Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/sha/sha_locl.h
Line
Count
Source
1
/*
2
 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <string.h>
12
13
#include <openssl/opensslconf.h>
14
#include <openssl/sha.h>
15
16
#define DATA_ORDER_IS_BIG_ENDIAN
17
18
19.3k
#define HASH_LONG               SHA_LONG
19
#define HASH_CTX                SHA_CTX
20
136k
#define HASH_CBLOCK             SHA_CBLOCK
21
19.3k
#define HASH_MAKE_STRING(c,s)   do {    \
22
19.3k
        unsigned long ll;               \
23
19.3k
        ll=(c)->h0; (void)HOST_l2c(ll,(s));     \
24
19.3k
        ll=(c)->h1; (void)HOST_l2c(ll,(s));     \
25
19.3k
        ll=(c)->h2; (void)HOST_l2c(ll,(s));     \
26
19.3k
        ll=(c)->h3; (void)HOST_l2c(ll,(s));     \
27
19.3k
        ll=(c)->h4; (void)HOST_l2c(ll,(s));     \
28
19.3k
        } while (0)
29
30
#define HASH_UPDATE                     SHA1_Update
31
#define HASH_TRANSFORM                  SHA1_Transform
32
#define HASH_FINAL                      SHA1_Final
33
#define HASH_INIT                       SHA1_Init
34
39.5k
#define HASH_BLOCK_DATA_ORDER           sha1_block_data_order
35
#define Xupdate(a,ix,ia,ib,ic,id)       ( (a)=(ia^ib^ic^id),    \
36
                                          ix=(a)=ROTATE((a),1)  \
37
                                        )
38
39
#ifndef SHA1_ASM
40
static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
41
#else
42
void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
43
#endif
44
45
#include "internal/md32_common.h"
46
47
19.3k
#define INIT_DATA_h0 0x67452301UL
48
19.3k
#define INIT_DATA_h1 0xefcdab89UL
49
19.3k
#define INIT_DATA_h2 0x98badcfeUL
50
19.3k
#define INIT_DATA_h3 0x10325476UL
51
19.3k
#define INIT_DATA_h4 0xc3d2e1f0UL
52
53
int HASH_INIT(SHA_CTX *c)
54
19.3k
{
55
19.3k
    memset(c, 0, sizeof(*c));
56
19.3k
    c->h0 = INIT_DATA_h0;
57
19.3k
    c->h1 = INIT_DATA_h1;
58
19.3k
    c->h2 = INIT_DATA_h2;
59
19.3k
    c->h3 = INIT_DATA_h3;
60
19.3k
    c->h4 = INIT_DATA_h4;
61
19.3k
    return 1;
62
19.3k
}
63
64
#define K_00_19 0x5a827999UL
65
#define K_20_39 0x6ed9eba1UL
66
#define K_40_59 0x8f1bbcdcUL
67
#define K_60_79 0xca62c1d6UL
68
69
/*
70
 * As pointed out by Wei Dai, F() below can be simplified to the code in
71
 * F_00_19.  Wei attributes these optimizations to Peter Gutmann's SHS code,
72
 * and he attributes it to Rich Schroeppel.
73
 *      #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
74
 * I've just become aware of another tweak to be made, again from Wei Dai,
75
 * in F_40_59, (x&a)|(y&a) -> (x|y)&a
76
 */
77
#define F_00_19(b,c,d)  ((((c) ^ (d)) & (b)) ^ (d))
78
#define F_20_39(b,c,d)  ((b) ^ (c) ^ (d))
79
#define F_40_59(b,c,d)  (((b) & (c)) | (((b)|(c)) & (d)))
80
#define F_60_79(b,c,d)  F_20_39(b,c,d)
81
82
#ifndef OPENSSL_SMALL_FOOTPRINT
83
84
# define BODY_00_15(i,a,b,c,d,e,f,xi) \
85
        (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
86
        (b)=ROTATE((b),30);
87
88
# define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
89
        Xupdate(f,xi,xa,xb,xc,xd); \
90
        (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
91
        (b)=ROTATE((b),30);
92
93
# define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
94
        Xupdate(f,xi,xa,xb,xc,xd); \
95
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
96
        (b)=ROTATE((b),30);
97
98
# define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
99
        Xupdate(f,xa,xa,xb,xc,xd); \
100
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
101
        (b)=ROTATE((b),30);
102
103
# define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
104
        Xupdate(f,xa,xa,xb,xc,xd); \
105
        (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
106
        (b)=ROTATE((b),30);
107
108
# define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
109
        Xupdate(f,xa,xa,xb,xc,xd); \
110
        (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
111
        (b)=ROTATE((b),30);
112
113
# ifdef X
114
#  undef X
115
# endif
116
# ifndef MD32_XARRAY
117
  /*
118
   * Originally X was an array. As it's automatic it's natural
119
   * to expect RISC compiler to accommodate at least part of it in
120
   * the register bank, isn't it? Unfortunately not all compilers
121
   * "find" this expectation reasonable:-( On order to make such
122
   * compilers generate better code I replace X[] with a bunch of
123
   * X0, X1, etc. See the function body below...
