/src/openssl/crypto/x509/x_pubkey.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include <openssl/asn1t.h> |
13 | | #include <openssl/x509.h> |
14 | | #include "internal/asn1_int.h" |
15 | | #include "internal/evp_int.h" |
16 | | #include "internal/x509_int.h" |
17 | | #include <openssl/rsa.h> |
18 | | #include <openssl/dsa.h> |
19 | | |
20 | | struct X509_pubkey_st { |
21 | | X509_ALGOR *algor; |
22 | | ASN1_BIT_STRING *public_key; |
23 | | EVP_PKEY *pkey; |
24 | | }; |
25 | | |
26 | | static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key); |
27 | | |
28 | | /* Minor tweak to operation: free up EVP_PKEY */ |
29 | | static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
30 | | void *exarg) |
31 | 0 | { |
32 | 0 | if (operation == ASN1_OP_FREE_POST) { |
33 | 0 | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
34 | 0 | EVP_PKEY_free(pubkey->pkey); |
35 | 0 | } else if (operation == ASN1_OP_D2I_POST) { |
36 | 0 | /* Attempt to decode public key and cache in pubkey structure. */ |
37 | 0 | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
38 | 0 | EVP_PKEY_free(pubkey->pkey); |
39 | 0 | /* |
40 | 0 | * Opportunistically decode the key but remove any non fatal errors |
41 | 0 | * from the queue. Subsequent explicit attempts to decode/use the key |
42 | 0 | * will return an appropriate error. |
43 | 0 | */ |
44 | 0 | ERR_set_mark(); |
45 | 0 | if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) |
46 | 0 | return 0; |
47 | 0 | ERR_pop_to_mark(); |
48 | 0 | } |
49 | 0 | return 1; |
50 | 0 | } |
51 | | |
52 | | ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { |
53 | | ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), |
54 | | ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) |
55 | | } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) |
56 | | |
57 | | IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) |
58 | | |
59 | | int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) |
60 | 0 | { |
61 | 0 | X509_PUBKEY *pk = NULL; |
62 | 0 |
|
63 | 0 | if (x == NULL) |
64 | 0 | return 0; |
65 | 0 | |
66 | 0 | if ((pk = X509_PUBKEY_new()) == NULL) |
67 | 0 | goto error; |
68 | 0 | |
69 | 0 | if (pkey->ameth) { |
70 | 0 | if (pkey->ameth->pub_encode) { |
71 | 0 | if (!pkey->ameth->pub_encode(pk, pkey)) { |
72 | 0 | X509err(X509_F_X509_PUBKEY_SET, |
73 | 0 | X509_R_PUBLIC_KEY_ENCODE_ERROR); |
74 | 0 | goto error; |
75 | 0 | } |
76 | 0 | } else { |
77 | 0 | X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED); |
78 | 0 | goto error; |
79 | 0 | } |
80 | 0 | } else { |
81 | 0 | X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM); |
82 | 0 | goto error; |
83 | 0 | } |
84 | 0 |
|
85 | 0 | X509_PUBKEY_free(*x); |
86 | 0 | *x = pk; |
87 | 0 | pk->pkey = pkey; |
88 | 0 | EVP_PKEY_up_ref(pkey); |
89 | 0 | return 1; |
90 | 0 | |
91 | 0 | error: |
92 | 0 | X509_PUBKEY_free(pk); |
93 | 0 | return 0; |
94 | 0 | } |
95 | | |
96 | | /* |
97 | | * Attempt to decode a public key. |
98 | | * Returns 1 on success, 0 for a decode failure and -1 for a fatal |
99 | | * error e.g. malloc failure. |
100 | | */ |
101 | | |
102 | | |
103 | | static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key) |
104 | 0 | { |
105 | 0 | EVP_PKEY *pkey = EVP_PKEY_new(); |
106 | 0 |
|
107 | 0 | if (pkey == NULL) { |
108 | 0 | X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE); |
109 | 0 | return -1; |
110 | 0 | } |
111 | 0 |
|
112 | 0 | if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { |
113 | 0 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM); |
114 | 0 | goto error; |
115 | 0 | } |
116 | 0 |
|
117 | 0 | if (pkey->ameth->pub_decode) { |
118 | 0 | /* |
119 | 0 | * Treat any failure of pub_decode as a decode error. In |
120 | 0 | * future we could have different return codes for decode |
121 | 0 | * errors and fatal errors such as malloc failure. |
