168 | 0 | /* Sanity check parameters */ |
169 | 0 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
170 | 0 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
171 | 0 | return 0; |
172 | 0 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
173 | 0 | if (p > SCRYPT_PR_MAX / r) { |
174 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
175 | 0 | return 0; |
176 | 0 | } |
177 | 0 |
|
178 | 0 | /* |
179 | 0 | * Need to check N: if 2^(128 * r / 8) overflows limit this is |
180 | 0 | * automatically satisfied since N <= UINT64_MAX. |
181 | 0 | */ |
182 | 0 |
|
183 | 0 | if (16 * r <= LOG2_UINT64_MAX) { |
184 | 0 | if (N >= (((uint64_t)1) << (16 * r))) { |
185 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
186 | 0 | return 0; |
187 | 0 | } |
188 | 0 | } |
189 | 0 |
|
190 | 0 | /* Memory checks: check total allocated buffer size fits in uint64_t */ |
191 | 0 |
|
192 | 0 | /* |
193 | 0 | * B size in section 5 step 1.S |
194 | 0 | * Note: we know p * 128 * r < UINT64_MAX because we already checked |
195 | 0 | * p * r < SCRYPT_PR_MAX |
196 | 0 | */ |
197 | 0 | Blen = p * 128 * r; |
198 | 0 | /* |
199 | 0 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
200 | 0 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
201 | 0 | */ |
202 | 0 | if (Blen > INT_MAX) { |
203 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
204 | 0 | return 0; |
205 | 0 | } |
206 | 0 |
|
207 | 0 | /* |
208 | 0 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
209 | 0 | * This is combined size V, X and T (section 4) |
210 | 0 | */ |
211 | 0 | i = UINT64_MAX / (32 * sizeof(uint32_t)); |
212 | 0 | if (N + 2 > i / r) { |
213 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
214 | 0 | return 0; |
215 | 0 | } |
216 | 0 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
217 | 0 |
|
218 | 0 | /* check total allocated size fits in uint64_t */ |
219 | 0 | if (Blen > UINT64_MAX - Vlen) { |
220 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
221 | 0 | return 0; |
222 | 0 | } |
223 | 0 |
|
224 | 0 | if (maxmem == 0) |
225 | 0 | maxmem = SCRYPT_MAX_MEM; |
226 | 0 |
|
227 | 0 | /* Check that the maximum memory doesn't exceed a size_t limits */ |
228 | 0 | if (maxmem > SIZE_MAX) |
229 | 0 | maxmem = SIZE_MAX; |
230 | 0 |
|
231 | 0 | if (Blen + Vlen > maxmem) { |
232 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
233 | 0 | return 0; |
234 | 0 | } |
235 | 0 |
|
236 | 0 | /* If no key return to indicate parameters are OK */ |
237 | 0 | if (key == NULL) |
238 | 0 | return 1; |
239 | 0 | |
240 | 0 | B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
241 | 0 | if (B == NULL) { |
242 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE); |
243 | 0 | return 0; |
244 | 0 | } |
245 | 0 | X = (uint32_t *)(B + Blen); |
246 | 0 | T = X + 32 * r; |
247 | 0 | V = T + 32 * r; |
248 | 0 | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), |
249 | 0 | (int)Blen, B) == 0) |
250 | 0 | goto err; |
251 | 0 | |
252 | 0 | for (i = 0; i < p; i++) |
253 | 0 | scryptROMix(B + 128 * r * i, r, N, X, T, V); |
254 | 0 |
|
255 | 0 | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), |
256 | 0 | keylen, key) == 0) |
257 | 0 | goto err; |
258 | 0 | rv = 1; |
259 | 0 | err: |
260 | 0 | if (rv == 0) |
261 | 0 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR); |
262 | 0 |
|
263 | 0 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
264 | 0 | return rv; |
265 | 0 | } |
266 | | #endif |