124
   */
125
#  define X(i)   XX##i
126
# else
127
  /*
128
   * However! Some compilers (most notably HP C) get overwhelmed by
129
   * that many local variables so that we have to have the way to
130
   * fall down to the original behavior.
131
   */
132
#  define X(i)   XX[i]
133
# endif
134
135
# if !defined(SHA1_ASM)
136
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
137
{
138
    const unsigned char *data = p;
139
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
140
#  ifndef MD32_XARRAY
141
    unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
142
        XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
143
#  else
144
    SHA_LONG XX[16];
145
#  endif
146
147
    A = c->h0;
148
    B = c->h1;
149
    C = c->h2;
150
    D = c->h3;
151
    E = c->h4;
152
153
    for (;;) {
154
        const union {
155
            long one;
156
            char little;
157
        } is_endian = {
158
            1
159
        };
160
161
        if (!is_endian.little && sizeof(SHA_LONG) == 4
162
            && ((size_t)p % 4) == 0) {
163
            const SHA_LONG *W = (const SHA_LONG *)data;
164
165
            X(0) = W[0];
166
            X(1) = W[1];
167
            BODY_00_15(0, A, B, C, D, E, T, X(0));
168
            X(2) = W[2];
169
            BODY_00_15(1, T, A, B, C, D, E, X(1));
170
            X(3) = W[3];
171
            BODY_00_15(2, E, T, A, B, C, D, X(2));
172
            X(4) = W[4];
173
            BODY_00_15(3, D, E, T, A, B, C, X(3));
174
            X(5) = W[5];
175
            BODY_00_15(4, C, D, E, T, A, B, X(4));
176
            X(6) = W[6];
177
            BODY_00_15(5, B, C, D, E, T, A, X(5));
178
            X(7) = W[7];
179
            BODY_00_15(6, A, B, C, D, E, T, X(6));
180
            X(8) = W[8];
181
            BODY_00_15(7, T, A, B, C, D, E, X(7));
182
            X(9) = W[9];
183
            BODY_00_15(8, E, T, A, B, C, D, X(8));
184
            X(10) = W[10];
185
            BODY_00_15(9, D, E, T, A, B, C, X(9));
186
            X(11) = W[11];
187
            BODY_00_15(10, C, D, E, T, A, B, X(10));
188
            X(12) = W[12];
189
            BODY_00_15(11, B, C, D, E, T, A, X(11));
190
            X(13) = W[13];
191
            BODY_00_15(12, A, B, C, D, E, T, X(12));
192
            X(14) = W[14];
193
            BODY_00_15(13, T, A, B, C, D, E, X(13));
194
            X(15) = W[15];
195
            BODY_00_15(14, E, T, A, B, C, D, X(14));
196
            BODY_00_15(15, D, E, T, A, B, C, X(15));
197
198
            data += SHA_CBLOCK;
199
        } else {
200
            (void)HOST_c2l(data, l);
201
            X(0) = l;
202
            (void)HOST_c2l(data, l);
203
            X(1) = l;
204
            BODY_00_15(0, A, B, C, D, E, T, X(0));
205
            (void)HOST_c2l(data, l);
206
            X(2) = l;
207
            BODY_00_15(1, T, A, B, C, D, E, X(1));
208
            (void)HOST_c2l(data, l);
209
            X(3) = l;
210
            BODY_00_15(2, E, T, A, B, C, D, X(2));
211
            (void)HOST_c2l(data, l);
212
            X(4) = l;
213
            BODY_00_15(3, D, E, T, A, B, C, X(3));
214
            (void)HOST_c2l(data, l);
215
            X(5) = l;
216
            BODY_00_15(4, C, D, E, T, A, B, X(4));
217
            (void)HOST_c2l(data, l);
218
            X(6) = l;
219
            BODY_00_15(5, B, C, D, E, T, A, X(5));
220
            (void)HOST_c2l(data, l);
221
            X(7) = l;
222
            BODY_00_15(6, A, B, C, D, E, T, X(6));
223
            (void)HOST_c2l(data, l);
224
            X(8) = l;
225
            BODY_00_15(7, T, A, B, C, D, E, X(7));
226
            (void)HOST_c2l(data, l);
227
            X(9) = l;
228
            BODY_00_15(8, E, T, A, B, C, D, X(8));
229
            (void)HOST_c2l(data, l);
230
            X(10) = l;
231
            BODY_00_15(9, D, E, T, A, B, C, X(9));
232
            (void)HOST_c2l(data, l);
233
            X(11) = l;
234
            BODY_00_15(10, C, D, E, T, A, B, X(10));
235
            (void)HOST_c2l(data, l);
236
            X(12) = l;
237
            BODY_00_15(11, B, C, D, E, T, A, X(11));
238
            (void)HOST_c2l(data, l);
239
            X(13) = l;
240
            BODY_00_15(12, A, B, C, D, E, T, X(12));
241
            (void)HOST_c2l(data, l);
242
            X(14) = l;
243
            BODY_00_15(13, T, A, B, C, D, E, X(13));
244
            (void)HOST_c2l(data, l);
245
            X(15) = l;
246
            BODY_00_15(14, E, T, A, B, C, D, X(14));
247
            BODY_00_15(15, D, E, T, A, B, C, X(15));
248
        }
249
250
        BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
251
        BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
252
        BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
253
        BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
254
255
        BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
256
        BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
257
        BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
258
        BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
259
        BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
260
        BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
261
        BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
262
        BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
263
        BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
264
        BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
265
        BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
266
        BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
267
268
        BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
269
        BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
270
        BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
271
        BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
272
        BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
273
        BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
274
        BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
275
        BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
276
277
        BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
278
        BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
279
        BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
280
        BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
281
        BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
282
        BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
283
        BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
284
        BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
285
        BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
286
        BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
287
        BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
288
        BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
289
        BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
290
        BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
291
        BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
292
        BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
293
        BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
294
        BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
295
        BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
296
        BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
297
298
        BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
299
        BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
300
        BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
301
        BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
302
        BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
303
        BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
304
        BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
305
        BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
306
        BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
307
        BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
308
        BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
309
        BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
310
        BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
311
        BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
312
        BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
313
        BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
314
        BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
315
        BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
316
        BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
317
        BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
318
319
        c->h0 = (c->h0 + E) & 0xffffffffL;
320
        c->h1 = (c->h1 + T) & 0xffffffffL;
321
        c->h2 = (c->h2 + A) & 0xffffffffL;
322
        c->h3 = (c->h3 + B) & 0xffffffffL;
323
        c->h4 = (c->h4 + C) & 0xffffffffL;
324
325
        if (--num == 0)
326
            break;
327
328
        A = c->h0;
329
        B = c->h1;
330
        C = c->h2;
331
        D = c->h3;
332
        E = c->h4;
333
334
    }
335
}
336
# endif
337
338
#else                           /* OPENSSL_SMALL_FOOTPRINT */
339
340
# define BODY_00_15(xi)           do {   \
341
        T=E+K_00_19+F_00_19(B,C,D);     \
342
        E=D, D=C, C=ROTATE(B,30), B=A;  \
343
        A=ROTATE(A,5)+T+xi;         } while(0)
344
345
# define BODY_16_19(xa,xb,xc,xd)  do {   \
346
        Xupdate(T,xa,xa,xb,xc,xd);      \
347
        T+=E+K_00_19+F_00_19(B,C,D);    \
348
        E=D, D=C, C=ROTATE(B,30), B=A;  \
349
        A=ROTATE(A,5)+T;            } while(0)
350
351
# define BODY_20_39(xa,xb,xc,xd)  do {   \
352
        Xupdate(T,xa,xa,xb,xc,xd);      \
353
        T+=E+K_20_39+F_20_39(B,C,D);    \
354
        E=D, D=C, C=ROTATE(B,30), B=A;  \
355
        A=ROTATE(A,5)+T;            } while(0)
356
357
# define BODY_40_59(xa,xb,xc,xd)  do {   \
358
        Xupdate(T,xa,xa,xb,xc,xd);      \
359
        T+=E+K_40_59+F_40_59(B,C,D);    \
360
        E=D, D=C, C=ROTATE(B,30), B=A;  \
361
        A=ROTATE(A,5)+T;            } while(0)
362
363
# define BODY_60_79(xa,xb,xc,xd)  do {   \
364
        Xupdate(T,xa,xa,xb,xc,xd);      \
365
        T=E+K_60_79+F_60_79(B,C,D);     \
366
        E=D, D=C, C=ROTATE(B,30), B=A;  \
367
        A=ROTATE(A,5)+T+xa;         } while(0)
368
369
# if !defined(SHA1_ASM)
370
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
371
{
372
    const unsigned char *data = p;
373
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
374
    int i;
375
    SHA_LONG X[16];
376
377
    A = c->h0;
378
    B = c->h1;
379
    C = c->h2;
380
    D = c->h3;
381
    E = c->h4;
382
383
    for (;;) {
384
        for (i = 0; i < 16; i++) {
385
            (void)HOST_c2l(data, l);
386
            X[i] = l;
387
            BODY_00_15(X[i]);
388
        }
389
        for (i = 0; i < 4; i++) {
390
            BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
391
        }
392
        for (; i < 24; i++) {
393
            BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
394
                       X[(i + 13) & 15]);
395
        }
396
        for (i = 0; i < 20; i++) {
397
            BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
398
                       X[(i + 5) & 15]);
399
        }
400
        for (i = 4; i < 24; i++) {
401
            BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
402
                       X[(i + 5) & 15]);
403
        }
404
405
        c->h0 = (c->h0 + A) & 0xffffffffL;
406
        c->h1 = (c->h1 + B) & 0xffffffffL;
407
        c->h2 = (c->h2 + C) & 0xffffffffL;
408
        c->h3 = (c->h3 + D) & 0xffffffffL;
409
        c->h4 = (c->h4 + E) & 0xffffffffL;
410
411
        if (--num == 0)
412
            break;
413
414
        A = c->h0;
415
        B = c->h1;
416
        C = c->h2;
417
        D = c->h3;
418
        E = c->h4;
419
420
    }
421
}
422
# endif
423
424
#endif