/src/openssl/crypto/rand/rand_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <time.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include <openssl/opensslconf.h> |
14 | | #include "internal/rand_int.h" |
15 | | #include <openssl/engine.h> |
16 | | #include "internal/thread_once.h" |
17 | | #include "rand_lcl.h" |
18 | | #include "e_os.h" |
19 | | |
20 | | #ifndef OPENSSL_NO_ENGINE |
21 | | /* non-NULL if default_RAND_meth is ENGINE-provided */ |
22 | | static ENGINE *funct_ref; |
23 | | static CRYPTO_RWLOCK *rand_engine_lock; |
24 | | #endif |
25 | | static CRYPTO_RWLOCK *rand_meth_lock; |
26 | | static const RAND_METHOD *default_RAND_meth; |
27 | | static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT; |
28 | | |
29 | | int rand_fork_count; |
30 | | |
31 | | static CRYPTO_RWLOCK *rand_nonce_lock; |
32 | | static int rand_nonce_count; |
33 | | |
34 | | static int rand_cleaning_up = 0; |
35 | | |
36 | | #ifdef OPENSSL_RAND_SEED_RDTSC |
37 | | /* |
38 | | * IMPORTANT NOTE: It is not currently possible to use this code |
39 | | * because we are not sure about the amount of randomness it provides. |
40 | | * Some SP900 tests have been run, but there is internal skepticism. |
41 | | * So for now this code is not used. |
42 | | */ |
43 | | # error "RDTSC enabled? Should not be possible!" |
44 | | |
45 | | /* |
46 | | * Acquire entropy from high-speed clock |
47 | | * |
48 | | * Since we get some randomness from the low-order bits of the |
49 | | * high-speed clock, it can help. |
50 | | * |
51 | | * Returns the total entropy count, if it exceeds the requested |
52 | | * entropy count. Otherwise, returns an entropy count of 0. |
53 | | */ |
54 | | size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool) |
55 | | { |
56 | | unsigned char c; |
57 | | int i; |
58 | | |
59 | | if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { |
60 | | for (i = 0; i < TSC_READ_COUNT; i++) { |
61 | | c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); |
62 | | rand_pool_add(pool, &c, 1, 4); |
63 | | } |
64 | | } |
65 | | return rand_pool_entropy_available(pool); |
66 | | } |
67 | | #endif |
68 | | |
69 | | #ifdef OPENSSL_RAND_SEED_RDCPU |
70 | | size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len); |
71 | | size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len); |
72 | | |
73 | | extern unsigned int OPENSSL_ia32cap_P[]; |
74 | | |
75 | | /* |
76 | | * Acquire entropy using Intel-specific cpu instructions |
77 | | * |
78 | | * Uses the RDSEED instruction if available, otherwise uses |
79 | | * RDRAND if available. |
80 | | * |
81 | | * For the differences between RDSEED and RDRAND, and why RDSEED |
82 | | * is the preferred choice, see https://goo.gl/oK3KcN |
83 | | * |
84 | | * Returns the total entropy count, if it exceeds the requested |
85 | | * entropy count. Otherwise, returns an entropy count of 0. |
86 | | */ |
87 | | size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool) |
88 | | { |
89 | | size_t bytes_needed; |
90 | | unsigned char *buffer; |
91 | | |
92 | | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
93 | | if (bytes_needed > 0) { |
94 | | buffer = rand_pool_add_begin(pool, bytes_needed); |
95 | | |
96 | | if (buffer != NULL) { |
97 | | /* Whichever comes first, use RDSEED, RDRAND or nothing */ |
