Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/rand/rand_unix.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
# define _GNU_SOURCE
12
#endif
13
#include "e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include "rand_lcl.h"
18
#include "internal/rand_int.h"
19
#include <stdio.h>
20
#include "internal/dso.h"
21
#if defined(__linux)
22
# include <sys/syscall.h>
23
#endif
24
#if defined(__FreeBSD__)
25
# include <sys/types.h>
26
# include <sys/sysctl.h>
27
# include <sys/param.h>
28
#endif
29
#if defined(__OpenBSD__) || defined(__NetBSD__)
30
# include <sys/param.h>
31
#endif
32
33
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
34
# include <sys/types.h>
35
# include <sys/stat.h>
36
# include <fcntl.h>
37
# include <unistd.h>
38
# include <sys/time.h>
39
40
static uint64_t get_time_stamp(void);
41
static uint64_t get_timer_bits(void);
42
43
/* Macro to convert two thirty two bit values into a sixty four bit one */
44
0
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
45
46
/*
47
 * Check for the existence and support of POSIX timers.  The standard
48
 * says that the _POSIX_TIMERS macro will have a positive value if they
49
 * are available.
50
 *
51
 * However, we want an additional constraint: that the timer support does
52
 * not require an extra library dependency.  Early versions of glibc
53
 * require -lrt to be specified on the link line to access the timers,
54
 * so this needs to be checked for.
55
 *
56
 * It is worse because some libraries define __GLIBC__ but don't
57
 * support the version testing macro (e.g. uClibc).  This means
58
 * an extra check is needed.
59
 *
60
 * The final condition is:
61
 *      "have posix timers and either not glibc or glibc without -lrt"
62
 *
63
 * The nested #if sequences are required to avoid using a parameterised
64
 * macro that might be undefined.
65
 */
66
# undef OSSL_POSIX_TIMER_OKAY
67
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
68
#  if defined(__GLIBC__)
69
#   if defined(__GLIBC_PREREQ)
70
#    if __GLIBC_PREREQ(2, 17)
71
#     define OSSL_POSIX_TIMER_OKAY
72
#    endif
73
#   endif
74
#  else
75
#   define OSSL_POSIX_TIMER_OKAY
76
#  endif
77
# endif
78
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
79
80
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
81
        !defined(OPENSSL_RAND_SEED_NONE)
82
# error "UEFI and VXWorks only support seeding NONE"
83
#endif
84
85
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
86
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
87
    || defined(OPENSSL_SYS_UEFI))
88
89
static ssize_t syscall_random(void *buf, size_t buflen);
90
91
# if defined(OPENSSL_SYS_VOS)
92
93
#  ifndef OPENSSL_RAND_SEED_OS
94
#   error "Unsupported seeding method configured; must be os"
95
#  endif
96
97
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
98
#   error "Unsupported HP-PA and IA32 at the same time."
99
#  endif
100
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
101
#   error "Must have one of HP-PA or IA32"
102
#  endif
103
104
/*
105
 * The following algorithm repeatedly samples the real-time clock (RTC) to
106
 * generate a sequence of unpredictable data.  The algorithm relies upon the
107
 * uneven execution speed of the code (due to factors such as cache misses,
108
 * interrupts, bus activity, and scheduling) and upon the rather large
109
 * relative difference between the speed of the clock and the rate at which
110
 * it can be read.  If it is ported to an environment where execution speed
111
 * is more constant or where the RTC ticks at a much slower rate, or the
112
 * clock can be read with fewer instructions, it is likely that the results
113
 * would be far more predictable.  This should only be used for legacy
114
 * platforms.
115
 *
116
 * As a precaution, we assume only 2 bits of entropy per byte.
117
 */
118
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
119
{
120
    short int code;
121
    int i, k;
122
    size_t bytes_needed;
123
    struct timespec ts;
124
    unsigned char v;
125
#  ifdef OPENSSL_SYS_VOS_HPPA
126
    long duration;
127
    extern void s$sleep(long *_duration, short int *_code);
128
#  else
129
    long long duration;
130
    extern void s$sleep2(long long *_duration, short int *_code);
131
#  endif
132
133
    bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
134
135
    for (i = 0; i < bytes_needed; i++) {
136
        /*
137
         * burn some cpu; hope for interrupts, cache collisions, bus
138
         * interference, etc.
