/src/openssl/crypto/rsa/rsa_ossl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "internal/bn_int.h" |
12 | | #include "rsa_locl.h" |
13 | | |
14 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
15 | | unsigned char *to, RSA *rsa, int padding); |
16 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
17 | | unsigned char *to, RSA *rsa, int padding); |
18 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
19 | | unsigned char *to, RSA *rsa, int padding); |
20 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
21 | | unsigned char *to, RSA *rsa, int padding); |
22 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
23 | | BN_CTX *ctx); |
24 | | static int rsa_ossl_init(RSA *rsa); |
25 | | static int rsa_ossl_finish(RSA *rsa); |
26 | | static RSA_METHOD rsa_pkcs1_ossl_meth = { |
27 | | "OpenSSL PKCS#1 RSA", |
28 | | rsa_ossl_public_encrypt, |
29 | | rsa_ossl_public_decrypt, /* signature verification */ |
30 | | rsa_ossl_private_encrypt, /* signing */ |
31 | | rsa_ossl_private_decrypt, |
32 | | rsa_ossl_mod_exp, |
33 | | BN_mod_exp_mont, /* XXX probably we should not use Montgomery |
34 | | * if e == 3 */ |
35 | | rsa_ossl_init, |
36 | | rsa_ossl_finish, |
37 | | RSA_FLAG_FIPS_METHOD, /* flags */ |
38 | | NULL, |
39 | | 0, /* rsa_sign */ |
40 | | 0, /* rsa_verify */ |
41 | | NULL, /* rsa_keygen */ |
42 | | NULL /* rsa_multi_prime_keygen */ |
43 | | }; |
44 | | |
45 | | static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; |
46 | | |
47 | | void RSA_set_default_method(const RSA_METHOD *meth) |
48 | 0 | { |
49 | 0 | default_RSA_meth = meth; |
50 | 0 | } |
51 | | |
52 | | const RSA_METHOD *RSA_get_default_method(void) |
53 | 540k | { |
54 | 540k | return default_RSA_meth; |
55 | 540k | } |
56 | | |
57 | | const RSA_METHOD *RSA_PKCS1_OpenSSL(void) |
58 | 0 | { |
59 | 0 | return &rsa_pkcs1_ossl_meth; |
60 | 0 | } |
61 | | |
62 | | const RSA_METHOD *RSA_null_method(void) |
63 | 0 | { |
64 | 0 | return NULL; |
65 | 0 | } |
66 | | |
67 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
68 | | unsigned char *to, RSA *rsa, int padding) |
69 | 0 | { |
70 | 0 | BIGNUM *f, *ret; |
71 | 0 | int i, num = 0, r = -1; |
72 | 0 | unsigned char *buf = NULL; |
73 | 0 | BN_CTX *ctx = NULL; |
74 | 0 |
|
75 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
76 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_MODULUS_TOO_LARGE); |
77 | 0 | return -1; |
78 | 0 | } |
79 | 0 |
|
80 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
81 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
82 | 0 | return -1; |
83 | 0 | } |
84 | 0 |
|
85 | 0 | /* for large moduli, enforce exponent limit */ |
86 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
87 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
88 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
89 | 0 | return -1; |
90 | 0 | } |
91 | 0 | } |
92 | 0 |
|
93 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
94 | 0 | goto err; |
95 | 0 | BN_CTX_start(ctx); |
96 | 0 | f = BN_CTX_get(ctx); |
97 | 0 | ret = BN_CTX_get(ctx); |
98 | 0 | num = BN_num_bytes(rsa->n); |
99 | 0 | buf = OPENSSL_malloc(num); |
100 | 0 | if (ret == NULL || buf == NULL) { |
101 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, ERR_R_MALLOC_FAILURE); |
102 | 0 | goto err; |
103 | 0 | } |
104 | 0 |
|
105 | 0 | switch (padding) { |
106 | 0 | case RSA_PKCS1_PADDING: |
107 | 0 | i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen); |
108 | 0 | break; |
109 | 0 | case RSA_PKCS1_OAEP_PADDING: |
110 | 0 | i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0); |
111 | 0 | break; |
112 | 0 | case RSA_SSLV23_PADDING: |
113 | 0 | i = RSA_padding_add_SSLv23(buf, num, from, flen); |
114 | 0 | break; |
115 | 0 | case RSA_NO_PADDING: |
116 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
117 | 0 | break; |
118 | 0 | default: |
119 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
120 | 0 | goto err; |
121 | 0 | } |
122 | 0 | if (i <= 0) |
123 | 0 | goto err; |
124 | 0 | |
125 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
126 | 0 | goto err; |
127 | 0 | |
