/src/openssl/crypto/ex_data.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib_int.h" |
11 | | #include "internal/thread_once.h" |
12 | | |
13 | | /* |
14 | | * Each structure type (sometimes called a class), that supports |
15 | | * exdata has a stack of callbacks for each instance. |
16 | | */ |
17 | | struct ex_callback_st { |
18 | | long argl; /* Arbitrary long */ |
19 | | void *argp; /* Arbitrary void * */ |
20 | | CRYPTO_EX_new *new_func; |
21 | | CRYPTO_EX_free *free_func; |
22 | | CRYPTO_EX_dup *dup_func; |
23 | | }; |
24 | | |
25 | | /* |
26 | | * The state for each class. This could just be a typedef, but |
27 | | * a structure allows future changes. |
28 | | */ |
29 | | typedef struct ex_callbacks_st { |
30 | | STACK_OF(EX_CALLBACK) *meth; |
31 | | } EX_CALLBACKS; |
32 | | |
33 | | static EX_CALLBACKS ex_data[CRYPTO_EX_INDEX__COUNT]; |
34 | | |
35 | | static CRYPTO_RWLOCK *ex_data_lock = NULL; |
36 | | static CRYPTO_ONCE ex_data_init = CRYPTO_ONCE_STATIC_INIT; |
37 | | |
38 | | DEFINE_RUN_ONCE_STATIC(do_ex_data_init) |
39 | 8 | { |
40 | 8 | if (!OPENSSL_init_crypto(0, NULL)) |
41 | 0 | return 0; |
42 | 8 | ex_data_lock = CRYPTO_THREAD_lock_new(); |
43 | 8 | return ex_data_lock != NULL; |
44 | 8 | } |
45 | | |
46 | | /* |
47 | | * Return the EX_CALLBACKS from the |ex_data| array that corresponds to |
48 | | * a given class. On success, *holds the lock.* |
49 | | */ |
50 | | static EX_CALLBACKS *get_and_lock(int class_index) |
51 | 2.80M | { |
52 | 2.80M | EX_CALLBACKS *ip; |
53 | 2.80M | |
54 | 2.80M | if (class_index < 0 || class_index >= CRYPTO_EX_INDEX__COUNT) { |
55 | 0 | CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_PASSED_INVALID_ARGUMENT); |
56 | 0 | return NULL; |
57 | 0 | } |
58 | 2.80M | |
59 | 2.80M | if (!RUN_ONCE(&ex_data_init, do_ex_data_init)) { |
60 | 0 | CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_MALLOC_FAILURE); |
61 | 0 | return NULL; |
62 | 0 | } |
63 | 2.80M | |
64 | 2.80M | if (ex_data_lock == NULL) { |
65 | 0 | /* |
66 | 0 | * This can happen in normal operation when using CRYPTO_mem_leaks(). |
67 | 0 | * The CRYPTO_mem_leaks() function calls OPENSSL_cleanup() which cleans |
68 | 0 | * up the locks. Subsequently the BIO that CRYPTO_mem_leaks() uses gets |
69 | 0 | * freed, which also attempts to free the ex_data. However |
70 | 0 | * CRYPTO_mem_leaks() ensures that the ex_data is freed early (i.e. |
71 | 0 | * before OPENSSL_cleanup() is called), so if we get here we can safely |
72 | 0 | * ignore this operation. We just treat it as an error. |
73 | 0 | */ |
74 | 0 | return NULL; |
75 | 0 | } |
76 | 2.80M | |
77 | 2.80M | ip = &ex_data[class_index]; |
78 | 2.80M | CRYPTO_THREAD_write_lock(ex_data_lock); |
79 | 2.80M | return ip; |
80 | 2.80M | } |
81 | | |
82 | | static void cleanup_cb(EX_CALLBACK *funcs) |
83 | 0 | { |
84 | 0 | OPENSSL_free(funcs); |
85 | 0 | } |
86 | | |
87 | | /* |
88 | | * Release all "ex_data" state to prevent memory leaks. This can't be made |
89 | | * thread-safe without overhauling a lot of stuff, and shouldn't really be |
90 | | * called under potential race-conditions anyway (it's for program shutdown |
91 | | * after all). |
92 | | */ |
93 | | void crypto_cleanup_all_ex_data_int(void) |
94 | 8 | { |
95 | 8 | int i; |
96 | 8 | |
97 | 136 | for (i = 0; i < CRYPTO_EX_INDEX__COUNT; ++i) { |
98 | 128 | EX_CALLBACKS *ip = &ex_data[i]; |
99 | 128 | |
100 | 128 | sk_EX_CALLBACK_pop_free(ip->meth, cleanup_cb); |
101 | 128 | ip->meth = NULL; |
102 | 128 | } |
103 | 8 | |
104 | 8 | CRYPTO_THREAD_lock_free(ex_data_lock); |
105 | 8 | ex_data_lock = NULL; |
106 | 8 | } |
107 | | |
108 | | |
109 | | /* |
110 | | * Unregister a new index by replacing the callbacks with no-ops. |
111 | | * Any in-use instances are leaked. |
112 | | */ |
113 | | static void dummy_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, |
114 | | long argl, void *argp) |
115 | 0 | { |
116 | 0 | } |
117 | | |
118 | | static void dummy_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, |
119 | | long argl, void *argp) |
120 | 0 | { |
121 | 0 | } |
122 | | |
123 | | static int dummy_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, |
124 | | void *from_d, int idx, |
125 | | long argl, void *argp) |
126 | 0 | { |
127 | 0 | return 1; |
128 | 0 | } |
129 | | |
130 | | int CRYPTO_free_ex_index(int class_index, int idx) |
131 | 0 | { |
132 | 0 | EX_CALLBACKS *ip = get_and_lock(class_index); |
133 | 0 | EX_CALLBACK *a; |
134 | 0 | int toret = 0; |
135 | 0 |
|
136 | 0 | if (ip == NULL) |
137 | 0 | return 0; |
138 | 0 | if (idx < 0 || idx >= sk_EX_CALLBACK_num(ip->meth)) |
139 | 0 | goto err; |
140 | 0 | a = sk_EX_CALLBACK_value(ip->meth, idx); |
141 | 0 | if (a == NULL) |
142 | 0 | goto err; |
143 | 0 | a->new_func = dummy_new; |
144 | 0 | a->dup_func = dummy_dup; |
145 | 0 | a->free_func = dummy_free; |
146 | 0 | toret = 1; |
147 | 0 | err: |
148 | 0 | CRYPTO_THREAD_unlock(ex_data_lock); |
149 | 0 | return toret; |
150 | 0 | } |
151 | | |
152 | | /* |
153 | | * Register a new index. |
154 | | */ |
155 | | int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp, |
156 | | CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, |
157 | | CRYPTO_EX_free *free_func) |
158 | 0 | { |
159 | 0 | int toret = -1; |
160 | 0 | EX_CALLBACK *a; |
161 | 0 | EX_CALLBACKS *ip = get_and_lock(class_index); |
162 | 0 |
|
163 | 0 | if (ip == NULL) |
164 | 0 | return -1; |
165 | 0 | |
166 | 0 | if (ip->meth == NULL) { |
167 | 0 | ip->meth = sk_EX_CALLBACK_new_null(); |
168 | 0 | /* We push an initial value on the stack because the SSL |
169 | 0 | * "app_data" routines use ex_data index zero. See RT 3710. */ |
170 | 0 | if (ip->meth == NULL |
171 | 0 | || !sk_EX_CALLBACK_push(ip->meth, NULL)) { |
172 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
173 | 0 | goto err; |
174 | 0 | } |
175 | 0 | } |
176 | 0 |
|
177 | 0 | a = (EX_CALLBACK *)OPENSSL_malloc(sizeof(*a)); |
178 | 0 | if (a == NULL) { |
179 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
180 | 0 | goto err; |
181 | 0 | } |
182 | 0 | a->argl = argl; |
183 | 0 | a->argp = argp; |
184 | 0 | a->new_func = new_func; |
185 | 0 | a->dup_func = dup_func; |
186 | 0 | a->free_func = free_func; |
187 | 0 |
|
188 | 0 | if (!sk_EX_CALLBACK_push(ip->meth, NULL)) { |
189 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); |
190 | 0 | OPENSSL_free(a); |
191 | 0 | goto err; |
192 | 0 | } |
193 | 0 | toret = sk_EX_CALLBACK_num(ip->meth) - 1; |
194 | 0 | (void)sk_EX_CALLBACK_set(ip->meth, toret, a); |
195 | 0 |
|
196 | 0 | err: |
197 | 0 | CRYPTO_THREAD_unlock(ex_data_lock); |
198 | 0 | return toret; |
199 | 0 | } |
200 | | |
201 | | /* |
202 | | * Initialise a new CRYPTO_EX_DATA for use in a particular class - including |
203 | | * calling new() callbacks for each index in the class used by this variable |
204 | | * Thread-safe by copying a class's array of "EX_CALLBACK" entries |