139
         */
140
        for (k = 0; k < 99; k++)
141
            ts.tv_nsec = random();
142
143
#  ifdef OPENSSL_SYS_VOS_HPPA
144
        /* sleep for 1/1024 of a second (976 us).  */
145
        duration = 1;
146
        s$sleep(&duration, &code);
147
#  else
148
        /* sleep for 1/65536 of a second (15 us).  */
149
        duration = 1;
150
        s$sleep2(&duration, &code);
151
#  endif
152
153
        /* Get wall clock time, take 8 bits. */
154
        clock_gettime(CLOCK_REALTIME, &ts);
155
        v = (unsigned char)(ts.tv_nsec & 0xFF);
156
        rand_pool_add(pool, arg, &v, sizeof(v) , 2);
157
    }
158
    return rand_pool_entropy_available(pool);
159
}
160
161
void rand_pool_cleanup(void)
162
{
163
}
164
165
void rand_pool_keep_random_devices_open(int keep)
166
{
167
}
168
169
# else
170
171
#  if defined(OPENSSL_RAND_SEED_EGD) && \
172
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
173
#   error "Seeding uses EGD but EGD is turned off or no device given"
174
#  endif
175
176
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
177
#   error "Seeding uses urandom but DEVRANDOM is not configured"
178
#  endif
179
180
#  if defined(OPENSSL_RAND_SEED_OS)
181
#   if !defined(DEVRANDOM)
182
#    error "OS seeding requires DEVRANDOM to be configured"
183
#   endif
184
#   define OPENSSL_RAND_SEED_GETRANDOM
185
#   define OPENSSL_RAND_SEED_DEVRANDOM
186
#  endif
187
188
#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
189
#   error "librandom not (yet) supported"
190
#  endif
191
192
#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
193
/*
194
 * sysctl_random(): Use sysctl() to read a random number from the kernel
195
 * Returns the number of bytes returned in buf on success, -1 on failure.
196
 */
197
static ssize_t sysctl_random(char *buf, size_t buflen)
198
{
199
    int mib[2];
200
    size_t done = 0;
201
    size_t len;
202
203
    /*
204
     * Note: sign conversion between size_t and ssize_t is safe even
205
     * without a range check, see comment in syscall_random()
206
     */
207
208
    /*
209
     * On FreeBSD old implementations returned longs, newer versions support
210
     * variable sizes up to 256 byte. The code below would not work properly
211
     * when the sysctl returns long and we want to request something not a
212
     * multiple of longs, which should never be the case.
213
     */
214
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
215
        errno = EINVAL;
216
        return -1;
217
    }
218
219
    /*
220
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
221
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
222
     * it returns a variable number of bytes with the current version supporting
223
     * up to 256 bytes.
224
     * Just return an error on older NetBSD versions.
225
     */
226
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
227
    errno = ENOSYS;
228
    return -1;
229
#endif
230
231
    mib[0] = CTL_KERN;
232
    mib[1] = KERN_ARND;
233
234
    do {
235
        len = buflen;
236
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
237
            return done > 0 ? done : -1;
238
        done += len;
239
        buf += len;
240
        buflen -= len;
241
    } while (buflen > 0);
242
243
    return done;
244
}
245
#  endif
246
247
/*
248
 * syscall_random(): Try to get random data using a system call
249
 * returns the number of bytes returned in buf, or < 0 on error.
250
 */
251
static ssize_t syscall_random(void *buf, size_t buflen)
252
0
{
253
0
    /*
254
0
     * Note: 'buflen' equals the size of the buffer which is used by the
255
0
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
256
0
     *
257
0
     *   2 * DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^13
258
0
     *
259
0
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
260
0
     * between size_t and ssize_t is safe even without a range check.
261
0
     */
262
0
263
0
    /*
264
0
     * Do runtime detection to find getentropy().
265
0
     *
266
0
     * Known OSs that should support this:
267
0
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
268
0
     * - Solaris since 11.3
269
0
     * - OpenBSD since 5.6
270
0
     * - Linux since 3.17 with glibc 2.25
271
0
     * - FreeBSD since 12.0 (1200061)
272
0
     */
273
0
#  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
274
0
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
275
0
276
0
    if (getentropy != NULL)
277
0
        return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
278
#  else
279
    union {
280
        void *p;
281
        int (*f)(void *buffer, size_t length);
282
    } p_getentropy;
283
284
    /*
285
     * We could cache the result of the lookup, but we normally don't
286
     * call this function often.