128 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
129 | 0 | /* usually the padding functions would catch this */ |
130 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, |
131 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
132 | 0 | goto err; |
133 | 0 | } |
134 | 0 |
|
135 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
136 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
137 | 0 | rsa->n, ctx)) |
138 | 0 | goto err; |
139 | 0 | |
140 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
141 | 0 | rsa->_method_mod_n)) |
142 | 0 | goto err; |
143 | 0 | |
144 | 0 | /* |
145 | 0 | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
146 | 0 | * the length of the modulus. |
147 | 0 | */ |
148 | 0 | r = BN_bn2binpad(ret, to, num); |
149 | 0 | err: |
150 | 0 | if (ctx != NULL) |
151 | 0 | BN_CTX_end(ctx); |
152 | 0 | BN_CTX_free(ctx); |
153 | 0 | OPENSSL_clear_free(buf, num); |
154 | 0 | return r; |
155 | 0 | } |
156 | | |
157 | | static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx) |
158 | 0 | { |
159 | 0 | BN_BLINDING *ret; |
160 | 0 |
|
161 | 0 | CRYPTO_THREAD_write_lock(rsa->lock); |
162 | 0 |
|
163 | 0 | if (rsa->blinding == NULL) { |
164 | 0 | rsa->blinding = RSA_setup_blinding(rsa, ctx); |
165 | 0 | } |
166 | 0 |
|
167 | 0 | ret = rsa->blinding; |
168 | 0 | if (ret == NULL) |
169 | 0 | goto err; |
170 | 0 | |
171 | 0 | if (BN_BLINDING_is_current_thread(ret)) { |
172 | 0 | /* rsa->blinding is ours! */ |
173 | 0 |
|
174 | 0 | *local = 1; |
175 | 0 | } else { |
176 | 0 | /* resort to rsa->mt_blinding instead */ |
177 | 0 |
|
178 | 0 | /* |
179 | 0 | * instructs rsa_blinding_convert(), rsa_blinding_invert() that the |
180 | 0 | * BN_BLINDING is shared, meaning that accesses require locks, and |
181 | 0 | * that the blinding factor must be stored outside the BN_BLINDING |
182 | 0 | */ |
183 | 0 | *local = 0; |
184 | 0 |
|
185 | 0 | if (rsa->mt_blinding == NULL) { |
186 | 0 | rsa->mt_blinding = RSA_setup_blinding(rsa, ctx); |
187 | 0 | } |
188 | 0 | ret = rsa->mt_blinding; |
189 | 0 | } |
190 | 0 |
|
191 | 0 | err: |
192 | 0 | CRYPTO_THREAD_unlock(rsa->lock); |
193 | 0 | return ret; |
194 | 0 | } |
195 | | |
196 | | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
197 | | BN_CTX *ctx) |
198 | 0 | { |
199 | 0 | if (unblind == NULL) { |
200 | 0 | /* |
201 | 0 | * Local blinding: store the unblinding factor in BN_BLINDING. |
202 | 0 | */ |
203 | 0 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); |
204 | 0 | } else { |
205 | 0 | /* |
206 | 0 | * Shared blinding: store the unblinding factor outside BN_BLINDING. |
207 | 0 | */ |
208 | 0 | int ret; |
209 | 0 |
|
210 | 0 | BN_BLINDING_lock(b); |
211 | 0 | ret = BN_BLINDING_convert_ex(f, unblind, b, ctx); |
212 | 0 | BN_BLINDING_unlock(b); |
213 | 0 |
|
214 | 0 | return ret; |
215 | 0 | } |
216 | 0 | } |
217 | | |
218 | | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
219 | | BN_CTX *ctx) |
220 | 0 | { |
221 | 0 | /* |
222 | 0 | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex |
223 | 0 | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING |
224 | 0 | * is shared between threads, unblind must be non-null: |
225 | 0 | * BN_BLINDING_invert_ex will then use the local unblinding factor, and |
226 | 0 | * will only read the modulus from BN_BLINDING. In both cases it's safe |
227 | 0 | * to access the blinding without a lock. |
228 | 0 | */ |
229 | 0 | return BN_BLINDING_invert_ex(f, unblind, b, ctx); |
230 | 0 | } |
231 | | |
232 | | /* signing */ |
233 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
234 | | unsigned char *to, RSA *rsa, int padding) |
235 | 0 | { |
236 | 0 | BIGNUM *f, *ret, *res; |
237 | 0 | int i, num = 0, r = -1; |
238 | 0 | unsigned char *buf = NULL; |
239 | 0 | BN_CTX *ctx = NULL; |
240 | 0 | int local_blinding = 0; |
241 | 0 | /* |
242 | 0 | * Used only if the blinding structure is shared. A non-NULL unblind |
243 | 0 | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
244 | 0 | * the unblinding factor outside the blinding structure. |
245 | 0 | */ |
246 | 0 | BIGNUM *unblind = NULL; |
247 | 0 | BN_BLINDING *blinding = NULL; |
248 | 0 |
