Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/lhash/lhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <string.h>
12
#include <stdlib.h>
13
#include <openssl/crypto.h>
14
#include <openssl/lhash.h>
15
#include <openssl/err.h>
16
#include "lhash_lcl.h"
17
18
/*
19
 * A hashing implementation that appears to be based on the linear hashing
20
 * alogrithm:
21
 * https://en.wikipedia.org/wiki/Linear_hashing
22
 *
23
 * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
24
 * addressing", Proc. 6th Conference on Very Large Databases: 212-223
25
 * http://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
26
 *
27
 * From the wikipedia article "Linear hashing is used in the BDB Berkeley
28
 * database system, which in turn is used by many software systems such as
29
 * OpenLDAP, using a C implementation derived from the CACM article and first
30
 * published on the Usenet in 1988 by Esmond Pitt."
31
 *
32
 * The CACM paper is available here:
33
 * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
34
 */
35
36
#undef MIN_NODES
37
2.71k
#define MIN_NODES       16
38
16
#define UP_LOAD         (2*LH_LOAD_MULT) /* load times 256 (default 2) */
39
16
#define DOWN_LOAD       (LH_LOAD_MULT) /* load times 256 (default 1) */
40
41
static int expand(OPENSSL_LHASH *lh);
42
static void contract(OPENSSL_LHASH *lh);
43
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
44
45
OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
46
16
{
47
16
    OPENSSL_LHASH *ret;
48
16
49
16
    if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
50
0
        /*
51
0
         * Do not set the error code, because the ERR code uses LHASH
52
0
         * and we want to avoid possible endless error loop.
53
0
         * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE);
54
0
         */
55
0
        return NULL;
56
0
    }
57
16
    if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
58
16
        goto err;
59
16
    ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
60
16
    ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
61
16
    ret->num_nodes = MIN_NODES / 2;
62
16
    ret->num_alloc_nodes = MIN_NODES;
63
16
    ret->pmax = MIN_NODES / 2;
64
16
    ret->up_load = UP_LOAD;
65
16
    ret->down_load = DOWN_LOAD;
66
16
    return ret;
67
0
68
0
err:
69
0
    OPENSSL_free(ret->b);
70
0
    OPENSSL_free(ret);
71
0
    return NULL;
72
16
}
73
74
void OPENSSL_LH_free(OPENSSL_LHASH *lh)
75
24
{
76
24
    unsigned int i;
77
24
    OPENSSL_LH_NODE *n, *nn;
78
24
79
24
    if (lh == NULL)
80
24
        return;
81
16
82
10.9k
    for (i = 0; i < lh->num_nodes; i++) {
83
10.9k
        n = lh->b[i];
84
30.1k
        while (n != NULL) {
85
19.2k
            nn = n->next;
86
19.2k
            OPENSSL_free(n);
87
19.2k
            n = nn;
88
19.2k
        }
89
10.9k
    }
90
16
    OPENSSL_free(lh->b);
91
16
    OPENSSL_free(lh);
92
16
}
93
94
void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
95
62.7k
{
96
62.7k
    unsigned long hash;
97
62.7k
    OPENSSL_LH_NODE *nn, **rn;
98
62.7k
    void *ret;
99
62.7k
100
62.7k
    lh->error = 0;
101
62.7k
    if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
102
0
        return NULL;        /* 'lh->error++' already done in 'expand' */
103
62.7k
104
62.7k
    rn = getrn(lh, data, &hash);
105
62.7k
106
62.7k
    if (*rn == NULL) {
107
21.8k
        if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
108
0
            lh->error++;
109
0
            return NULL;
110
0
        }
111
21.8k
        nn->data = data;
112
21.8k
        nn->next = NULL;
113
21.8k
        nn->hash = hash;
114
21.8k
        *rn = nn;
115
21.8k
        ret = NULL;
116
21.8k
        lh->num_insert++;
117
21.8k
        lh->num_items++;
118
40.8k
    } else {                    /* replace same key */
119
40.8k