287
     */
288
    ERR_set_mark();
289
    p_getentropy.p = DSO_global_lookup("getentropy");
290
    ERR_pop_to_mark();
291
    if (p_getentropy.p != NULL)
292
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
293
#  endif
294
295
0
    /* Linux supports this since version 3.17 */
296
0
#  if defined(__linux) && defined(SYS_getrandom)
297
0
    return syscall(SYS_getrandom, buf, buflen, 0);
298
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
299
    return sysctl_random(buf, buflen);
300
#  else
301
    errno = ENOSYS;
302
    return -1;
303
#  endif
304
}
305
306
#if  !defined(OPENSSL_RAND_SEED_NONE) && defined(OPENSSL_RAND_SEED_DEVRANDOM)
307
static const char *random_device_paths[] = { DEVRANDOM };
308
static struct random_device {
309
    int fd;
310
    dev_t dev;
311
    ino_t ino;
312
    mode_t mode;
313
    dev_t rdev;
314
} random_devices[OSSL_NELEM(random_device_paths)];
315
static int keep_random_devices_open = 1;
316
317
/*
318
 * Verify that the file descriptor associated with the random source is
319
 * still valid. The rationale for doing this is the fact that it is not
320
 * uncommon for daemons to close all open file handles when daemonizing.
321
 * So the handle might have been closed or even reused for opening
322
 * another file.
323
 */
324
static int check_random_device(struct random_device * rd)
325
24
{
326
24
    struct stat st;
327
24
328
24
    return rd->fd != -1
329
24
           && fstat(rd->fd, &st) != -1
330
24
           && rd->dev == st.st_dev
331
24
           && rd->ino == st.st_ino
332
24
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
333
24
           && rd->rdev == st.st_rdev;
334
24
}
335
336
/*
337
 * Open a random device if required and return its file descriptor or -1 on error
338
 */
339
static int get_random_device(size_t n)
340
0
{
341
0
    struct stat st;
342
0
    struct random_device * rd = &random_devices[n];
343
0
344
0
    /* reuse existing file descriptor if it is (still) valid */
345
0
    if (check_random_device(rd))
346
0
        return rd->fd;
347
0
348
0
    /* open the random device ... */
349
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
350
0
        return rd->fd;
351
0
352
0
    /* ... and cache its relevant stat(2) data */
353
0
    if (fstat(rd->fd, &st) != -1) {
354
0
        rd->dev = st.st_dev;
355
0
        rd->ino = st.st_ino;
356
0
        rd->mode = st.st_mode;
357
0
        rd->rdev = st.st_rdev;
358
0
    } else {
359
0
        close(rd->fd);
360
0
        rd->fd = -1;
361
0
    }
362
0
363
0
    return rd->fd;
364
0
}
365
366
/*
367
 * Close a random device making sure it is a random device
368
 */
369
static void close_random_device(size_t n)
370
24
{
371
24
    struct random_device * rd = &random_devices[n];
372
24
373
24
    if (check_random_device(rd))
374
0
        close(rd->fd);
375
24
    rd->fd = -1;
376
24
}
377
378
static void open_random_devices(void)
379
0
{
380
0
    size_t i;
381
0
382
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
383
0
        (void)get_random_device(i);
384
0
}
385
386
int rand_pool_init(void)
387
0
{
388
0
    size_t i;
389
0
390
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
391
0
        random_devices[i].fd = -1;
392
0
    open_random_devices();
393
0
    return 1;
394
0
}
395
396
void rand_pool_cleanup(void)
397
8
{
398
8
    size_t i;
399
8
400
32
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
401
24
        close_random_device(i);
402
8
}
403
404
void rand_pool_keep_random_devices_open(int keep)
405
0
{
406
0
    if (keep)
407
0
        open_random_devices();
408
0
    else
409
0
        rand_pool_cleanup();
410
0
    keep_random_devices_open = keep;
411
0
}
412
413
#  else     /* defined(OPENSSL_RAND_SEED_NONE)
414
             * || !defined(OPENSSL_RAND_SEED_DEVRANDOM)
415
             */
416
417
int rand_pool_init(void)
418
{
419
    return 1;
420
}
421
422
void rand_pool_cleanup(void)
423
{
424
}
425
426
void rand_pool_keep_random_devices_open(int keep)
427
{
428
}
429
430
#  endif    /* !defined(OPENSSL_RAND_SEED_NONE)
431
             * && defined(OPENSSL_RAND_SEED_DEVRANDOM)
432
             */
433
434
/*
435
 * Try the various seeding methods in turn, exit when successful.