|
249 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
250 | 0 | goto err; |
251 | 0 | BN_CTX_start(ctx); |
252 | 0 | f = BN_CTX_get(ctx); |
253 | 0 | ret = BN_CTX_get(ctx); |
254 | 0 | num = BN_num_bytes(rsa->n); |
255 | 0 | buf = OPENSSL_malloc(num); |
256 | 0 | if (ret == NULL || buf == NULL) { |
257 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
258 | 0 | goto err; |
259 | 0 | } |
260 | 0 |
|
261 | 0 | switch (padding) { |
262 | 0 | case RSA_PKCS1_PADDING: |
263 | 0 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); |
264 | 0 | break; |
265 | 0 | case RSA_X931_PADDING: |
266 | 0 | i = RSA_padding_add_X931(buf, num, from, flen); |
267 | 0 | break; |
268 | 0 | case RSA_NO_PADDING: |
269 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
270 | 0 | break; |
271 | 0 | case RSA_SSLV23_PADDING: |
272 | 0 | default: |
273 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
274 | 0 | goto err; |
275 | 0 | } |
276 | 0 | if (i <= 0) |
277 | 0 | goto err; |
278 | 0 | |
279 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
280 | 0 | goto err; |
281 | 0 | |
282 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
283 | 0 | /* usually the padding functions would catch this */ |
284 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, |
285 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
286 | 0 | goto err; |
287 | 0 | } |
288 | 0 |
|
289 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
290 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
291 | 0 | if (blinding == NULL) { |
292 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
293 | 0 | goto err; |
294 | 0 | } |
295 | 0 | } |
296 | 0 |
|
297 | 0 | if (blinding != NULL) { |
298 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
299 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
300 | 0 | goto err; |
301 | 0 | } |
302 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
303 | 0 | goto err; |
304 | 0 | } |
305 | 0 | |
306 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
307 | 0 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
308 | 0 | ((rsa->p != NULL) && |
309 | 0 | (rsa->q != NULL) && |
310 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
311 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
312 | 0 | goto err; |
313 | 0 | } else { |
314 | 0 | BIGNUM *d = BN_new(); |
315 | 0 | if (d == NULL) { |
316 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
317 | 0 | goto err; |
318 | 0 | } |
319 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
320 | 0 |
|
321 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
322 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
323 | 0 | rsa->n, ctx)) { |
324 | 0 | BN_free(d); |
325 | 0 | goto err; |
326 | 0 | } |
327 | 0 | |
328 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
329 | 0 | rsa->_method_mod_n)) { |
330 | 0 | BN_free(d); |
331 | 0 | goto err; |
332 | 0 | } |
333 | 0 | /* We MUST free d before any further use of rsa->d */ |
334 | 0 | BN_free(d); |
335 | 0 | } |
336 | 0 |
|
337 | 0 | if (blinding) |
338 | 0 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
339 | 0 | goto err; |
340 | 0 | |
341 | 0 | if (padding == RSA_X931_PADDING) { |
342 | 0 | if (!BN_sub(f, rsa->n, ret)) |
343 | 0 | goto err; |
344 | 0 | if (BN_cmp(ret, f) > 0) |
345 | 0 | res = f; |
346 | 0 | else |
347 | 0 | res = ret; |
348 | 0 | } else { |
349 | 0 | res = ret; |
350 | 0 | } |
351 | 0 |
|
352 | 0 | /* |
353 | 0 | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
354 | 0 | * the length of the modulus. |
355 | 0 | */ |
356 | 0 | r = BN_bn2binpad(res, to, num); |
357 | 0 | err: |
358 | 0 | if (ctx != NULL) |
359 | 0 | BN_CTX_end(ctx); |
360 | 0 | BN_CTX_free(ctx); |
361 | 0 | OPENSSL_clear_free(buf, num); |
362 | 0 | return r; |
363 | 0 | } |
364 | | |
365 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
366 | | unsigned char *to, RSA *rsa, int padding) |
367 | 0 | { |
368 | 0 | BIGNUM *f, *ret; |
369 | 0 | int j, num = 0, r = -1; |
370 | 0 | unsigned char *buf = NULL; |
371 | 0 | BN_CTX *ctx = NULL; |
372 | 0 | int local_blinding = 0; |
373 | 0 | /* |
