Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/whrlpool/wp_dgst.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/**
11
 * The Whirlpool hashing function.
12
 *
13
 * See
14
 *      P.S.L.M. Barreto, V. Rijmen,
15
 *      ``The Whirlpool hashing function,''
16
 *      NESSIE submission, 2000 (tweaked version, 2001),
17
 *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
18
 *
19
 * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
20
 * Vincent Rijmen. Lookup "reference implementations" on
21
 * <http://planeta.terra.com.br/informatica/paulobarreto/>
22
 *
23
 * =============================================================================
24
 *
25
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
26
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
29
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
33
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
34
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
35
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36
 *
37
 */
38
39
/*
40
 * OpenSSL-specific implementation notes.
41
 *
42
 * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect
43
 * number of *bytes* as input length argument. Bit-oriented routine
44
 * as specified by authors is called WHIRLPOOL_BitUpdate[!] and
45
 * does not have one-stroke counterpart.
46
 *
47
 * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially
48
 * to serve WHIRLPOOL_Update. This is done for performance.
49
 *
50
 * Unlike authors' reference implementation, block processing
51
 * routine whirlpool_block is designed to operate on multi-block
52
 * input. This is done for performance.
53
 */
54
55
#include <openssl/crypto.h>
56
#include "wp_locl.h"
57
#include <string.h>
58
59
int WHIRLPOOL_Init(WHIRLPOOL_CTX *c)
60
0
{
61
0
    memset(c, 0, sizeof(*c));
62
0
    return 1;
63
0
}
64
65
int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes)
66
0
{
67
0
    /*
68
0
     * Well, largest suitable chunk size actually is
69
0
     * (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not
70
0
     * to care about excessive calls to WHIRLPOOL_BitUpdate...
71
0
     */
72
0
    size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4);
73
0
    const unsigned char *inp = _inp;
74
0
75
0
    while (bytes >= chunk) {
76
0
        WHIRLPOOL_BitUpdate(c, inp, chunk * 8);
77
0
        bytes -= chunk;
78
0
        inp += chunk;
79
0
    }
80
0
    if (bytes)
81
0
        WHIRLPOOL_BitUpdate(c, inp, bytes * 8);
82
0
83
0
    return 1;
84
0
}
85
86
void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits)
87
0
{
88
0
    size_t n;
89
0
    unsigned int bitoff = c->bitoff,
90
0
        bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7;
91
0
    const unsigned char *inp = _inp;
92
0
93
0
    /*
94
0
     * This 256-bit increment procedure relies on the size_t being natural
95
0
     * size of CPU register, so that we don't have to mask the value in order
96
0
     * to detect overflows.
97
0
     */
98
0
    c->bitlen[0] += bits;
99
0
    if (c->bitlen[0] < bits) {  /* overflow */
100
0
        n = 1;
101
0
        do {
102
0
            c->bitlen[n]++;
103
0
        } while (c->bitlen[n] == 0
104
0
                 && ++n < (WHIRLPOOL_COUNTER / sizeof(size_t)));
105
0
    }
106
0
#ifndef OPENSSL_SMALL_FOOTPRINT
107
0
 reconsider:
108
0
    if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */
109
0
        while (bits) {
110
0
            if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) {
111
0
                whirlpool_block(c, inp, n);
112
0
                inp += n * WHIRLPOOL_BBLOCK / 8;
113
0
                bits %= WHIRLPOOL_BBLOCK;
114
0
            } else {
115
0
                unsigned int byteoff = bitoff / 8;
116
0
117
0
                bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */
118
0
                if (bits >= bitrem) {
119
0
                    bits -= bitrem;
120
0
                    bitrem /= 8;
121
0
                    memcpy(c->data + byteoff, inp, bitrem);
122
0
                    inp += bitrem;
123
0
                    whirlpool_block(c, c->data, 1);
124
0
                    bitoff = 0;
125
0
                } else {
126
0
                    memcpy(c->data + byteoff, inp, bits / 8);
127
0
                    bitoff += (unsigned int)bits;
128
0
                    bits = 0;
129
0
                }
130
0
                c->bitoff = bitoff;
131
0
            }
132
0
        }
133
0
    } else                      /* bit-oriented loop */
134
0
#endif
135
0
    {
136
0
        /*-
137
0
                   inp
138
0
                   |
139
