Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/x509v3/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
17
#include "internal/cryptlib.h"
18
#include <openssl/conf.h>
19
#include <openssl/asn1.h>
20
#include <openssl/asn1t.h>
21
#include <openssl/buffer.h>
22
#include <openssl/x509v3.h>
23
#include "internal/x509_int.h"
24
#include "ext_dat.h"
25
26
#ifndef OPENSSL_NO_RFC3779
27
28
/*
29
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
30
 */
31
32
ASN1_SEQUENCE(IPAddressRange) = {
33
  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
34
  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
35
} ASN1_SEQUENCE_END(IPAddressRange)
36
37
ASN1_CHOICE(IPAddressOrRange) = {
38
  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
39
  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
40
} ASN1_CHOICE_END(IPAddressOrRange)
41
42
ASN1_CHOICE(IPAddressChoice) = {
43
  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
44
  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
45
} ASN1_CHOICE_END(IPAddressChoice)
46
47
ASN1_SEQUENCE(IPAddressFamily) = {
48
  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
49
  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
50
} ASN1_SEQUENCE_END(IPAddressFamily)
51
52
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
53
  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
54
                        IPAddrBlocks, IPAddressFamily)
55
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
56
57
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
58
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
59
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
60
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
61
62
/*
63
 * How much buffer space do we need for a raw address?
64
 */
65
#define ADDR_RAW_BUF_LEN        16
66
67
/*
68
 * What's the address length associated with this AFI?
69
 */
70
static int length_from_afi(const unsigned afi)
71
0
{
72
0
    switch (afi) {
73
0
    case IANA_AFI_IPV4:
74
0
        return 4;
75
0
    case IANA_AFI_IPV6:
76
0
        return 16;
77
0
    default:
78
0
        return 0;
79
0
    }
80
0
}
81
82
/*
83
 * Extract the AFI from an IPAddressFamily.
84
 */
85
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
86
0
{
87
0
    if (f == NULL
88
0
            || f->addressFamily == NULL
89
0
            || f->addressFamily->data == NULL
90
0
            || f->addressFamily->length < 2)
91
0
        return 0;
92
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
93
0
}
94
95
/*
96
 * Expand the bitstring form of an address into a raw byte array.
97
 * At the moment this is coded for simplicity, not speed.
98
 */
99
static int addr_expand(unsigned char *addr,
100
                       const ASN1_BIT_STRING *bs,
101
                       const int length, const unsigned char fill)
102
0
{
103
0
    if (bs->length < 0 || bs->length > length)
104
0
        return 0;
105
0
    if (bs->length > 0) {
106
0
        memcpy(addr, bs->data, bs->length);
107
0
        if ((bs->flags & 7) != 0) {
108
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
109
0
            if (fill == 0)
110
0
                addr[bs->length - 1] &= ~mask;
111
0
            else
112
0
                addr[bs->length - 1] |= mask;
113
0
        }
114
0
    }
115
0
    memset(addr + bs->length, fill, length - bs->length);
116
0
    return 1;
117
0
}
118
119
/*
120
 * Extract the prefix length from a bitstring.
121
 */
122
0
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
123
124
/*
125
 * i2r handler for one address bitstring.
126
 */
127
static int i2r_address(BIO *out,
128
                       const unsigned afi,
129
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
130
0
{
131
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
132
0
    int i, n;
133
0
134
0
    if (bs->length < 0)
135
0
        return 0;
136
0
    switch (afi) {
137
0
    case IANA_AFI_IPV4:
138
0
        if (!addr_expand(addr, bs, 4, fill))
139
0
            return 0;
140
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
141
0
        break;
142
0
    case IANA_AFI_IPV6:
143
0
        if (!addr_expand(addr, bs, 16, fill))
144
0
            return 0;
145
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
146
0
             n -= 2) ;
147
0
        for (i = 0; i < n; i += 2)
148
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
149
0
                       (i < 14 ? ":" : ""));
150
0
        if (i < 16)
151
0
            BIO_puts(out, ":");
152
0
        if (i == 0)
153
0
            BIO_puts(out, ":");
154
0
        break;
155
0
    default:
156
0
        for (i = 0; i < bs->length; i++)
157
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
158
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
159
0
        break;
160
0
    }
161
0
    return 1;
162
0
}
163
164
/*
165
 * i2r handler for a sequence of addresses and ranges.
166
 */
167
static int i2r_IPAddressOrRanges(BIO *out,
168
                                 const int indent,
169
                                 const IPAddressOrRanges *aors,
170
                                 const unsigned afi)
171
0
{
172
0
    int i;
173
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
174
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
175
0
        BIO_printf(out, "%*s", indent, "");
176
0
        switch (aor->type) {
177
0
        case IPAddressOrRange_addressPrefix:
178
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
179
0
                return 0;
180
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
181
0
            continue;
182
0
        case IPAddressOrRange_addressRange:
183
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
184
0
                return 0;
185
0
            BIO_puts(out, "-");
186
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
187
0
                return 0;
188
0
            BIO_puts(out, "\n");
189
0
            continue;
190
0
        }
191
0
    }
192
0
    return 1;
193
0
}
194
195
/*
196
 * i2r handler for an IPAddrBlocks extension.