374 | 0 | * Used only if the blinding structure is shared. A non-NULL unblind |
375 | 0 | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
376 | 0 | * the unblinding factor outside the blinding structure. |
377 | 0 | */ |
378 | 0 | BIGNUM *unblind = NULL; |
379 | 0 | BN_BLINDING *blinding = NULL; |
380 | 0 |
|
381 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
382 | 0 | goto err; |
383 | 0 | BN_CTX_start(ctx); |
384 | 0 | f = BN_CTX_get(ctx); |
385 | 0 | ret = BN_CTX_get(ctx); |
386 | 0 | num = BN_num_bytes(rsa->n); |
387 | 0 | buf = OPENSSL_malloc(num); |
388 | 0 | if (ret == NULL || buf == NULL) { |
389 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
390 | 0 | goto err; |
391 | 0 | } |
392 | 0 |
|
393 | 0 | /* |
394 | 0 | * This check was for equality but PGP does evil things and chops off the |
395 | 0 | * top '0' bytes |
396 | 0 | */ |
397 | 0 | if (flen > num) { |
398 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, |
399 | 0 | RSA_R_DATA_GREATER_THAN_MOD_LEN); |
400 | 0 | goto err; |
401 | 0 | } |
402 | 0 |
|
403 | 0 | /* make data into a big number */ |
404 | 0 | if (BN_bin2bn(from, (int)flen, f) == NULL) |
405 | 0 | goto err; |
406 | 0 | |
407 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
408 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, |
409 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
410 | 0 | goto err; |
411 | 0 | } |
412 | 0 |
|
413 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
414 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
415 | 0 | if (blinding == NULL) { |
416 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERROR); |
417 | 0 | goto err; |
418 | 0 | } |
419 | 0 | } |
420 | 0 |
|
421 | 0 | if (blinding != NULL) { |
422 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
423 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
424 | 0 | goto err; |
425 | 0 | } |
426 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
427 | 0 | goto err; |
428 | 0 | } |
429 | 0 | |
430 | 0 | /* do the decrypt */ |
431 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
432 | 0 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
433 | 0 | ((rsa->p != NULL) && |
434 | 0 | (rsa->q != NULL) && |
435 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
436 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
437 | 0 | goto err; |
438 | 0 | } else { |
439 | 0 | BIGNUM *d = BN_new(); |
440 | 0 | if (d == NULL) { |
441 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
442 | 0 | goto err; |
443 | 0 | } |
444 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
445 | 0 |
|
446 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
447 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
448 | 0 | rsa->n, ctx)) { |
449 | 0 | BN_free(d); |
450 | 0 | goto err; |
451 | 0 | } |
452 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
453 | 0 | rsa->_method_mod_n)) { |
454 | 0 | BN_free(d); |
455 | 0 | goto err; |
456 | 0 | } |
457 | 0 | /* We MUST free d before any further use of rsa->d */ |
458 | 0 | BN_free(d); |
459 | 0 | } |
460 | 0 |
|
461 | 0 | if (blinding) |
462 | 0 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
463 | 0 | goto err; |
464 | 0 | |
465 | 0 | j = BN_bn2binpad(ret, buf, num); |
466 | 0 |
|
467 | 0 | switch (padding) { |
468 | 0 | case RSA_PKCS1_PADDING: |
469 | 0 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); |
470 | 0 | break; |
471 | 0 | case RSA_PKCS1_OAEP_PADDING: |
472 | 0 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); |
473 | 0 | break; |
474 | 0 | case RSA_SSLV23_PADDING: |
475 | 0 | r = RSA_padding_check_SSLv23(to, num, buf, j, num); |
476 | 0 | break; |
477 | 0 | case RSA_NO_PADDING: |
478 | 0 | memcpy(to, buf, (r = j)); |
479 | 0 | break; |
480 | 0 | default: |
481 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
482 | 0 | goto err; |
483 | 0 | } |
484 | 0 | if (r < 0) |
485 | 0 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
486 | 0 |
|
487 | 0 | err: |
488 | 0 | if (ctx != NULL) |
489 | 0 | BN_CTX_end(ctx); |
490 | 0 | BN_CTX_free(ctx); |
491 | 0 | OPENSSL_clear_free(buf, num); |
492 | 0 | return r; |
493 | 0 | } |
494 | | |
495 | | /* signature verification */ |
496 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
497 | | unsigned char *to, RSA *rsa, int padding) |
498 | 0 | { |
499 | 0 | BIGNUM *f, *ret; |
500 | 0 | int i, num = 0, r = -1; |
501 | 0 | unsigned char *buf = NULL; |
502 | 0 | BN_CTX *ctx = NULL; |
503 | 0 |
|
504 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
505 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_MODULUS_TOO_LARGE); |
506 | 0 | return -1; |
507 | 0 | } |
508 | 0 |
|
509 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
510 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
511 | 0 | return -1; |
512 | 0 | } |
513 | 0 |
|
514 | 0 | /* for large moduli, enforce exponent limit */ |
515 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
516 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
517 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
518 | 0 | return -1; |
519 | 0 | } |
520 | 0 | } |
521 | 0 |
|
522 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
523 | 0 | goto err; |
524 | 0 | BN_CTX_start(ctx); |
525 | 0 | f = BN_CTX_get(ctx); |
526 | 0 | ret = BN_CTX_get(ctx); |
527 | 0 | num = BN_num_bytes(rsa->n); |
528 | 0 | buf = OPENSSL_malloc(num); |
529 | 0 | if (ret == NULL || buf == NULL) { |
530 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, ERR_R_MALLOC_FAILURE); |
531 | 0 | goto err; |
532 | 0 | } |
533 | 0 |
|
534 | 0 | /* |
535 | 0 | * This check was for equality but PGP does evil things and chops off the |
536 | 0 | * top '0' bytes |
537 | 0 | */ |
538 | 0 | if (flen > num) { |
539 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
540 | 0 | goto err; |
541 | 0 | } |
542 | 0 |
|
543 | 0 | if (BN_bin2bn(from, flen, f) == NULL) |
544 | 0 | goto err; |
545 | 0 | |
546 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
547 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, |
548 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
549 | 0 | goto err; |
550 | 0 | } |
551 | 0 |
|
552 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
553 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
554 | 0 | rsa->n, ctx)) |
555 | 0 | goto err; |
556 | 0 | |
557 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
558 | 0 | rsa->_method_mod_n)) |
559 | 0 | goto err; |
560 | 0 | |
561 | 0 | if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) |
562 | 0 | if (!BN_sub(ret, rsa->n, ret)) |
563 | 0 | goto err; |
564 | 0 | |
565 | 0 | i = BN_bn2binpad(ret, buf, num); |
566 | 0 |
|
567 | 0 | switch (padding) { |
568 | 0 | case RSA_PKCS1_PADDING: |
569 | 0 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); |
570 | 0 | break; |
571 | 0 | case RSA_X931_PADDING: |
572 | 0 | r = RSA_padding_check_X931(to, num, buf, i, num); |
573 | 0 | break; |
574 | 0 | case RSA_NO_PADDING: |
575 | 0 | memcpy(to, buf, (r = i)); |
576 | 0 | break; |
577 | 0 | default: |
578 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
579 | 0 | goto err; |
580 | 0 | } |
581 | 0 | if (r < 0) |
582 | 0 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
583 | 0 |
|
584 | 0 | err: |
585 | 0 | if (ctx != NULL) |
586 | 0 | BN_CTX_end(ctx); |
587 | 0 | BN_CTX_free(ctx); |
588 | 0 | OPENSSL_clear_free(buf, num); |
589 | 0 | return r; |
590 | 0 | } |
591 | | |
592 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
593 | 0 | { |
594 | 0 | BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2]; |
595 | 0 | int ret = 0, i, ex_primes = 0, smooth = 0; |
596 | 0 | RSA_PRIME_INFO *pinfo; |
597 | 0 |
|
598 | 0 | BN_CTX_start(ctx); |
599 | 0 |
|
600 | 0 | r1 = BN_CTX_get(ctx); |
601 | 0 | r2 = BN_CTX_get(ctx); |
602 | 0 | m1 = BN_CTX_get(ctx); |
603 | 0 | vrfy = BN_CTX_get(ctx); |
604 | 0 | if (vrfy == NULL) |
605 | 0 | goto err; |
606 | 0 | |
607 | 0 | if (rsa->version == RSA_ASN1_VERSION_MULTI |
608 | 0 | && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 |
609 | 0 | || ex_primes > RSA_MAX_PRIME_NUM - 2)) |
610 | 0 | goto err; |
611 | 0 | |
612 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
613 | 0 | BIGNUM *factor = BN_new(); |
614 | 0 |
|
615 | 0 | if (factor == NULL) |
616 | 0 | goto err; |
617 | 0 | |
618 | 0 | /* |
619 | 0 | * Make sure BN_mod_inverse in Montgomery initialization uses the |
620 | 0 | * BN_FLG_CONSTTIME flag |
621 | 0 | */ |
622 | 0 | if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), |
623 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, |
624 | 0 | factor, ctx)) |
625 | 0 | || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), |
626 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, |
627 | 0 | factor, ctx))) { |
628 | 0 | BN_free(factor); |
629 | 0 | goto err; |
630 | 0 | } |
631 | 0 | for (i = 0; i < ex_primes; i++) { |
632 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
633 | 0 | BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); |
634 | 0 | if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { |
635 | 0 | BN_free(factor); |
636 | 0 | goto err; |
637 | 0 | } |
638 | 0 | } |
639 | 0 | /* |
640 | 0 | * We MUST free |factor| before any further use of the prime factors |
641 | 0 | */ |
642 | 0 | BN_free(factor); |
643 | 0 |
|
644 | 0 | smooth = (ex_primes == 0) |
645 | 0 | && (rsa->meth->bn_mod_exp == BN_mod_exp_mont) |
646 | 0 | && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); |
647 | 0 | } |
648 | 0 |
|
649 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
650 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
651 | 0 | rsa->n, ctx)) |
652 | 0 | goto err; |
653 | 0 | |
654 | 0 | if (smooth) { |
655 | 0 | /* |
656 | 0 | * Conversion from Montgomery domain, a.k.a. Montgomery reduction, |
657 | 0 | * accepts values in [0-m*2^w) range. w is m's bit width rounded up |
658 | 0 | * to limb width. So that at the very least if |I| is fully reduced, |
659 | 0 | * i.e. less than p*q, we can count on from-to round to perform |
660 | 0 | * below modulo operations on |I|. Unlike BN_mod it's constant time. |
661 | 0 | */ |
662 | 0 | if (/* m1 = I moq q */ |
663 | 0 | !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) |
664 | 0 | || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) |
665 | 0 | /* m1 = m1^dmq1 mod q */ |
666 | 0 | || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx, |
667 | 0 | rsa->_method_mod_q) |
668 | 0 | /* r1 = I mod p */ |
669 | 0 | || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) |
670 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
671 | 0 | /* r1 = r1^dmp1 mod p */ |
672 | 0 | || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx, |
673 | 0 | rsa->_method_mod_p) |
674 | 0 | /* r1 = (r1 - m1) mod p */ |
675 | 0 | /* |
676 | 0 | * bn_mod_sub_fixed_top is not regular modular subtraction, |
677 | 0 | * it can tolerate subtrahend to be larger than modulus, but |
678 | 0 | * not bit-wise wider. This makes up for uncommon q>p case, |
679 | 0 | * when |m1| can be larger than |rsa->p|. |
680 | 0 | */ |
681 | 0 | || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) |
682 | 0 |
|
683 | 0 | /* r0 = r0 * iqmp mod p */ |
684 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
685 | 0 | || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, |
686 | 0 | ctx) |
687 | 0 | || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) |
688 | 0 | || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) |
689 | 0 | goto err; |
690 | 0 | |
691 | 0 | goto tail; |
692 | 0 | } |
693 | 0 | |
694 | 0 | /* compute I mod q */ |
695 | 0 | { |
696 | 0 | BIGNUM *c = BN_new(); |
697 | 0 | if (c == NULL) |
698 | 0 | goto err; |
699 | 0 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
700 | 0 |
|
701 | 0 | if (!BN_mod(r1, c, rsa->q, ctx)) { |
702 | 0 | BN_free(c); |
703 | 0 | goto err; |
704 | 0 | } |
705 | 0 | |
706 | 0 | { |
707 | 0 | BIGNUM *dmq1 = BN_new(); |
708 | 0 | if (dmq1 == NULL) { |
709 | 0 | BN_free(c); |
710 | 0 | goto err; |
711 | 0 | } |
712 | 0 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
713 | 0 |
|
714 | 0 | /* compute r1^dmq1 mod q */ |
715 | 0 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, |
716 | 0 | rsa->_method_mod_q)) { |
717 | 0 | BN_free(c); |
718 | 0 | BN_free(dmq1); |
719 | 0 | goto err; |
720 | 0 | } |
721 | 0 | /* We MUST free dmq1 before any further use of rsa->dmq1 */ |