436
 *
437
 * TODO(DRBG): If more than one entropy source is available, is it
438
 * preferable to stop as soon as enough entropy has been collected
439
 * (as favored by @rsalz) or should one rather be defensive and add
440
 * more entropy than requested and/or from different sources?
441
 *
442
 * Currently, the user can select multiple entropy sources in the
443
 * configure step, yet in practice only the first available source
444
 * will be used. A more flexible solution has been requested, but
445
 * currently it is not clear how this can be achieved without
446
 * overengineering the problem. There are many parameters which
447
 * could be taken into account when selecting the order and amount
448
 * of input from the different entropy sources (trust, quality,
449
 * possibility of blocking).
450
 */
451
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
452
0
{
453
#  ifdef OPENSSL_RAND_SEED_NONE
454
    return rand_pool_entropy_available(pool);
455
#  else
456
    size_t bytes_needed;
457
0
    size_t entropy_available = 0;
458
0
    unsigned char *buffer;
459
0
460
0
#   ifdef OPENSSL_RAND_SEED_GETRANDOM
461
0
    {
462
0
        ssize_t bytes;
463
0
        /* Maximum allowed number of consecutive unsuccessful attempts */
464
0
        int attempts = 3;
465
0
466
0
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
467
0
        while (bytes_needed != 0 && attempts-- > 0) {
468
0
            buffer = rand_pool_add_begin(pool, bytes_needed);
469
0
            bytes = syscall_random(buffer, bytes_needed);
470
0
            if (bytes > 0) {
471
0
                rand_pool_add_end(pool, bytes, 8 * bytes);
472
0
                bytes_needed -= bytes;
473
0
                attempts = 3; /* reset counter after successful attempt */
474
0
            } else if (bytes < 0 && errno != EINTR) {
475
0
                break;
476
0
            }
477
0
        }
478
0
    }
479
0
    entropy_available = rand_pool_entropy_available(pool);
480
0
    if (entropy_available > 0)
481
0
        return entropy_available;
482
0
#   endif
483
0
484
#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
485
    {
486
        /* Not yet implemented. */
487
    }
488
#   endif
489
490
0
#   ifdef OPENSSL_RAND_SEED_DEVRANDOM
491
0
    bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
492
0
    {
493
0
        size_t i;
494
0
495
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) {
496
0
            ssize_t bytes = 0;
497
0
            /* Maximum allowed number of consecutive unsuccessful attempts */
498
0
            int attempts = 3;
499
0
            const int fd = get_random_device(i);
500
0
501
0
            if (fd == -1)
502
0
                continue;
503
0
504
0
            while (bytes_needed != 0 && attempts-- > 0) {
505
0
                buffer = rand_pool_add_begin(pool, bytes_needed);
506
0
                bytes = read(fd, buffer, bytes_needed);
507
0
508
0
                if (bytes > 0) {
509
0
                    rand_pool_add_end(pool, bytes, 8 * bytes);
510
0
                    bytes_needed -= bytes;
511
0
                    attempts = 3; /* reset counter after successful attempt */
512
0
                } else if (bytes < 0 && errno != EINTR) {
513
0
                    break;
514
0
                }
515
0
            }
516
0
            if (bytes < 0 || !keep_random_devices_open)
517
0
                close_random_device(i);
518
0
519
0
            bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
520
0
        }
521
0
        entropy_available = rand_pool_entropy_available(pool);
522
0
        if (entropy_available > 0)
523
0
            return entropy_available;
524
0
    }
525
0
#   endif
526
0
527
#   ifdef OPENSSL_RAND_SEED_RDTSC
528
    entropy_available = rand_acquire_entropy_from_tsc(pool);
529
    if (entropy_available > 0)
530
        return entropy_available;
531
#   endif
532
533
#   ifdef OPENSSL_RAND_SEED_RDCPU
534
    entropy_available = rand_acquire_entropy_from_cpu(pool);
535
    if (entropy_available > 0)
536
        return entropy_available;
537
#   endif
538
539
#   ifdef OPENSSL_RAND_SEED_EGD
540
    bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
541
    if (bytes_needed > 0) {
542
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
543
        int i;
544
545
        for (i = 0; paths[i] != NULL; i++) {
546
            buffer = rand_pool_add_begin(pool, bytes_needed);
547
            if (buffer != NULL) {
548
                size_t bytes = 0;
549
                int num = RAND_query_egd_bytes(paths[i],
550
                                               buffer, (int)bytes_needed);
551
                if (num == (int)bytes_needed)
552
                    bytes = bytes_needed;
553
554
                rand_pool_add_end(pool, bytes, 8 * bytes);
555
                entropy_available = rand_pool_entropy_available(pool);
556
            }
557
            if (entropy_available > 0)
558
                return entropy_available;
559
        }
560
    }
561
#   endif
562
563
0
    return rand_pool_entropy_available(pool);
564
0
#  endif
565
0
}
566
# endif
567
#endif
568
569
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
570
int rand_pool_add_nonce_data(RAND_POOL *pool)
571
0
{
572
0
    struct {
573
0
        pid_t pid;
574
0
        CRYPTO_THREAD_ID tid;
575
0
        uint64_t time;
576
0
    } data = { 0 };
577
0
578
0
    /*
579
0
     * Add process id, thread id, and a high resolution timestamp to
580
0
     * ensure that the nonce is unique whith high probability for
581
0
     * different process instances.