122 | 0 | */ |
123 | 0 | if (!pkey->ameth->pub_decode(pkey, key)) { |
124 | 0 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR); |
125 | 0 | goto error; |
126 | 0 | } |
127 | 0 | } else { |
128 | 0 | X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED); |
129 | 0 | goto error; |
130 | 0 | } |
131 | 0 |
|
132 | 0 | *ppkey = pkey; |
133 | 0 | return 1; |
134 | 0 | |
135 | 0 | error: |
136 | 0 | EVP_PKEY_free(pkey); |
137 | 0 | return 0; |
138 | 0 | } |
139 | | |
140 | | EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key) |
141 | 0 | { |
142 | 0 | EVP_PKEY *ret = NULL; |
143 | 0 |
|
144 | 0 | if (key == NULL || key->public_key == NULL) |
145 | 0 | return NULL; |
146 | 0 | |
147 | 0 | if (key->pkey != NULL) |
148 | 0 | return key->pkey; |
149 | 0 | |
150 | 0 | /* |
151 | 0 | * When the key ASN.1 is initially parsed an attempt is made to |
152 | 0 | * decode the public key and cache the EVP_PKEY structure. If this |
153 | 0 | * operation fails the cached value will be NULL. Parsing continues |
154 | 0 | * to allow parsing of unknown key types or unsupported forms. |
155 | 0 | * We repeat the decode operation so the appropriate errors are left |
156 | 0 | * in the queue. |
157 | 0 | */ |
158 | 0 | x509_pubkey_decode(&ret, key); |
159 | 0 | /* If decode doesn't fail something bad happened */ |
160 | 0 | if (ret != NULL) { |
161 | 0 | X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR); |
162 | 0 | EVP_PKEY_free(ret); |
163 | 0 | } |
164 | 0 |
|
165 | 0 | return NULL; |
166 | 0 | } |
167 | | |
168 | | EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key) |
169 | 0 | { |
170 | 0 | EVP_PKEY *ret = X509_PUBKEY_get0(key); |
171 | 0 | if (ret != NULL) |
172 | 0 | EVP_PKEY_up_ref(ret); |
173 | 0 | return ret; |
174 | 0 | } |
175 | | |
176 | | /* |
177 | | * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or |
178 | | * decode as X509_PUBKEY |
179 | | */ |
180 | | |
181 | | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) |
182 | 0 | { |
183 | 0 | X509_PUBKEY *xpk; |
184 | 0 | EVP_PKEY *pktmp; |
185 | 0 | const unsigned char *q; |
186 | 0 | q = *pp; |
187 | 0 | xpk = d2i_X509_PUBKEY(NULL, &q, length); |
188 | 0 | if (!xpk) |
189 | 0 | return NULL; |
190 | 0 | pktmp = X509_PUBKEY_get(xpk); |
191 | 0 | X509_PUBKEY_free(xpk); |
192 | 0 | if (!pktmp) |
193 | 0 | return NULL; |
194 | 0 | *pp = q; |
195 | 0 | if (a) { |
196 | 0 | EVP_PKEY_free(*a); |
197 | 0 | *a = pktmp; |
198 | 0 | } |
199 | 0 | return pktmp; |
200 | 0 | } |
201 | | |
202 | | int i2d_PUBKEY(EVP_PKEY *a, unsigned char **pp) |
203 | 0 | { |
204 | 0 | X509_PUBKEY *xpk = NULL; |
205 | 0 | int ret; |
206 | 0 | if (!a) |
207 | 0 | return 0; |
208 | 0 | if (!X509_PUBKEY_set(&xpk, a)) |
209 | 0 | return -1; |
210 | 0 | ret = i2d_X509_PUBKEY(xpk, pp); |
211 | 0 | X509_PUBKEY_free(xpk); |
212 | 0 | return ret; |
213 | 0 | } |
214 | | |
215 | | /* |
216 | | * The following are equivalents but which return RSA and DSA keys |
217 | | */ |
218 | | #ifndef OPENSSL_NO_RSA |
219 | | RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) |
220 | 0 | { |
221 | 0 | EVP_PKEY *pkey; |
222 | 0 | RSA *key; |
223 | 0 | const unsigned char *q; |
224 | 0 | q = *pp; |
225 | 0 | pkey = d2i_PUBKEY(NULL, &q, length); |
226 | 0 | if (!pkey) |
227 | 0 | return NULL; |
228 | 0 | key = EVP_PKEY_get1_RSA(pkey); |
229 | 0 | EVP_PKEY_free(pkey); |
230 | 0 | if (!key) |
231 | 0 | return NULL; |
232 | 0 | *pp = q; |
233 | 0 | if (a) { |
234 | 0 | RSA_free(*a); |
235 | 0 | *a = key; |
236 | 0 | } |
237 | 0 | return key; |
238 | 0 | } |
239 | | |
240 | | int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp) |
241 | 0 | { |
242 | 0 | EVP_PKEY *pktmp; |
243 | 0 | int ret; |
244 | 0 | if (!a) |
245 | 0 | return 0; |
246 | 0 | pktmp = EVP_PKEY_new(); |
247 | 0 | if (pktmp == NULL) { |