722 | 0 | BN_free(dmq1); |
723 | 0 | } |
724 | 0 |
|
725 | 0 | /* compute I mod p */ |
726 | 0 | if (!BN_mod(r1, c, rsa->p, ctx)) { |
727 | 0 | BN_free(c); |
728 | 0 | goto err; |
729 | 0 | } |
730 | 0 | /* We MUST free c before any further use of I */ |
731 | 0 | BN_free(c); |
732 | 0 | } |
733 | 0 |
|
734 | 0 | { |
735 | 0 | BIGNUM *dmp1 = BN_new(); |
736 | 0 | if (dmp1 == NULL) |
737 | 0 | goto err; |
738 | 0 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
739 | 0 |
|
740 | 0 | /* compute r1^dmp1 mod p */ |
741 | 0 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, |
742 | 0 | rsa->_method_mod_p)) { |
743 | 0 | BN_free(dmp1); |
744 | 0 | goto err; |
745 | 0 | } |
746 | 0 | /* We MUST free dmp1 before any further use of rsa->dmp1 */ |
747 | 0 | BN_free(dmp1); |
748 | 0 | } |
749 | 0 |
|
750 | 0 | /* |
751 | 0 | * calculate m_i in multi-prime case |
752 | 0 | * |
753 | 0 | * TODO: |
754 | 0 | * 1. squash the following two loops and calculate |m_i| there. |
755 | 0 | * 2. remove cc and reuse |c|. |
756 | 0 | * 3. remove |dmq1| and |dmp1| in previous block and use |di|. |
757 | 0 | * |
758 | 0 | * If these things are done, the code will be more readable. |
759 | 0 | */ |
760 | 0 | if (ex_primes > 0) { |
761 | 0 | BIGNUM *di = BN_new(), *cc = BN_new(); |
762 | 0 |
|
763 | 0 | if (cc == NULL || di == NULL) { |
764 | 0 | BN_free(cc); |
765 | 0 | BN_free(di); |
766 | 0 | goto err; |
767 | 0 | } |
768 | 0 | |
769 | 0 | for (i = 0; i < ex_primes; i++) { |
770 | 0 | /* prepare m_i */ |
771 | 0 | if ((m[i] = BN_CTX_get(ctx)) == NULL) { |
772 | 0 | BN_free(cc); |
773 | 0 | BN_free(di); |
774 | 0 | goto err; |
775 | 0 | } |
776 | 0 | |
777 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
778 | 0 |
|
779 | 0 | /* prepare c and d_i */ |
780 | 0 | BN_with_flags(cc, I, BN_FLG_CONSTTIME); |
781 | 0 | BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); |
782 | 0 |
|
783 | 0 | if (!BN_mod(r1, cc, pinfo->r, ctx)) { |
784 | 0 | BN_free(cc); |
785 | 0 | BN_free(di); |
786 | 0 | goto err; |
787 | 0 | } |
788 | 0 | /* compute r1 ^ d_i mod r_i */ |
789 | 0 | if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { |
790 | 0 | BN_free(cc); |
791 | 0 | BN_free(di); |
792 | 0 | goto err; |
793 | 0 | } |
794 | 0 | } |
795 | 0 |
|
796 | 0 | BN_free(cc); |
797 | 0 | BN_free(di); |
798 | 0 | } |
799 | 0 |
|
800 | 0 | if (!BN_sub(r0, r0, m1)) |
801 | 0 | goto err; |
802 | 0 | /* |
803 | 0 | * This will help stop the size of r0 increasing, which does affect the |
804 | 0 | * multiply if it optimised for a power of 2 size |
805 | 0 | */ |
806 | 0 | if (BN_is_negative(r0)) |
807 | 0 | if (!BN_add(r0, r0, rsa->p)) |
808 | 0 | goto err; |
809 | 0 | |
810 | 0 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
811 | 0 | goto err; |
812 | 0 | |
813 | 0 | { |
814 | 0 | BIGNUM *pr1 = BN_new(); |
815 | 0 | if (pr1 == NULL) |
816 | 0 | goto err; |
817 | 0 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
818 | 0 |
|
819 | 0 | if (!BN_mod(r0, pr1, rsa->p, ctx)) { |
820 | 0 | BN_free(pr1); |
821 | 0 | goto err; |
822 | 0 | } |
823 | 0 | /* We MUST free pr1 before any further use of r1 */ |
824 | 0 | BN_free(pr1); |
825 | 0 | } |
826 | 0 |
|
827 | 0 | /* |
828 | 0 | * If p < q it is occasionally possible for the correction of adding 'p' |
829 | 0 | * if r0 is negative above to leave the result still negative. This can |
830 | 0 | * break the private key operations: the following second correction |
831 | 0 | * should *always* correct this rare occurrence. This will *never* happen |
832 | 0 | * with OpenSSL generated keys because they ensure p > q [steve] |
833 | 0 | */ |
834 | 0 | if (BN_is_negative(r0)) |
835 | 0 | if (!BN_add(r0, r0, rsa->p)) |
836 | 0 | goto err; |
837 | 0 | if (!BN_mul(r1, r0, rsa->q, ctx)) |
838 | 0 | goto err; |
839 | 0 | if (!BN_add(r0, r1, m1)) |
840 | 0 | goto err; |
841 | 0 | |
842 | 0 | /* add m_i to m in multi-prime case */ |
843 | 0 | if (ex_primes > 0) { |
844 | 0 | BIGNUM *pr2 = BN_new(); |
845 | 0 |
|
846 | 0 | if (pr2 == NULL) |
847 | 0 | goto err; |
848 | 0 | |
849 | 0 | for (i = 0; i < ex_primes; i++) { |