98 | | if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) { |
99 | | if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed) |
100 | | == bytes_needed) { |
101 | | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
102 | | } |
103 | | } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) { |
104 | | if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed) |
105 | | == bytes_needed) { |
106 | | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
107 | | } |
108 | | } else { |
109 | | rand_pool_add_end(pool, 0, 0); |
110 | | } |
111 | | } |
112 | | } |
113 | | |
114 | | return rand_pool_entropy_available(pool); |
115 | | } |
116 | | #endif |
117 | | |
118 | | |
119 | | /* |
120 | | * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks()) |
121 | | * |
122 | | * If the DRBG has a parent, then the required amount of entropy input |
123 | | * is fetched using the parent's RAND_DRBG_generate(). |
124 | | * |
125 | | * Otherwise, the entropy is polled from the system entropy sources |
126 | | * using rand_pool_acquire_entropy(). |
127 | | * |
128 | | * If a random pool has been added to the DRBG using RAND_add(), then |
129 | | * its entropy will be used up first. |
130 | | */ |
131 | | size_t rand_drbg_get_entropy(RAND_DRBG *drbg, |
132 | | unsigned char **pout, |
133 | | int entropy, size_t min_len, size_t max_len, |
134 | | int prediction_resistance) |
135 | 0 | { |
136 | 0 | size_t ret = 0; |
137 | 0 | size_t entropy_available = 0; |
138 | 0 | RAND_POOL *pool; |
139 | 0 |
|
140 | 0 | if (drbg->parent && drbg->strength > drbg->parent->strength) { |
141 | 0 | /* |
142 | 0 | * We currently don't support the algorithm from NIST SP 800-90C |
143 | 0 | * 10.1.2 to use a weaker DRBG as source |
144 | 0 | */ |
145 | 0 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK); |
146 | 0 | return 0; |
147 | 0 | } |
148 | 0 |
|
149 | 0 | pool = rand_pool_new(entropy, min_len, max_len); |
150 | 0 | if (pool == NULL) |
151 | 0 | return 0; |
152 | 0 | |
153 | 0 | if (drbg->pool) { |
154 | 0 | rand_pool_add(pool, |
155 | 0 | rand_pool_buffer(drbg->pool), |
156 | 0 | rand_pool_length(drbg->pool), |
157 | 0 | rand_pool_entropy(drbg->pool)); |
158 | 0 | rand_pool_free(drbg->pool); |
159 | 0 | drbg->pool = NULL; |
160 | 0 | } |
161 | 0 |
|
162 | 0 | if (drbg->parent) { |
163 | 0 | size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
164 | 0 | unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed); |
165 | 0 |
|
166 | 0 | if (buffer != NULL) { |
167 | 0 | size_t bytes = 0; |
168 | 0 |
|
169 | 0 | /* |
170 | 0 | * Get random from parent, include our state as additional input. |
171 | 0 | * Our lock is already held, but we need to lock our parent before |
172 | 0 | * generating bits from it. (Note: taking the lock will be a no-op |
173 | 0 | * if locking if drbg->parent->lock == NULL.) |
174 | 0 | */ |
175 | 0 | rand_drbg_lock(drbg->parent); |
176 | 0 | if (RAND_DRBG_generate(drbg->parent, |
177 | 0 | buffer, bytes_needed, |
178 | 0 | prediction_resistance, |
179 | 0 | NULL, 0) != 0) |
180 | 0 | bytes = bytes_needed; |
181 | 0 | rand_drbg_unlock(drbg->parent); |
182 | 0 |
|
183 | 0 | rand_pool_add_end(pool, bytes, 8 * bytes); |
184 | 0 | entropy_available = rand_pool_entropy_available(pool); |