582
0
     */
583
0
    data.pid = getpid();
584
0
    data.tid = CRYPTO_THREAD_get_current_id();
585
0
    data.time = get_time_stamp();
586
0
587
0
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
588
0
}
589
590
int rand_pool_add_additional_data(RAND_POOL *pool)
591
0
{
592
0
    struct {
593
0
        CRYPTO_THREAD_ID tid;
594
0
        uint64_t time;
595
0
    } data = { 0 };
596
0
597
0
    /*
598
0
     * Add some noise from the thread id and a high resolution timer.
599
0
     * The thread id adds a little randomness if the drbg is accessed
600
0
     * concurrently (which is the case for the <master> drbg).
601
0
     */
602
0
    data.tid = CRYPTO_THREAD_get_current_id();
603
0
    data.time = get_timer_bits();
604
0
605
0
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
606
0
}
607
608
609
/*
610
 * Get the current time with the highest possible resolution
611
 *
612
 * The time stamp is added to the nonce, so it is optimized for not repeating.
613
 * The current time is ideal for this purpose, provided the computer's clock
614
 * is synchronized.
615
 */
616
static uint64_t get_time_stamp(void)
617
0
{
618
0
# if defined(OSSL_POSIX_TIMER_OKAY)
619
0
    {
620
0
        struct timespec ts;
621
0
622
0
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
623
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
624
0
    }
625
0
# endif
626
0
# if defined(__unix__) \
627
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
628
0
    {
629
0
        struct timeval tv;
630
0
631
0
        if (gettimeofday(&tv, NULL) == 0)
632
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
633
0
    }
634
0
# endif
635
0
    return time(NULL);
636
0
}
637
638
/*
639
 * Get an arbitrary timer value of the highest possible resolution
640
 *
641
 * The timer value is added as random noise to the additional data,
642
 * which is not considered a trusted entropy sourec, so any result
643
 * is acceptable.
644
 */
645
static uint64_t get_timer_bits(void)
646
0
{
647
0
    uint64_t res = OPENSSL_rdtsc();
648
0
649
0
    if (res != 0)
650
0
        return res;
651
0
652
# if defined(__sun) || defined(__hpux)
653
    return gethrtime();
654
# elif defined(_AIX)
655
    {
656
        timebasestruct_t t;
657
658
        read_wall_time(&t, TIMEBASE_SZ);
659
        return TWO32TO64(t.tb_high, t.tb_low);
660
    }
661
# elif defined(OSSL_POSIX_TIMER_OKAY)
662
0
    {
663
0
        struct timespec ts;
664
0
665
0
#  ifdef CLOCK_BOOTTIME
666
0
#   define CLOCK_TYPE CLOCK_BOOTTIME
667
#  elif defined(_POSIX_MONOTONIC_CLOCK)
668
#   define CLOCK_TYPE CLOCK_MONOTONIC
669
#  else
670
#   define CLOCK_TYPE CLOCK_REALTIME
671
#  endif
672
673
0
        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
674
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
675
0
    }
676
0
# endif
677
0
# if defined(__unix__) \
678
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
679
0
    {
680
0
        struct timeval tv;
681
0
682
0
        if (gettimeofday(&tv, NULL) == 0)
683
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
684
0
    }
685
0
# endif
686
0
    return time(NULL);
687
0
}
688
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */