/src/openssl/crypto/rsa/rsa_gen.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * NB: these functions have been "upgraded", the deprecated versions (which |
12 | | * are compatibility wrappers using these functions) are in rsa_depr.c. - |
13 | | * Geoff |
14 | | */ |
15 | | |
16 | | #include <stdio.h> |
17 | | #include <time.h> |
18 | | #include "internal/cryptlib.h" |
19 | | #include <openssl/bn.h> |
20 | | #include "rsa_locl.h" |
21 | | |
22 | | static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, |
23 | | BN_GENCB *cb); |
24 | | |
25 | | /* |
26 | | * NB: this wrapper would normally be placed in rsa_lib.c and the static |
27 | | * implementation would probably be in rsa_eay.c. Nonetheless, is kept here |
28 | | * so that we don't introduce a new linker dependency. Eg. any application |
29 | | * that wasn't previously linking object code related to key-generation won't |
30 | | * have to now just because key-generation is part of RSA_METHOD. |
31 | | */ |
32 | | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) |
33 | 0 | { |
34 | 0 | if (rsa->meth->rsa_keygen != NULL) |
35 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
36 | 0 | |
37 | 0 | return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, |
38 | 0 | e_value, cb); |
39 | 0 | } |
40 | | |
41 | | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, |
42 | | BIGNUM *e_value, BN_GENCB *cb) |
43 | 0 | { |
44 | 0 | /* multi-prime is only supported with the builtin key generation */ |
45 | 0 | if (rsa->meth->rsa_multi_prime_keygen != NULL) { |
46 | 0 | return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, |
47 | 0 | e_value, cb); |
48 | 0 | } else if (rsa->meth->rsa_keygen != NULL) { |
49 | 0 | /* |
50 | 0 | * However, if rsa->meth implements only rsa_keygen, then we |
51 | 0 | * have to honour it in 2-prime case and assume that it wouldn't |
52 | 0 | * know what to do with multi-prime key generated by builtin |
53 | 0 | * subroutine... |
54 | 0 | */ |
55 | 0 | if (primes == 2) |
56 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
57 | 0 | else |
58 | 0 | return 0; |
59 | 0 | } |
60 | 0 | |
61 | 0 | return rsa_builtin_keygen(rsa, bits, primes, e_value, cb); |
62 | 0 | } |
63 | | |
64 | | static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, |
65 | | BN_GENCB *cb) |
66 | 0 | { |
67 | 0 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; |
68 | 0 | int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; |
69 | 0 | int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; |
70 | 0 | RSA_PRIME_INFO *pinfo = NULL; |
71 | 0 | STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; |
72 | 0 | BN_CTX *ctx = NULL; |
73 | 0 | BN_ULONG bitst = 0; |
74 | 0 | unsigned long error = 0; |
75 | 0 |
|
76 | 0 | if (bits < RSA_MIN_MODULUS_BITS) { |
77 | 0 | ok = 0; /* we set our own err */ |
78 | 0 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL); |
79 | 0 | goto err; |
80 | 0 | } |
81 | 0 |
|
82 | 0 | if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) { |
83 | 0 | ok = 0; /* we set our own err */ |
84 | 0 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID); |
85 | 0 | goto err; |
86 | 0 | } |
87 | 0 |
|
88 | 0 | ctx = BN_CTX_new(); |
89 | 0 | if (ctx == NULL) |
90 | 0 | goto err; |
91 | 0 | BN_CTX_start(ctx); |
92 | 0 | r0 = BN_CTX_get(ctx); |
93 | 0 | r1 = BN_CTX_get(ctx); |
94 | 0 | r2 = BN_CTX_get(ctx); |