185 | 0 | } |
186 | 0 |
|
187 | 0 | } else { |
188 | 0 | if (prediction_resistance) { |
189 | 0 | /* |
190 | 0 | * We don't have any entropy sources that comply with the NIST |
191 | 0 | * standard to provide prediction resistance (see NIST SP 800-90C, |
192 | 0 | * Section 5.4). |
193 | 0 | */ |
194 | 0 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, |
195 | 0 | RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED); |
196 | 0 | goto err; |
197 | 0 | } |
198 | 0 |
|
199 | 0 | /* Get entropy by polling system entropy sources. */ |
200 | 0 | entropy_available = rand_pool_acquire_entropy(pool); |
201 | 0 | } |
202 | 0 |
|
203 | 0 | if (entropy_available > 0) { |
204 | 0 | ret = rand_pool_length(pool); |
205 | 0 | *pout = rand_pool_detach(pool); |
206 | 0 | } |
207 | 0 |
|
208 | 0 | err: |
209 | 0 | rand_pool_free(pool); |
210 | 0 | return ret; |
211 | 0 | } |
212 | | |
213 | | /* |
214 | | * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks()) |
215 | | * |
216 | | */ |
217 | | void rand_drbg_cleanup_entropy(RAND_DRBG *drbg, |
218 | | unsigned char *out, size_t outlen) |
219 | 0 | { |
220 | 0 | OPENSSL_secure_clear_free(out, outlen); |
221 | 0 | } |
222 | | |
223 | | |
224 | | /* |
225 | | * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks()) |
226 | | * |
227 | | */ |
228 | | size_t rand_drbg_get_nonce(RAND_DRBG *drbg, |
229 | | unsigned char **pout, |
230 | | int entropy, size_t min_len, size_t max_len) |
231 | 0 | { |
232 | 0 | size_t ret = 0; |
233 | 0 | RAND_POOL *pool; |
234 | 0 |
|
235 | 0 | struct { |
236 | 0 | void * instance; |
237 | 0 | int count; |
238 | 0 | } data = { 0 }; |
239 | 0 |
|
240 | 0 | pool = rand_pool_new(0, min_len, max_len); |
241 | 0 | if (pool == NULL) |
242 | 0 | return 0; |
243 | 0 | |
244 | 0 | if (rand_pool_add_nonce_data(pool) == 0) |
245 | 0 | goto err; |
246 | 0 | |
247 | 0 | data.instance = drbg; |
248 | 0 | CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock); |
249 | 0 |
|
250 | 0 | if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0) |
251 | 0 | goto err; |
252 | 0 | |
253 | 0 | ret = rand_pool_length(pool); |
254 | 0 | *pout = rand_pool_detach(pool); |
255 | 0 |
|
256 | 0 | err: |
257 | 0 | rand_pool_free(pool); |
258 | 0 |
|
259 | 0 | return ret; |
260 | 0 | } |
261 | | |
262 | | /* |
263 | | * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks()) |
264 | | * |
265 | | */ |
266 | | void rand_drbg_cleanup_nonce(RAND_DRBG *drbg, |
267 | | unsigned char *out, size_t outlen) |
268 | 0 | { |
269 | 0 | OPENSSL_secure_clear_free(out, outlen); |
270 | 0 | } |
271 | | |
272 | | /* |
273 | | * Generate additional data that can be used for the drbg. The data does |
274 | | * not need to contain entropy, but it's useful if it contains at least |
275 | | * some bits that are unpredictable. |
276 | | * |
277 | | * Returns 0 on failure. |
278 | | * |
279 | | * On success it allocates a buffer at |*pout| and returns the length of |
280 | | * the data. The buffer should get freed using OPENSSL_secure_clear_free(). |
281 | | */ |
282 | | size_t rand_drbg_get_additional_data(unsigned char **pout, size_t max_len) |
283 | 0 | { |
284 | 0 | size_t ret = 0; |
285 | 0 | RAND_POOL *pool; |
286 | 0 |
|
287 | 0 | pool = rand_pool_new(0, 0, max_len); |