205 | | * in the lock, then using them outside the lock. Note this only applies |
206 | | * to the global "ex_data" state (ie. class definitions), not 'ad' itself. |
207 | | */ |
208 | | int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) |
209 | 1.40M | { |
210 | 1.40M | int mx, i; |
211 | 1.40M | void *ptr; |
212 | 1.40M | EX_CALLBACK **storage = NULL; |
213 | 1.40M | EX_CALLBACK *stack[10]; |
214 | 1.40M | EX_CALLBACKS *ip = get_and_lock(class_index); |
215 | 1.40M | |
216 | 1.40M | if (ip == NULL) |
217 | 1.40M | return 0; |
218 | 1.40M | |
219 | 1.40M | ad->sk = NULL; |
220 | 1.40M | |
221 | 1.40M | mx = sk_EX_CALLBACK_num(ip->meth); |
222 | 1.40M | if (mx > 0) { |
223 | 0 | if (mx < (int)OSSL_NELEM(stack)) |
224 | 0 | storage = stack; |
225 | 0 | else |
226 | 0 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
227 | 0 | if (storage != NULL) |
228 | 0 | for (i = 0; i < mx; i++) |
229 | 0 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
230 | 0 | } |
231 | 1.40M | CRYPTO_THREAD_unlock(ex_data_lock); |
232 | 1.40M | |
233 | 1.40M | if (mx > 0 && storage == NULL) { |
234 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_NEW_EX_DATA, ERR_R_MALLOC_FAILURE); |
235 | 0 | return 0; |
236 | 0 | } |
237 | 1.40M | for (i = 0; i < mx; i++) { |
238 | 0 | if (storage[i] && storage[i]->new_func) { |
239 | 0 | ptr = CRYPTO_get_ex_data(ad, i); |
240 | 0 | storage[i]->new_func(obj, ptr, ad, i, |
241 | 0 | storage[i]->argl, storage[i]->argp); |
242 | 0 | } |
243 | 0 | } |
244 | 1.40M | if (storage != stack) |
245 | 1.40M | OPENSSL_free(storage); |
246 | 1.40M | return 1; |
247 | 1.40M | } |
248 | | |
249 | | /* |
250 | | * Duplicate a CRYPTO_EX_DATA variable - including calling dup() callbacks |
251 | | * for each index in the class used by this variable |
252 | | */ |
253 | | int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to, |
254 | | const CRYPTO_EX_DATA *from) |
255 | 0 | { |
256 | 0 | int mx, j, i; |
257 | 0 | void *ptr; |
258 | 0 | EX_CALLBACK *stack[10]; |
259 | 0 | EX_CALLBACK **storage = NULL; |
260 | 0 | EX_CALLBACKS *ip; |
261 | 0 | int toret = 0; |
262 | 0 |
|
263 | 0 | if (from->sk == NULL) |
264 | 0 | /* Nothing to copy over */ |
265 | 0 | return 1; |
266 | 0 | if ((ip = get_and_lock(class_index)) == NULL) |
267 | 0 | return 0; |
268 | 0 | |
269 | 0 | mx = sk_EX_CALLBACK_num(ip->meth); |
270 | 0 | j = sk_void_num(from->sk); |
271 | 0 | if (j < mx) |
272 | 0 | mx = j; |
273 | 0 | if (mx > 0) { |
274 | 0 | if (mx < (int)OSSL_NELEM(stack)) |
275 | 0 | storage = stack; |
276 | 0 | else |
277 | 0 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
278 | 0 | if (storage != NULL) |
279 | 0 | for (i = 0; i < mx; i++) |
280 | 0 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
281 | 0 | } |
282 | 0 | CRYPTO_THREAD_unlock(ex_data_lock); |
283 | 0 |
|
284 | 0 | if (mx == 0) |
285 | 0 | return 1; |
286 | 0 | if (storage == NULL) { |
287 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_DUP_EX_DATA, ERR_R_MALLOC_FAILURE); |
288 | 0 | return 0; |
289 | 0 | } |
290 | 0 | /* |
291 | 0 | * Make sure the ex_data stack is at least |mx| elements long to avoid |
292 | 0 | * issues in the for loop that follows; so go get the |mx|'th element |
293 | 0 | * (if it does not exist CRYPTO_get_ex_data() returns NULL), and assign |
294 | 0 | * to itself. This is normally a no-op; but ensures the stack is the |
295 | 0 | * proper size |
296 | 0 | */ |
297 | 0 | if (!CRYPTO_set_ex_data(to, mx - 1, CRYPTO_get_ex_data(to, mx - 1))) |