248 | 0 | ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE); |
249 | 0 | return -1; |
250 | 0 | } |
251 | 0 | EVP_PKEY_set1_RSA(pktmp, a); |
252 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
253 | 0 | EVP_PKEY_free(pktmp); |
254 | 0 | return ret; |
255 | 0 | } |
256 | | #endif |
257 | | |
258 | | #ifndef OPENSSL_NO_DSA |
259 | | DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
260 | 0 | { |
261 | 0 | EVP_PKEY *pkey; |
262 | 0 | DSA *key; |
263 | 0 | const unsigned char *q; |
264 | 0 | q = *pp; |
265 | 0 | pkey = d2i_PUBKEY(NULL, &q, length); |
266 | 0 | if (!pkey) |
267 | 0 | return NULL; |
268 | 0 | key = EVP_PKEY_get1_DSA(pkey); |
269 | 0 | EVP_PKEY_free(pkey); |
270 | 0 | if (!key) |
271 | 0 | return NULL; |
272 | 0 | *pp = q; |
273 | 0 | if (a) { |
274 | 0 | DSA_free(*a); |
275 | 0 | *a = key; |
276 | 0 | } |
277 | 0 | return key; |
278 | 0 | } |
279 | | |
280 | | int i2d_DSA_PUBKEY(DSA *a, unsigned char **pp) |
281 | 0 | { |
282 | 0 | EVP_PKEY *pktmp; |
283 | 0 | int ret; |
284 | 0 | if (!a) |
285 | 0 | return 0; |
286 | 0 | pktmp = EVP_PKEY_new(); |
287 | 0 | if (pktmp == NULL) { |
288 | 0 | ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE); |
289 | 0 | return -1; |
290 | 0 | } |
291 | 0 | EVP_PKEY_set1_DSA(pktmp, a); |
292 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
293 | 0 | EVP_PKEY_free(pktmp); |
294 | 0 | return ret; |
295 | 0 | } |
296 | | #endif |
297 | | |
298 | | #ifndef OPENSSL_NO_EC |
299 | | EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) |
300 | 0 | { |
301 | 0 | EVP_PKEY *pkey; |
302 | 0 | EC_KEY *key; |
303 | 0 | const unsigned char *q; |
304 | 0 | q = *pp; |
305 | 0 | pkey = d2i_PUBKEY(NULL, &q, length); |
306 | 0 | if (!pkey) |
307 | 0 | return NULL; |
308 | 0 | key = EVP_PKEY_get1_EC_KEY(pkey); |
309 | 0 | EVP_PKEY_free(pkey); |
310 | 0 | if (!key) |
311 | 0 | return NULL; |
312 | 0 | *pp = q; |
313 | 0 | if (a) { |
314 | 0 | EC_KEY_free(*a); |
315 | 0 | *a = key; |
316 | 0 | } |
317 | 0 | return key; |
318 | 0 | } |
319 | | |
320 | | int i2d_EC_PUBKEY(EC_KEY *a, unsigned char **pp) |
321 | 0 | { |
322 | 0 | EVP_PKEY *pktmp; |
323 | 0 | int ret; |
324 | 0 | if (!a) |
325 | 0 | return 0; |
326 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
327 | 0 | ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE); |
328 | 0 | return -1; |
329 | 0 | } |
330 | 0 | EVP_PKEY_set1_EC_KEY(pktmp, a); |
331 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
332 | 0 | EVP_PKEY_free(pktmp); |
333 | 0 | return ret; |
334 | 0 | } |
335 | | #endif |
336 | | |
337 | | int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, |
338 | | int ptype, void *pval, |
339 | | unsigned char *penc, int penclen) |
340 | 0 | { |
341 | 0 | if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) |
342 | 0 | return 0; |
343 | 0 | if (penc) { |
344 | 0 | OPENSSL_free(pub->public_key->data); |
345 | 0 | pub->public_key->data = penc; |
346 | 0 | pub->public_key->length = penclen; |
347 | 0 | /* Set number of unused bits to zero */ |
348 | 0 | pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); |
349 | 0 | pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
350 | 0 | } |
351 | 0 | return 1; |
352 | 0 | } |
353 | | |
354 | | int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, |
355 | | const unsigned char **pk, int *ppklen, |
356 | | X509_ALGOR **pa, X509_PUBKEY *pub) |
357 | 0 | { |
358 | 0 | if (ppkalg) |
359 | 0 | *ppkalg = pub->algor->algorithm; |
360 | 0 | if (pk) { |
361 | 0 | *pk = pub->public_key->data; |
362 | 0 | *ppklen = pub->public_key->length; |
363 | 0 | } |
364 | 0 | if (pa) |
365 | 0 | *pa = pub->algor; |
366 | 0 | return 1; |
367 | 0 | } |
368 | | |
369 | | ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) |
370 | 0 | { |
371 | 0 | if (x == NULL) |
372 | 0 | return NULL; |
373 | 0 | return x->cert_info.key->public_key; |
374 | 0 | } |