288 | 0 | if (pool == NULL) |
289 | 0 | return 0; |
290 | 0 | |
291 | 0 | if (rand_pool_add_additional_data(pool) == 0) |
292 | 0 | goto err; |
293 | 0 | |
294 | 0 | ret = rand_pool_length(pool); |
295 | 0 | *pout = rand_pool_detach(pool); |
296 | 0 |
|
297 | 0 | err: |
298 | 0 | rand_pool_free(pool); |
299 | 0 |
|
300 | 0 | return ret; |
301 | 0 | } |
302 | | |
303 | | void rand_drbg_cleanup_additional_data(unsigned char *out, size_t outlen) |
304 | 0 | { |
305 | 0 | OPENSSL_secure_clear_free(out, outlen); |
306 | 0 | } |
307 | | |
308 | | void rand_fork(void) |
309 | 0 | { |
310 | 0 | rand_fork_count++; |
311 | 0 | } |
312 | | |
313 | | DEFINE_RUN_ONCE_STATIC(do_rand_init) |
314 | 8 | { |
315 | 8 | #ifndef OPENSSL_NO_ENGINE |
316 | 8 | rand_engine_lock = CRYPTO_THREAD_lock_new(); |
317 | 8 | if (rand_engine_lock == NULL) |
318 | 8 | return 0; |
319 | 8 | #endif |
320 | 8 | |
321 | 8 | rand_meth_lock = CRYPTO_THREAD_lock_new(); |
322 | 8 | if (rand_meth_lock == NULL) |
323 | 8 | goto err1; |
324 | 8 | |
325 | 8 | rand_nonce_lock = CRYPTO_THREAD_lock_new(); |
326 | 8 | if (rand_nonce_lock == NULL) |
327 | 8 | goto err2; |
328 | 8 | |
329 | 8 | if (!rand_cleaning_up && !rand_pool_init()) |
330 | 0 | goto err3; |
331 | 8 | |
332 | 8 | return 1; |
333 | 0 | |
334 | 0 | err3: |
335 | 0 | rand_pool_cleanup(); |
336 | 0 | err2: |
337 | 0 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
338 | 0 | rand_meth_lock = NULL; |
339 | 0 | err1: |
340 | 0 | #ifndef OPENSSL_NO_ENGINE |
341 | 0 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
342 | 0 | rand_engine_lock = NULL; |
343 | 0 | #endif |
344 | 0 | return 0; |
345 | 0 | } |
346 | | |
347 | | void rand_cleanup_int(void) |
348 | 8 | { |
349 | 8 | const RAND_METHOD *meth = default_RAND_meth; |
350 | 8 | |
351 | 8 | rand_cleaning_up = 1; |
352 | 8 | |
353 | 8 | if (meth != NULL && meth->cleanup != NULL) |
354 | 8 | meth->cleanup(); |
355 | 8 | RAND_set_rand_method(NULL); |
356 | 8 | rand_pool_cleanup(); |
357 | 8 | #ifndef OPENSSL_NO_ENGINE |
358 | 8 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
359 | 8 | rand_engine_lock = NULL; |
360 | 8 | #endif |
361 | 8 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
362 | 8 | rand_meth_lock = NULL; |
363 | 8 | CRYPTO_THREAD_lock_free(rand_nonce_lock); |
364 | 8 | rand_nonce_lock = NULL; |
365 | 8 | } |
366 | | |
367 | | /* |
368 | | * RAND_close_seed_files() ensures that any seed file decriptors are |
369 | | * closed after use. |
370 | | */ |
371 | | void RAND_keep_random_devices_open(int keep) |
372 | 0 | { |
373 | 0 | rand_pool_keep_random_devices_open(keep); |
374 | 0 | } |
375 | | |
376 | | /* |
377 | | * RAND_poll() reseeds the default RNG using random input |
378 | | * |
379 | | * The random input is obtained from polling various entropy |
380 | | * sources which depend on the operating system and are |
381 | | * configurable via the --with-rand-seed configure option. |
382 | | */ |
383 | | int RAND_poll(void) |
384 | 0 | { |
385 | 0 | int ret = 0; |
386 | 0 |
|
387 | 0 | RAND_POOL *pool = NULL; |
388 | 0 |
|
389 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
390 | 0 |
|
391 | 0 | if (meth == RAND_OpenSSL()) { |
392 | 0 | /* fill random pool and seed the master DRBG */ |
393 | 0 | RAND_DRBG *drbg = RAND_DRBG_get0_master(); |