0
                   +-------+-------+-------
140
0
                      |||||||||||||||||||||
141
0
                   +-------+-------+-------
142
0
        +-------+-------+-------+-------+-------
143
0
        ||||||||||||||                          c->data
144
0
        +-------+-------+-------+-------+-------
145
0
                |
146
0
                c->bitoff/8
147
0
        */
148
0
        while (bits) {
149
0
            unsigned int byteoff = bitoff / 8;
150
0
            unsigned char b;
151
0
152
0
#ifndef OPENSSL_SMALL_FOOTPRINT
153
0
            if (bitrem == inpgap) {
154
0
                c->data[byteoff++] |= inp[0] & (0xff >> inpgap);
155
0
                inpgap = 8 - inpgap;
156
0
                bitoff += inpgap;
157
0
                bitrem = 0;     /* bitoff%8 */
158
0
                bits -= inpgap;
159
0
                inpgap = 0;     /* bits%8 */
160
0
                inp++;
161
0
                if (bitoff == WHIRLPOOL_BBLOCK) {
162
0
                    whirlpool_block(c, c->data, 1);
163
0
                    bitoff = 0;
164
0
                }
165
0
                c->bitoff = bitoff;
166
0
                goto reconsider;
167
0
            } else
168
0
#endif
169
0
            if (bits > 8) {
170
0
                b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap)));
171
0
                b &= 0xff;
172
0
                if (bitrem)
173
0
                    c->data[byteoff++] |= b >> bitrem;
174
0
                else
175
0
                    c->data[byteoff++] = b;
176
0
                bitoff += 8;
177
0
                bits -= 8;
178
0
                inp++;
179
0
                if (bitoff >= WHIRLPOOL_BBLOCK) {
180
0
                    whirlpool_block(c, c->data, 1);
181
0
                    byteoff = 0;
182
0
                    bitoff %= WHIRLPOOL_BBLOCK;
183
0
                }
184
0
                if (bitrem)
185
0
                    c->data[byteoff] = b << (8 - bitrem);
186
0
            } else {            /* remaining less than or equal to 8 bits */
187
0
188
0
                b = (inp[0] << inpgap) & 0xff;
189
0
                if (bitrem)
190
0
                    c->data[byteoff++] |= b >> bitrem;
191
0
                else
192
0
                    c->data[byteoff++] = b;
193
0
                bitoff += (unsigned int)bits;
194
0
                if (bitoff == WHIRLPOOL_BBLOCK) {
195
0
                    whirlpool_block(c, c->data, 1);
196
0
                    byteoff = 0;
197
0
                    bitoff %= WHIRLPOOL_BBLOCK;
198
0
                }
199
0
                if (bitrem)
200
0
                    c->data[byteoff] = b << (8 - bitrem);
201
0
                bits = 0;
202
0
            }
203
0
            c->bitoff = bitoff;
204
0
        }
205
0
    }
206
0
}
207
208
int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c)
209
0
{
210
0
    unsigned int bitoff = c->bitoff, byteoff = bitoff / 8;
211
0
    size_t i, j, v;
212
0
    unsigned char *p;
213
0
214
0
    bitoff %= 8;
215
0
    if (bitoff)
216
0
        c->data[byteoff] |= 0x80 >> bitoff;
217
0
    else
218
0
        c->data[byteoff] = 0x80;
219
0
    byteoff++;
220
0
221
0
    /* pad with zeros */
222
0
    if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) {
223
0
        if (byteoff < WHIRLPOOL_BBLOCK / 8)
224
0
            memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff);
225
0
        whirlpool_block(c, c->data, 1);
226
0
        byteoff = 0;
227
0
    }
228
0
    if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER))
229
0
        memset(&c->data[byteoff], 0,
230
0
               (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff);
231
0
    /* smash 256-bit c->bitlen in big-endian order */
232
0
    p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */
233
0
    for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++)
234
0
        for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8)
235
0
            *p-- = (unsigned char)(v & 0xff);
236
0
237
0
    whirlpool_block(c, c->data, 1);
238
0
239
0
    if (md) {
240
0
        memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH);
241
0
        OPENSSL_cleanse(c, sizeof(*c));
242
0
        return 1;
243
0
    }
244
0
    return 0;
245
0
}
246
247
unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md)
248
0
{
249
0
    WHIRLPOOL_CTX ctx;
250
0
    static unsigned char m[WHIRLPOOL_DIGEST_LENGTH];
251
0
252
0
    if (md == NULL)
253
0
        md = m;
254
0
    WHIRLPOOL_Init(&ctx);
255
0
    WHIRLPOOL_Update(&ctx, inp, bytes);
256
0
    WHIRLPOOL_Final(md, &ctx);
257
0
    return md;
258
0
}