95 | 0 | if (r2 == NULL) |
96 | 0 | goto err; |
97 | 0 | |
98 | 0 | /* divide bits into 'primes' pieces evenly */ |
99 | 0 | quo = bits / primes; |
100 | 0 | rmd = bits % primes; |
101 | 0 |
|
102 | 0 | for (i = 0; i < primes; i++) |
103 | 0 | bitsr[i] = (i < rmd) ? quo + 1 : quo; |
104 | 0 |
|
105 | 0 | /* We need the RSA components non-NULL */ |
106 | 0 | if (!rsa->n && ((rsa->n = BN_new()) == NULL)) |
107 | 0 | goto err; |
108 | 0 | if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) |
109 | 0 | goto err; |
110 | 0 | if (!rsa->e && ((rsa->e = BN_new()) == NULL)) |
111 | 0 | goto err; |
112 | 0 | if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) |
113 | 0 | goto err; |
114 | 0 | if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) |
115 | 0 | goto err; |
116 | 0 | if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL)) |
117 | 0 | goto err; |
118 | 0 | if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL)) |
119 | 0 | goto err; |
120 | 0 | if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL)) |
121 | 0 | goto err; |
122 | 0 | |
123 | 0 | /* initialize multi-prime components */ |
124 | 0 | if (primes > RSA_DEFAULT_PRIME_NUM) { |
125 | 0 | rsa->version = RSA_ASN1_VERSION_MULTI; |
126 | 0 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); |
127 | 0 | if (prime_infos == NULL) |
128 | 0 | goto err; |
129 | 0 | if (rsa->prime_infos != NULL) { |
130 | 0 | /* could this happen? */ |
131 | 0 | sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free); |
132 | 0 | } |
133 | 0 | rsa->prime_infos = prime_infos; |
134 | 0 |
|
135 | 0 | /* prime_info from 2 to |primes| -1 */ |
136 | 0 | for (i = 2; i < primes; i++) { |
137 | 0 | pinfo = rsa_multip_info_new(); |
138 | 0 | if (pinfo == NULL) |
139 | 0 | goto err; |
140 | 0 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
141 | 0 | } |
142 | 0 | } |
143 | 0 |
|
144 | 0 | if (BN_copy(rsa->e, e_value) == NULL) |
145 | 0 | goto err; |
146 | 0 | |
147 | 0 | /* generate p, q and other primes (if any) */ |
148 | 0 | for (i = 0; i < primes; i++) { |
149 | 0 | adj = 0; |
150 | 0 | retries = 0; |
151 | 0 |
|
152 | 0 | if (i == 0) { |
153 | 0 | prime = rsa->p; |
154 | 0 | } else if (i == 1) { |
155 | 0 | prime = rsa->q; |
156 | 0 | } else { |
157 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
158 | 0 | prime = pinfo->r; |
159 | 0 | } |
160 | 0 | BN_set_flags(prime, BN_FLG_CONSTTIME); |
161 | 0 |
|
162 | 0 | for (;;) { |
163 | 0 | redo: |
164 | 0 | if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb)) |
165 | 0 | goto err; |
166 | 0 | /* |
167 | 0 | * prime should not be equal to p, q, r_3... |
168 | 0 | * (those primes prior to this one) |
169 | 0 | */ |
170 | 0 | { |
171 | 0 | int j; |
172 | 0 |
|
173 | 0 | for (j = 0; j < i; j++) { |
174 | 0 | BIGNUM *prev_prime; |
175 | 0 |
|
176 | 0 | if (j == 0) |
177 | 0 | prev_prime = rsa->p; |
178 | 0 | else if (j == 1) |
179 | 0 | prev_prime = rsa->q; |
180 | 0 | else |
181 | 0 | prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, |
182 | 0 | j - 2)->r; |
183 | 0 |
|
184 | 0 | if (!BN_cmp(prime, prev_prime)) { |
185 | 0 | goto redo; |
186 | 0 | } |
187 | 0 | } |
188 | 0 | } |
189 | 0 | if (!BN_sub(r2, prime, BN_value_one())) |
190 | 0 | goto err; |
191 | 0 | ERR_set_mark(); |
192 | 0 | BN_set_flags(r2, BN_FLG_CONSTTIME); |
193 | 0 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { |
194 | 0 | /* GCD == 1 since inverse exists */ |
195 | 0 | break; |
196 | 0 | } |
197 | 0 | error = ERR_peek_last_error(); |
198 | 0 | if (ERR_GET_LIB(error) == ERR_LIB_BN |
199 | 0 | && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { |
200 | 0 | /* GCD != 1 */ |
201 | 0 | ERR_pop_to_mark(); |
202 | 0 | } else { |
203 | 0 | goto err; |
204 | 0 | } |
205 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
206 | 0 | goto err; |
207 | 0 | } |
208 | 0 |
|
209 | 0 | bitse += bitsr[i]; |
210 | 0 |
|
211 | 0 | /* calculate n immediately to see if it's sufficient */ |
212 | 0 | if (i == 1) { |
213 | 0 | /* we get at least 2 primes */ |
214 | 0 | if (!BN_mul(r1, rsa->p, rsa->q, ctx)) |
215 | 0 | goto err; |
216 | 0 | } else if (i != 0) { |
217 | 0 | /* modulus n = p * q * r_3 * r_4 ... */ |
218 | 0 | if (!BN_mul(r1, rsa->n, prime, ctx)) |
219 | 0 | goto err; |
220 | 0 | } else { |
221 | 0 | /* i == 0, do nothing */ |
222 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
223 | 0 | goto err; |
224 | 0 | continue; |
225 | 0 | } |
226 | 0 | /* |
227 | 0 | * if |r1|, product of factors so far, is not as long as expected |
228 | 0 | * (by checking the first 4 bits are less than 0x9 or greater than |
229 | 0 | * 0xF). If so, re-generate the last prime. |
230 | 0 | * |
231 | 0 | * NOTE: This actually can't happen in two-prime case, because of |
232 | 0 | * the way factors are generated. |
233 | 0 | * |
234 | 0 | * Besides, another consideration is, for multi-prime case, even the |
235 | 0 | * length modulus is as long as expected, the modulus could start at |
236 | 0 | * 0x8, which could be utilized to distinguish a multi-prime private |
237 | 0 | * key by using the modulus in a certificate. This is also covered |
238 | 0 | * by checking the length should not be less than 0x9. |
239 | 0 | */ |
240 | 0 | if (!BN_rshift(r2, r1, bitse - 4)) |
241 | 0 | goto err; |
242 | 0 | bitst = BN_get_word(r2); |
243 | 0 |
|
244 | 0 | if (bitst < 0x9 || bitst > 0xF) { |
245 | 0 | /* |
246 | 0 | * For keys with more than 4 primes, we attempt longer factor to |
247 | 0 | * meet length requirement. |
248 | 0 | * |
249 | 0 | * Otherwise, we just re-generate the prime with the same length. |
250 | 0 | * |
251 | 0 | * This strategy has the following goals: |
252 | 0 | * |
253 | 0 | * 1. 1024-bit factors are effcient when using 3072 and 4096-bit key |
254 | 0 | * 2. stay the same logic with normal 2-prime key |
255 | 0 | */ |
256 | 0 | bitse -= bitsr[i]; |
257 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
258 | 0 | goto err; |
259 | 0 | if (primes > 4) { |
260 | 0 | if (bitst < 0x9) |
261 | 0 | adj++; |
262 | 0 | else |
263 | 0 | adj--; |
264 | 0 | } else if (retries == 4) { |
265 | 0 | /* |
266 | 0 | * re-generate all primes from scratch, mainly used |
267 | 0 | * in 4 prime case to avoid long loop. Max retry times |
268 | 0 | * is set to 4. |
269 | 0 | */ |
270 | 0 | i = -1; |
271 | 0 | bitse = 0; |
272 | 0 | continue; |
273 | 0 | } |
274 | 0 | retries++; |
275 | 0 | goto redo; |
276 | 0 | } |
277 | 0 | /* save product of primes for further use, for multi-prime only */ |
278 | 0 | if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) |
279 | 0 | goto err; |
280 | 0 | if (BN_copy(rsa->n, r1) == NULL) |
281 | 0 | goto err; |
282 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
283 | 0 | goto err; |
284 | 0 | } |
285 | 0 |