394 | 0 |
|
395 | 0 | if (drbg == NULL) |
396 | 0 | return 0; |
397 | 0 | |
398 | 0 | rand_drbg_lock(drbg); |
399 | 0 | ret = rand_drbg_restart(drbg, NULL, 0, 0); |
400 | 0 | rand_drbg_unlock(drbg); |
401 | 0 |
|
402 | 0 | return ret; |
403 | 0 |
|
404 | 0 | } else { |
405 | 0 | /* fill random pool and seed the current legacy RNG */ |
406 | 0 | pool = rand_pool_new(RAND_DRBG_STRENGTH, |
407 | 0 | RAND_DRBG_STRENGTH / 8, |
408 | 0 | DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8)); |
409 | 0 | if (pool == NULL) |
410 | 0 | return 0; |
411 | 0 | |
412 | 0 | if (rand_pool_acquire_entropy(pool) == 0) |
413 | 0 | goto err; |
414 | 0 | |
415 | 0 | if (meth->add == NULL |
416 | 0 | || meth->add(rand_pool_buffer(pool), |
417 | 0 | rand_pool_length(pool), |
418 | 0 | (rand_pool_entropy(pool) / 8.0)) == 0) |
419 | 0 | goto err; |
420 | 0 | |
421 | 0 | ret = 1; |
422 | 0 | } |
423 | 0 |
|
424 | 0 | err: |
425 | 0 | rand_pool_free(pool); |
426 | 0 | return ret; |
427 | 0 | } |
428 | | |
429 | | /* |
430 | | * Allocate memory and initialize a new random pool |
431 | | */ |
432 | | |
433 | | RAND_POOL *rand_pool_new(int entropy, size_t min_len, size_t max_len) |
434 | 0 | { |
435 | 0 | RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool)); |
436 | 0 |
|
437 | 0 | if (pool == NULL) { |
438 | 0 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
439 | 0 | goto err; |
440 | 0 | } |
441 | 0 |
|
442 | 0 | pool->min_len = min_len; |
443 | 0 | pool->max_len = max_len; |
444 | 0 |
|
445 | 0 | pool->buffer = OPENSSL_secure_zalloc(pool->max_len); |
446 | 0 | if (pool->buffer == NULL) { |
447 | 0 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
448 | 0 | goto err; |
449 | 0 | } |
450 | 0 |
|
451 | 0 | pool->requested_entropy = entropy; |
452 | 0 |
|
453 | 0 | return pool; |
454 | 0 | |
455 | 0 | err: |
456 | 0 | OPENSSL_free(pool); |
457 | 0 | return NULL; |
458 | 0 | } |
459 | | |
460 | | /* |
461 | | * Free |pool|, securely erasing its buffer. |
462 | | */ |
463 | | void rand_pool_free(RAND_POOL *pool) |
464 | 0 | { |
465 | 0 | if (pool == NULL) |
466 | 0 | return; |
467 | 0 | |
468 | 0 | OPENSSL_secure_clear_free(pool->buffer, pool->max_len); |
469 | 0 | OPENSSL_free(pool); |
470 | 0 | } |
471 | | |
472 | | /* |
473 | | * Return the |pool|'s buffer to the caller (readonly). |
474 | | */ |
475 | | const unsigned char *rand_pool_buffer(RAND_POOL *pool) |
476 | 0 | { |
477 | 0 | return pool->buffer; |
478 | 0 | } |
479 | | |
480 | | /* |
481 | | * Return the |pool|'s entropy to the caller. |
482 | | */ |
483 | | size_t rand_pool_entropy(RAND_POOL *pool) |
484 | 0 | { |
485 | 0 | return pool->entropy; |
486 | 0 | } |
487 | | |
488 | | /* |
489 | | * Return the |pool|'s buffer length to the caller. |
490 | | */ |
491 | | size_t rand_pool_length(RAND_POOL *pool) |
492 | 0 | { |
493 | 0 | return pool->len; |
494 | 0 | } |
495 | | |
496 | | /* |
497 | | * Detach the |pool| buffer and return it to the caller. |
498 | | * It's the responsibility of the caller to free the buffer |
499 | | * using OPENSSL_secure_clear_free(). |
500 | | */ |
501 | | unsigned char *rand_pool_detach(RAND_POOL *pool) |
502 | 0 | { |
503 | 0 | unsigned char *ret = pool->buffer; |
504 | 0 | pool->buffer = NULL; |
505 | 0 | return ret; |
506 | 0 | } |
507 | | |
508 | | |
509 | | /* |
510 | | * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one |
511 | | * need to obtain at least |bits| bits of entropy? |
512 | | */ |
513 | | #define ENTROPY_TO_BYTES(bits, entropy_factor) \ |
514 | 0 | (((bits) * (entropy_factor) + 7) / 8) |
515 | | |
516 | | |
517 | | /* |
518 | | * Checks whether the |pool|'s entropy is available to the caller. |
519 | | * This is the case when entropy count and buffer length are high enough. |
520 | | * Returns |
521 | | * |
522 | | * |entropy| if the entropy count and buffer size is large enough |
523 | | * 0 otherwise |
524 | | */ |
525 | | size_t rand_pool_entropy_available(RAND_POOL *pool) |
526 | 0 | { |
527 | 0 | if (pool->entropy < pool->requested_entropy) |
528 | 0 | return 0; |
529 | 0 | |
530 | 0 | if (pool->len < pool->min_len) |
531 | 0 | return 0; |
532 | 0 | |
533 | 0 | return pool->entropy; |
534 | 0 | } |
535 | | |
536 | | /* |
537 | | * Returns the (remaining) amount of entropy needed to fill |
538 | | * the random pool. |
539 | | */ |
540 | | |
541 | | size_t rand_pool_entropy_needed(RAND_POOL *pool) |
542 | 0 | { |
543 | 0 | if (pool->entropy < pool->requested_entropy) |
544 | 0 | return pool->requested_entropy - pool->entropy; |
545 | 0 | |
546 | 0 | return 0; |
547 | 0 | } |
548 | | |
549 | | /* |
550 | | * Returns the number of bytes needed to fill the pool, assuming |
551 | | * the input has 1 / |entropy_factor| entropy bits per data bit. |
552 | | * In case of an error, 0 is returned. |
553 | | */ |
554 | | |
555 | | size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor) |
556 | 0 | { |
557 | 0 | size_t bytes_needed; |
558 | 0 | size_t entropy_needed = rand_pool_entropy_needed(pool); |
559 | 0 |
|
560 | 0 | if (entropy_factor < 1) { |
561 | 0 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE); |
562 | 0 | return 0; |
563 | 0 | } |
564 | 0 |
|
565 | 0 | bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor); |
566 | 0 |
|
567 | 0 | if (bytes_needed > pool->max_len - pool->len) { |
568 | 0 | /* not enough space left */ |
569 | 0 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW); |
570 | 0 | return 0; |
571 | 0 | } |
572 | 0 |
|
573 | 0 | if (pool->len < pool->min_len && |
574 | 0 | bytes_needed < pool->min_len - pool->len) |
575 | 0 | /* to meet the min_len requirement */ |
576 | 0 | bytes_needed = pool->min_len - pool->len; |
577 | 0 |
|
578 | 0 | return bytes_needed; |
579 | 0 | } |
580 | | |
581 | | /* Returns the remaining number of bytes available */ |
582 | | size_t rand_pool_bytes_remaining(RAND_POOL *pool) |
583 | 0 | { |
584 | 0 | return pool->max_len - pool->len; |
585 | 0 | } |
586 | | |
587 | | /* |
588 | | * Add random bytes to the random pool. |
589 | | * |
590 | | * It is expected that the |buffer| contains |len| bytes of |
591 | | * random input which contains at least |entropy| bits of |
592 | | * randomness. |
593 | | * |
594 | | * Returns 1 if the added amount is adequate, otherwise 0 |
595 | | */ |
596 | | int rand_pool_add(RAND_POOL *pool, |
597 | | const unsigned char *buffer, size_t len, size_t entropy) |
598 | 0 | { |
599 | 0 | if (len > pool->max_len - pool->len) { |
600 | 0 | RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG); |
601 | 0 | return 0; |
602 | 0 | } |
603 | 0 |
|
604 | 0 | if (len > 0) { |
605 | 0 | memcpy(pool->buffer + pool->len, buffer, len); |
606 | 0 | pool->len += len; |
607 | 0 | pool->entropy += entropy; |
608 | 0 | } |
609 | 0 |
|
610 | 0 | return 1; |
611 | 0 | } |
612 | | |
613 | | /* |
614 | | * Start to add random bytes to the random pool in-place. |
615 | | * |
616 | | * Reserves the next |len| bytes for adding random bytes in-place |
617 | | * and returns a pointer to the buffer. |
618 | | * The caller is allowed to copy up to |len| bytes into the buffer. |
619 | | * If |len| == 0 this is considered a no-op and a NULL pointer |
620 | | * is returned without producing an error message. |
621 | | * |
622 | | * After updating the buffer, rand_pool_add_end() needs to be called |
623 | | * to finish the udpate operation (see next comment). |
624 | | */ |
625 | | unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len) |
626 | 0 | { |
627 | 0 | if (len == 0) |
628 | 0 | return NULL; |
629 | 0 | |
630 | 0 | if (len > pool->max_len - pool->len) { |
631 | 0 | RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW); |
632 | 0 | return NULL; |
633 | 0 | } |
634 | 0 |
|
635 | 0 | return pool->buffer + pool->len; |
636 | 0 | } |
637 | | |
638 | | /* |
639 | | * Finish to add random bytes to the random pool in-place. |
640 | | * |
641 | | * Finishes an in-place update of the random pool started by |
642 | | * rand_pool_add_begin() (see previous comment). |
643 | | * It is expected that |len| bytes of random input have been added |
644 | | * to the buffer which contain at least |entropy| bits of randomness. |
645 | | * It is allowed to add less bytes than originally reserved. |
646 | | */ |
647 | | int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy) |
648 | 0 | { |
649 | 0 | if (len > pool->max_len - pool->len) { |
650 | 0 | RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW); |
651 | 0 | return 0; |
652 | 0 | } |
653 | 0 |
|
654 | 0 | if (len > 0) { |
655 | 0 | pool->len += len; |
656 | 0 | pool->entropy += entropy; |
657 | 0 | } |
658 | 0 |
|
659 | 0 | return 1; |
660 | 0 | } |
661 | | |
662 | | int RAND_set_rand_method(const RAND_METHOD *meth) |
663 | 8 | { |
664 | 8 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
665 | 8 | return 0; |
666 | 8 | |
667 | 8 | CRYPTO_THREAD_write_lock(rand_meth_lock); |
668 | 8 | #ifndef OPENSSL_NO_ENGINE |
669 | 8 | ENGINE_finish(funct_ref); |
670 | 8 | funct_ref = NULL; |
671 | 8 | #endif |
672 | 8 | default_RAND_meth = meth; |
673 | 8 | CRYPTO_THREAD_unlock(rand_meth_lock); |
674 | 8 | return 1; |
675 | 8 | } |
676 | | |
677 | | const RAND_METHOD *RAND_get_rand_method(void) |
678 | 0 | { |
679 | 0 | const RAND_METHOD *tmp_meth = NULL; |
680 | 0 |
|
681 | 0 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
682 | 0 | return NULL; |
683 | 0 | |
684 | 0 | CRYPTO_THREAD_write_lock(rand_meth_lock); |
685 | 0 | if (default_RAND_meth == NULL) { |
686 | 0 | #ifndef OPENSSL_NO_ENGINE |
687 | 0 | ENGINE *e; |
688 | 0 |
|
689 | 0 | /* If we have an engine that can do RAND, use it. */ |
690 | 0 | if ((e = ENGINE_get_default_RAND()) != NULL |
691 | 0 | && (tmp_meth = ENGINE_get_RAND(e)) != NULL) { |
692 | 0 | funct_ref = e; |
693 | 0 | default_RAND_meth = tmp_meth; |
694 | 0 | } else { |
695 | 0 | ENGINE_finish(e); |
696 | 0 | default_RAND_meth = &rand_meth; |
697 | 0 | } |
698 | | #else |
699 | | default_RAND_meth = &rand_meth; |
700 | | #endif |
701 | | } |
702 | 0 | tmp_meth = default_RAND_meth; |
703 | 0 | CRYPTO_THREAD_unlock(rand_meth_lock); |
704 | 0 | return tmp_meth; |
705 | 0 | } |
706 | | |
707 | | #ifndef OPENSSL_NO_ENGINE |
708 | | int RAND_set_rand_engine(ENGINE *engine) |
709 | 0 | { |
710 | 0 | const RAND_METHOD *tmp_meth = NULL; |
711 | 0 |
|
712 | 0 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
713 | 0 | return 0; |
714 | 0 | |
715 | 0 | if (engine != NULL) { |
716 | 0 | if (!ENGINE_init(engine)) |
717 | 0 | return 0; |
718 | 0 | tmp_meth = ENGINE_get_RAND(engine); |
719 | 0 | if (tmp_meth == NULL) { |
720 | 0 | ENGINE_finish(engine); |
721 | 0 | return 0; |
722 | 0 | } |
723 | 0 | } |
724 | 0 | CRYPTO_THREAD_write_lock(rand_engine_lock); |
725 | 0 | /* This function releases any prior ENGINE so call it first */ |
726 | 0 | RAND_set_rand_method(tmp_meth); |
727 | 0 | funct_ref = engine; |
728 | 0 | CRYPTO_THREAD_unlock(rand_engine_lock); |
729 | 0 | return 1; |
730 | 0 | } |
731 | | #endif |
732 | | |
733 | | void RAND_seed(const void *buf, int num) |
734 | 0 | { |
735 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
736 | 0 |
|
737 | 0 | if (meth->seed != NULL) |
738 | 0 | meth->seed(buf, num); |
739 | 0 | } |
740 | | |
741 | | void RAND_add(const void *buf, int num, double randomness) |
742 | 0 | { |
743 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
744 | 0 |
|
745 | 0 | if (meth->add != NULL) |
746 | 0 | meth->add(buf, num, randomness); |
747 | 0 | } |
748 | | |
749 | | /* |
750 | | * This function is not part of RAND_METHOD, so if we're not using |
751 | | * the default method, then just call RAND_bytes(). Otherwise make |
752 | | * sure we're instantiated and use the private DRBG. |
753 | | */ |
754 | | int RAND_priv_bytes(unsigned char *buf, int num) |
755 | 0 | { |
756 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
757 | 0 | RAND_DRBG *drbg; |
758 | 0 | int ret; |
759 | 0 |
|
760 | 0 | if (meth != RAND_OpenSSL()) |
761 | 0 | return RAND_bytes(buf, num); |
762 | 0 | |
763 | 0 | drbg = RAND_DRBG_get0_private(); |
764 | 0 | if (drbg == NULL) |
765 | 0 | return 0; |
766 | 0 | |
767 | 0 | ret = RAND_DRBG_bytes(drbg, buf, num); |
768 | 0 | return ret; |
769 | 0 | } |
770 | | |
771 | | int RAND_bytes(unsigned char *buf, int num) |
772 | 0 | { |
773 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
774 | 0 |
|
775 | 0 | if (meth->bytes != NULL) |
776 | 0 | return meth->bytes(buf, num); |
777 | 0 | RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); |
778 | 0 | return -1; |
779 | 0 | } |
780 | | |
781 | | #if OPENSSL_API_COMPAT < 0x10100000L |
782 | | int RAND_pseudo_bytes(unsigned char *buf, int num) |
783 | 0 | { |
784 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
785 | 0 |
|
786 | 0 | if (meth->pseudorand != NULL) |
787 | 0 | return meth->pseudorand(buf, num); |
788 | 0 | return -1; |
789 | 0 | } |
790 | | #endif |
791 | | |
792 | | int RAND_status(void) |
793 | 0 | { |
794 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
795 | 0 |
|
796 | 0 | if (meth->status != NULL) |
797 | 0 | return meth->status(); |
798 | 0 | return 0; |
799 | 0 | } |