        ret = (*rn)->data;
120
40.8k
        (*rn)->data = data;
121
40.8k
        lh->num_replace++;
122
40.8k
    }
123
62.7k
    return ret;
124
62.7k
}
125
126
void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
127
2.66k
{
128
2.66k
    unsigned long hash;
129
2.66k
    OPENSSL_LH_NODE *nn, **rn;
130
2.66k
    void *ret;
131
2.66k
132
2.66k
    lh->error = 0;
133
2.66k
    rn = getrn(lh, data, &hash);
134
2.66k
135
2.66k
    if (*rn == NULL) {
136
0
        lh->num_no_delete++;
137
0
        return NULL;
138
2.66k
    } else {
139
2.66k
        nn = *rn;
140
2.66k
        *rn = nn->next;
141
2.66k
        ret = nn->data;
142
2.66k
        OPENSSL_free(nn);
143
2.66k
        lh->num_delete++;
144
2.66k
    }
145
2.66k
146
2.66k
    lh->num_items--;
147
2.66k
    if ((lh->num_nodes > MIN_NODES) &&
148
2.66k
        (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
149
8
        contract(lh);
150
2.66k
151
2.66k
    return ret;
152
2.66k
}
153
154
void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
155
1.90M
{
156
1.90M
    unsigned long hash;
157
1.90M
    OPENSSL_LH_NODE **rn;
158
1.90M
    void *ret;
159
1.90M
160
1.90M
    tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
161
1.90M
162
1.90M
    rn = getrn(lh, data, &hash);
163
1.90M
164
1.90M
    if (*rn == NULL) {
165
325k
        tsan_counter(&lh->num_retrieve_miss);
166
325k
        return NULL;
167
1.57M
    } else {
168
1.57M
        ret = (*rn)->data;
169
1.57M
        tsan_counter(&lh->num_retrieve);
170
1.57M
    }
171
1.90M
172
1.90M
    return ret;
173
1.90M
}
174
175
static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
176
                          OPENSSL_LH_DOALL_FUNC func,
177
                          OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
178
24
{
179
24
    int i;
180
24
    OPENSSL_LH_NODE *a, *n;
181
24
182
24
    if (lh == NULL)
183
24
        return;
184
24
185
24
    /*
186
24
     * reverse the order so we search from 'top to bottom' We were having
187
24
     * memory leaks otherwise
188
24
     */
189
4.01k
    for (i = lh->num_nodes - 1; i >= 0; i--) {
190
3.99k
        a = lh->b[i];
191
6.65k
        while (a != NULL) {
192
2.66k
            n = a->next;
193
2.66k
            if (use_arg)
194
0
                func_arg(a->data, arg);
195
2.66k
            else
196
2.66k
                func(a->data);
197
2.66k
            a = n;
198
2.66k
        }
199
3.99k
    }
200
24
}
201
202
void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
203
24
{
204
24
    doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
205
24
}
206
207
void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
208
0
{
209
0
    doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
210
0
}
211
212
static int expand(OPENSSL_LHASH *lh)
213
10.8k
{
214
10.8k
    OPENSSL_LH_NODE **n, **n1, **n2, *np;
215
10.8k
    unsigned int p, pmax, nni, j;
216
10.8k
    unsigned long hash;
217
10.8k
218
10.8k
    nni = lh->num_alloc_nodes;
219
10.8k
    p = lh->p;
220
10.8k
    pmax = lh->pmax;
221
10.8k
    if (p + 1 >= pmax) {
222
88
        j = nni * 2;
223
88
        n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
224
88
        if (n == NULL) {
225
0
            lh->error++;
226
0
            return 0;
227
0
        }
228
88
        lh->b = n;
229
88
        memset(n + nni, 0, sizeof(*n) * (j - nni));
230
88
        lh->pmax = nni;
231
88
        lh->num_alloc_nodes = j;
232
88
        lh->num_expand_reallocs++;
233
88
        lh->p = 0;
234
10.7k
    } else {
235
10.7k
        lh->p++;
236
10.7k
    }
237
10.8k
238
10.8k
    lh->num_nodes++;
239
10.8k
    lh->num_expands++;
240
10.8k
    n1 = &(lh->b[p]);
241
10.8k
    n2 = &(lh->b[p + pmax]);
242
10.8k
    *n2 = NULL;
243
10.8k
244
49.1k
    for (np = *n1; np != NULL;) {
245
38.3k