|
286 | 0 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
287 | 0 | tmp = rsa->p; |
288 | 0 | rsa->p = rsa->q; |
289 | 0 | rsa->q = tmp; |
290 | 0 | } |
291 | 0 |
|
292 | 0 | /* calculate d */ |
293 | 0 |
|
294 | 0 | /* p - 1 */ |
295 | 0 | if (!BN_sub(r1, rsa->p, BN_value_one())) |
296 | 0 | goto err; |
297 | 0 | /* q - 1 */ |
298 | 0 | if (!BN_sub(r2, rsa->q, BN_value_one())) |
299 | 0 | goto err; |
300 | 0 | /* (p - 1)(q - 1) */ |
301 | 0 | if (!BN_mul(r0, r1, r2, ctx)) |
302 | 0 | goto err; |
303 | 0 | /* multi-prime */ |
304 | 0 | for (i = 2; i < primes; i++) { |
305 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
306 | 0 | /* save r_i - 1 to pinfo->d temporarily */ |
307 | 0 | if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) |
308 | 0 | goto err; |
309 | 0 | if (!BN_mul(r0, r0, pinfo->d, ctx)) |
310 | 0 | goto err; |
311 | 0 | } |
312 | 0 |
|
313 | 0 | { |
314 | 0 | BIGNUM *pr0 = BN_new(); |
315 | 0 |
|
316 | 0 | if (pr0 == NULL) |
317 | 0 | goto err; |
318 | 0 | |
319 | 0 | BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); |
320 | 0 | if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { |
321 | 0 | BN_free(pr0); |
322 | 0 | goto err; /* d */ |
323 | 0 | } |
324 | 0 | /* We MUST free pr0 before any further use of r0 */ |
325 | 0 | BN_free(pr0); |
326 | 0 | } |
327 | 0 |
|
328 | 0 | { |
329 | 0 | BIGNUM *d = BN_new(); |
330 | 0 |
|
331 | 0 | if (d == NULL) |
332 | 0 | goto err; |
333 | 0 | |
334 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
335 | 0 |
|
336 | 0 | /* calculate d mod (p-1) and d mod (q - 1) */ |
337 | 0 | if (!BN_mod(rsa->dmp1, d, r1, ctx) |
338 | 0 | || !BN_mod(rsa->dmq1, d, r2, ctx)) { |
339 | 0 | BN_free(d); |
340 | 0 | goto err; |
341 | 0 | } |
342 | 0 | |
343 | 0 | /* calculate CRT exponents */ |
344 | 0 | for (i = 2; i < primes; i++) { |
345 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
346 | 0 | /* pinfo->d == r_i - 1 */ |
347 | 0 | if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { |
348 | 0 | BN_free(d); |
349 | 0 | goto err; |
350 | 0 | } |
351 | 0 | } |
352 | 0 |
|
353 | 0 | /* We MUST free d before any further use of rsa->d */ |
354 | 0 | BN_free(d); |
355 | 0 | } |
356 | 0 |
|
357 | 0 | { |
358 | 0 | BIGNUM *p = BN_new(); |
359 | 0 |
|
360 | 0 | if (p == NULL) |
361 | 0 | goto err; |
362 | 0 | BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); |
363 | 0 |
|
364 | 0 | /* calculate inverse of q mod p */ |
365 | 0 | if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { |
366 | 0 | BN_free(p); |
367 | 0 | goto err; |
368 | 0 | } |
369 | 0 | |
370 | 0 | /* calculate CRT coefficient for other primes */ |
371 | 0 | for (i = 2; i < primes; i++) { |
372 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
373 | 0 | BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME); |
374 | 0 | if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { |
375 | 0 | BN_free(p); |
376 | 0 | goto err; |
377 | 0 | } |
378 | 0 | } |
379 | 0 |
|
380 | 0 | /* We MUST free p before any further use of rsa->p */ |
381 | 0 | BN_free(p); |
382 | 0 | } |
383 | 0 |
|
384 | 0 | ok = 1; |
385 | 0 | err: |
386 | 0 | if (ok == -1) { |
387 | 0 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN); |
388 | 0 | ok = 0; |
389 | 0 | } |
390 | 0 | if (ctx != NULL) |
391 | 0 | BN_CTX_end(ctx); |
392 | 0 | BN_CTX_free(ctx); |
393 | 0 | return ok; |
394 | 0 | } |