850 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
851 | 0 | if (!BN_sub(r1, m[i], r0)) { |
852 | 0 | BN_free(pr2); |
853 | 0 | goto err; |
854 | 0 | } |
855 | 0 | |
856 | 0 | if (!BN_mul(r2, r1, pinfo->t, ctx)) { |
857 | 0 | BN_free(pr2); |
858 | 0 | goto err; |
859 | 0 | } |
860 | 0 | |
861 | 0 | BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); |
862 | 0 |
|
863 | 0 | if (!BN_mod(r1, pr2, pinfo->r, ctx)) { |
864 | 0 | BN_free(pr2); |
865 | 0 | goto err; |
866 | 0 | } |
867 | 0 | |
868 | 0 | if (BN_is_negative(r1)) |
869 | 0 | if (!BN_add(r1, r1, pinfo->r)) { |
870 | 0 | BN_free(pr2); |
871 | 0 | goto err; |
872 | 0 | } |
873 | 0 | if (!BN_mul(r1, r1, pinfo->pp, ctx)) { |
874 | 0 | BN_free(pr2); |
875 | 0 | goto err; |
876 | 0 | } |
877 | 0 | if (!BN_add(r0, r0, r1)) { |
878 | 0 | BN_free(pr2); |
879 | 0 | goto err; |
880 | 0 | } |
881 | 0 | } |
882 | 0 | BN_free(pr2); |
883 | 0 | } |
884 | 0 |
|
885 | 0 | tail: |
886 | 0 | if (rsa->e && rsa->n) { |
887 | 0 | if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { |
888 | 0 | if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, |
889 | 0 | rsa->_method_mod_n)) |
890 | 0 | goto err; |
891 | 0 | } else { |
892 | 0 | bn_correct_top(r0); |
893 | 0 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, |
894 | 0 | rsa->_method_mod_n)) |
895 | 0 | goto err; |
896 | 0 | } |
897 | 0 | /* |
898 | 0 | * If 'I' was greater than (or equal to) rsa->n, the operation will |
899 | 0 | * be equivalent to using 'I mod n'. However, the result of the |
900 | 0 | * verify will *always* be less than 'n' so we don't check for |
901 | 0 | * absolute equality, just congruency. |
902 | 0 | */ |
903 | 0 | if (!BN_sub(vrfy, vrfy, I)) |
904 | 0 | goto err; |
905 | 0 | if (BN_is_zero(vrfy)) { |
906 | 0 | bn_correct_top(r0); |
907 | 0 | ret = 1; |
908 | 0 | goto err; /* not actually error */ |
909 | 0 | } |
910 | 0 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
911 | 0 | goto err; |
912 | 0 | if (BN_is_negative(vrfy)) |
913 | 0 | if (!BN_add(vrfy, vrfy, rsa->n)) |
914 | 0 | goto err; |
915 | 0 | if (!BN_is_zero(vrfy)) { |
916 | 0 | /* |
917 | 0 | * 'I' and 'vrfy' aren't congruent mod n. Don't leak |
918 | 0 | * miscalculated CRT output, just do a raw (slower) mod_exp and |
919 | 0 | * return that instead. |
920 | 0 | */ |
921 | 0 |
|
922 | 0 | BIGNUM *d = BN_new(); |
923 | 0 | if (d == NULL) |
924 | 0 | goto err; |
925 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
926 | 0 |
|
927 | 0 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, |
928 | 0 | rsa->_method_mod_n)) { |
929 | 0 | BN_free(d); |
930 | 0 | goto err; |
931 | 0 | } |
932 | 0 | /* We MUST free d before any further use of rsa->d */ |
933 | 0 | BN_free(d); |
934 | 0 | } |
935 | 0 | } |
936 | 0 | /* |
937 | 0 | * It's unfortunate that we have to bn_correct_top(r0). What hopefully |
938 | 0 | * saves the day is that correction is highly unlike, and private key |
939 | 0 | * operations are customarily performed on blinded message. Which means |
940 | 0 | * that attacker won't observe correlation with chosen plaintext. |
941 | 0 | * Secondly, remaining code would still handle it in same computational |
942 | 0 | * time and even conceal memory access pattern around corrected top. |
943 | 0 | */ |
944 | 0 | bn_correct_top(r0); |
945 | 0 | ret = 1; |
946 | 0 | err: |
947 | 0 | BN_CTX_end(ctx); |
948 | 0 | return ret; |
949 | 0 | } |
950 | | |
951 | | static int rsa_ossl_init(RSA *rsa) |
952 | 540k | { |
953 | 540k | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; |
954 | 540k | return 1; |
955 | 540k | } |
956 | | |
957 | | static int rsa_ossl_finish(RSA *rsa) |
958 | 540k | { |
959 | 540k | int i; |
960 | 540k | RSA_PRIME_INFO *pinfo; |
961 | 540k | |
962 | 540k | BN_MONT_CTX_free(rsa->_method_mod_n); |
963 | 540k | BN_MONT_CTX_free(rsa->_method_mod_p); |
964 | 540k | BN_MONT_CTX_free(rsa->_method_mod_q); |
965 | 685k | for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { |
966 | 144k | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
967 | 144k | BN_MONT_CTX_free(pinfo->m); |
968 | 144k | } |
969 | 540k | return 1; |
970 | 540k | } |