        hash = np->hash;
246
38.3k
        if ((hash % nni) != p) { /* move it */
247
4.65k
            *n1 = (*n1)->next;
248
4.65k
            np->next = *n2;
249
4.65k
            *n2 = np;
250
4.65k
        } else
251
33.6k
            n1 = &((*n1)->next);
252
38.3k
        np = *n1;
253
38.3k
    }
254
10.8k
255
10.8k
    return 1;
256
10.8k
}
257
258
static void contract(OPENSSL_LHASH *lh)
259
8
{
260
8
    OPENSSL_LH_NODE **n, *n1, *np;
261
8
262
8
    np = lh->b[lh->p + lh->pmax - 1];
263
8
    lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
264
8
    if (lh->p == 0) {
265
0
        n = OPENSSL_realloc(lh->b,
266
0
                            (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
267
0
        if (n == NULL) {
268
0
            /* fputs("realloc error in lhash",stderr); */
269
0
            lh->error++;
270
0
            return;
271
0
        }
272
0
        lh->num_contract_reallocs++;
273
0
        lh->num_alloc_nodes /= 2;
274
0
        lh->pmax /= 2;
275
0
        lh->p = lh->pmax - 1;
276
0
        lh->b = n;
277
0
    } else
278
8
        lh->p--;
279
8
280
8
    lh->num_nodes--;
281
8
    lh->num_contracts++;
282
8
283
8
    n1 = lh->b[(int)lh->p];
284
8
    if (n1 == NULL)
285
8
        lh->b[(int)lh->p] = np;
286
0
    else {
287
0
        while (n1->next != NULL)
288
0
            n1 = n1->next;
289
0
        n1->next = np;
290
0
    }
291
8
}
292
293
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
294
                               const void *data, unsigned long *rhash)
295
1.96M
{
296
1.96M
    OPENSSL_LH_NODE **ret, *n1;
297
1.96M
    unsigned long hash, nn;
298
1.96M
    OPENSSL_LH_COMPFUNC cf;
299
1.96M
300
1.96M
    hash = (*(lh->hash)) (data);
301
1.96M
    tsan_counter(&lh->num_hash_calls);
302
1.96M
    *rhash = hash;
303
1.96M
304
1.96M
    nn = hash % lh->pmax;
305
1.96M
    if (nn < lh->p)
306
1.67M
        nn = hash % lh->num_alloc_nodes;
307
1.96M
308
1.96M
    cf = lh->comp;
309
1.96M
    ret = &(lh->b[(int)nn]);
310
6.93M
    for (n1 = *ret; n1 != NULL; n1 = n1->next) {
311
6.58M
        tsan_counter(&lh->num_hash_comps);
312
6.58M
        if (n1->hash != hash) {
313
4.74M
            ret = &(n1->next);
314
4.74M
            continue;
315
4.74M
        }
316
1.84M
        tsan_counter(&lh->num_comp_calls);
317
1.84M
        if (cf(n1->data, data) == 0)
318
1.62M
            break;
319
220k
        ret = &(n1->next);
320
220k
    }
321
1.96M
    return ret;
322
1.96M
}
323
324
/*
325
 * The following hash seems to work very well on normal text strings no
326
 * collisions on /usr/dict/words and it distributes on %2^n quite well, not
327
 * as good as MD5, but still good.
328
 */
329
unsigned long OPENSSL_LH_strhash(const char *c)
330
11.7k
{
331
11.7k
    unsigned long ret = 0;
332
11.7k
    long n;
333
11.7k
    unsigned long v;
334
11.7k
    int r;
335
11.7k
336
11.7k
    if ((c == NULL) || (*c == '\0'))
337
574
        return ret;
338
11.1k
339
11.1k
    n = 0x100;
340
4.61M
    while (*c) {
341
4.60M
        v = n | (*c);
342
4.60M
        n += 0x100;
343
4.60M
        r = (int)((v >> 2) ^ v) & 0x0f;
344
4.60M
        ret = (ret << r) | (ret >> (32 - r));
345
4.60M
        ret &= 0xFFFFFFFFL;
346
4.60M
        ret ^= v * v;
347
4.60M
        c++;
348
4.60M
    }
349
11.1k
    return (ret >> 16) ^ ret;
350
11.1k
}
351
352
unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
353
0
{
354
0
    return lh ? lh->num_items : 0;
355
0
}
356
357
unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
358
24
{
359
24
    return lh->down_load;
360
24
}
361
362
void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
363
40
{
364
40
    lh->down_load = down_load;
365
40
}
366
367
int OPENSSL_LH_error(OPENSSL_LHASH *lh)
368
2.66k
{
369
2.66k
    return lh->error;
370
2.66k
}