298 | 0 | goto err; |
299 | 0 | |
300 | 0 | for (i = 0; i < mx; i++) { |
301 | 0 | ptr = CRYPTO_get_ex_data(from, i); |
302 | 0 | if (storage[i] && storage[i]->dup_func) |
303 | 0 | if (!storage[i]->dup_func(to, from, &ptr, i, |
304 | 0 | storage[i]->argl, storage[i]->argp)) |
305 | 0 | goto err; |
306 | 0 | CRYPTO_set_ex_data(to, i, ptr); |
307 | 0 | } |
308 | 0 | toret = 1; |
309 | 0 | err: |
310 | 0 | if (storage != stack) |
311 | 0 | OPENSSL_free(storage); |
312 | 0 | return toret; |
313 | 0 | } |
314 | | |
315 | | |
316 | | /* |
317 | | * Cleanup a CRYPTO_EX_DATA variable - including calling free() callbacks for |
318 | | * each index in the class used by this variable |
319 | | */ |
320 | | void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) |
321 | 1.40M | { |
322 | 1.40M | int mx, i; |
323 | 1.40M | EX_CALLBACKS *ip; |
324 | 1.40M | void *ptr; |
325 | 1.40M | EX_CALLBACK *f; |
326 | 1.40M | EX_CALLBACK *stack[10]; |
327 | 1.40M | EX_CALLBACK **storage = NULL; |
328 | 1.40M | |
329 | 1.40M | if ((ip = get_and_lock(class_index)) == NULL) |
330 | 1.40M | goto err; |
331 | 1.40M | |
332 | 1.40M | mx = sk_EX_CALLBACK_num(ip->meth); |
333 | 1.40M | if (mx > 0) { |
334 | 0 | if (mx < (int)OSSL_NELEM(stack)) |
335 | 0 | storage = stack; |
336 | 0 | else |
337 | 0 | storage = OPENSSL_malloc(sizeof(*storage) * mx); |
338 | 0 | if (storage != NULL) |
339 | 0 | for (i = 0; i < mx; i++) |
340 | 0 | storage[i] = sk_EX_CALLBACK_value(ip->meth, i); |
341 | 0 | } |
342 | 1.40M | CRYPTO_THREAD_unlock(ex_data_lock); |
343 | 1.40M | |
344 | 1.40M | for (i = 0; i < mx; i++) { |
345 | 0 | if (storage != NULL) |
346 | 0 | f = storage[i]; |
347 | 0 | else { |
348 | 0 | CRYPTO_THREAD_write_lock(ex_data_lock); |
349 | 0 | f = sk_EX_CALLBACK_value(ip->meth, i); |
350 | 0 | CRYPTO_THREAD_unlock(ex_data_lock); |
351 | 0 | } |
352 | 0 | if (f != NULL && f->free_func != NULL) { |
353 | 0 | ptr = CRYPTO_get_ex_data(ad, i); |
354 | 0 | f->free_func(obj, ptr, ad, i, f->argl, f->argp); |
355 | 0 | } |
356 | 0 | } |
357 | 1.40M | |
358 | 1.40M | if (storage != stack) |
359 | 1.40M | OPENSSL_free(storage); |
360 | 1.40M | err: |
361 | 1.40M | sk_void_free(ad->sk); |
362 | 1.40M | ad->sk = NULL; |
363 | 1.40M | } |
364 | | |
365 | | /* |
366 | | * For a given CRYPTO_EX_DATA variable, set the value corresponding to a |
367 | | * particular index in the class used by this variable |
368 | | */ |
369 | | int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val) |
370 | 0 | { |
371 | 0 | int i; |
372 | 0 |
|
373 | 0 | if (ad->sk == NULL) { |
374 | 0 | if ((ad->sk = sk_void_new_null()) == NULL) { |
375 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); |
376 | 0 | return 0; |
377 | 0 | } |
378 | 0 | } |
379 | 0 |
|
380 | 0 | for (i = sk_void_num(ad->sk); i <= idx; ++i) { |
381 | 0 | if (!sk_void_push(ad->sk, NULL)) { |
382 | 0 | CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); |
383 | 0 | return 0; |
384 | 0 | } |
385 | 0 | } |
386 | 0 | sk_void_set(ad->sk, idx, val); |
387 | 0 | return 1; |
388 | 0 | } |
389 | | |
390 | | /* |
391 | | * For a given CRYPTO_EX_DATA_ variable, get the value corresponding to a |
392 | | * particular index in the class used by this variable |
393 | | */ |
394 | | void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int idx) |
395 | 0 | { |
396 | 0 | if (ad->sk == NULL || idx >= sk_void_num(ad->sk)) |
397 | 0 | return NULL; |
398 | 0 | return sk_void_value(ad->sk, idx); |
399 | 0 | } |