197
 */
198
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
199
                            void *ext, BIO *out, int indent)
200
0
{
201
0
    const IPAddrBlocks *addr = ext;
202
0
    int i;
203
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
204
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
205
0
        const unsigned int afi = X509v3_addr_get_afi(f);
206
0
        switch (afi) {
207
0
        case IANA_AFI_IPV4:
208
0
            BIO_printf(out, "%*sIPv4", indent, "");
209
0
            break;
210
0
        case IANA_AFI_IPV6:
211
0
            BIO_printf(out, "%*sIPv6", indent, "");
212
0
            break;
213
0
        default:
214
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
215
0
            break;
216
0
        }
217
0
        if (f->addressFamily->length > 2) {
218
0
            switch (f->addressFamily->data[2]) {
219
0
            case 1:
220
0
                BIO_puts(out, " (Unicast)");
221
0
                break;
222
0
            case 2:
223
0
                BIO_puts(out, " (Multicast)");
224
0
                break;
225
0
            case 3:
226
0
                BIO_puts(out, " (Unicast/Multicast)");
227
0
                break;
228
0
            case 4:
229
0
                BIO_puts(out, " (MPLS)");
230
0
                break;
231
0
            case 64:
232
0
                BIO_puts(out, " (Tunnel)");
233
0
                break;
234
0
            case 65:
235
0
                BIO_puts(out, " (VPLS)");
236
0
                break;
237
0
            case 66:
238
0
                BIO_puts(out, " (BGP MDT)");
239
0
                break;
240
0
            case 128:
241
0
                BIO_puts(out, " (MPLS-labeled VPN)");
242
0
                break;
243
0
            default:
244
0
                BIO_printf(out, " (Unknown SAFI %u)",
245
0
                           (unsigned)f->addressFamily->data[2]);
246
0
                break;
247
0
            }
248
0
        }
249
0
        switch (f->ipAddressChoice->type) {
250
0
        case IPAddressChoice_inherit:
251
0
            BIO_puts(out, ": inherit\n");
252
0
            break;
253
0
        case IPAddressChoice_addressesOrRanges:
254
0
            BIO_puts(out, ":\n");
255
0
            if (!i2r_IPAddressOrRanges(out,
256
0
                                       indent + 2,
257
0
                                       f->ipAddressChoice->
258
0
                                       u.addressesOrRanges, afi))
259
0
                return 0;
260
0
            break;
261
0
        }
262
0
    }
263
0
    return 1;
264
0
}
265
266
/*
267
 * Sort comparison function for a sequence of IPAddressOrRange
268
 * elements.
269
 *
270
 * There's no sane answer we can give if addr_expand() fails, and an
271
 * assertion failure on externally supplied data is seriously uncool,
272
 * so we just arbitrarily declare that if given invalid inputs this
273
 * function returns -1.  If this messes up your preferred sort order
274
 * for garbage input, tough noogies.
275
 */
276
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
277
                                const IPAddressOrRange *b, const int length)
278
0
{
279
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
280
0
    int prefixlen_a = 0, prefixlen_b = 0;
281
0
    int r;
282
0
283
0
    switch (a->type) {
284
0
    case IPAddressOrRange_addressPrefix:
285
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
286
0
            return -1;
287
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
288
0
        break;
289
0
    case IPAddressOrRange_addressRange:
290
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
291
0
            return -1;
292
0
        prefixlen_a = length * 8;
293
0
        break;
294
0
    }
295
0
296
0
    switch (b->type) {
297
0
    case IPAddressOrRange_addressPrefix:
298
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
299
0
            return -1;
300
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
301
0
        break;
302
0
    case IPAddressOrRange_addressRange:
303
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
304
0
            return -1;
305
0
        prefixlen_b = length * 8;
306
0
        break;
307
0
    }
308
0
309
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
310
0
        return r;
311
0
    else
312
0
        return prefixlen_a - prefixlen_b;
313
0
}
314
315
/*
316
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
317
 * comparison routines are only allowed two arguments.
318
 */
319
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
320
                                  const IPAddressOrRange *const *b)
321
0
{
322
0
    return IPAddressOrRange_cmp(*a, *b, 4);
323
0
}
324
325
/*
326
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
327
 * comparison routines are only allowed two arguments.
328
 */
329
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
330
                                  const IPAddressOrRange *const *b)
331
0
{
332
0
    return IPAddressOrRange_cmp(*a, *b, 16);
333
0
}
334
335
/*
336
 * Calculate whether a range collapses to a prefix.
337
 * See last paragraph of RFC 3779 2.2.3.7.
338
 */
339
static int range_should_be_prefix(const unsigned char *min,
340
                                  const unsigned char *max, const int length)
341
0
{
342
0
    unsigned char mask;
343
0
    int i, j;
344
0
345
0
    if (memcmp(min, max, length) <= 0)
346
0
        return -1;
347
0
    for (i = 0; i < length && min[i] == max[i]; i++) ;
348
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
349
0
    if (i < j)
350
0
        return -1;
351
0
    if (i > j)
352
0
        return i * 8;
353
0
    mask = min[i] ^ max[i];
354
0
    switch (mask) {
355
0
    case 0x01:
356
0
        j = 7;
357
0
        break;
358
0
    case 0x03:
359
0
        j = 6;
360
0
        break;
361
0
    case 0x07:
362
0
        j = 5;
363
0
        break;
364
0
    case 0x0F:
365
0
        j = 4;
366
0
        break;
367
0
    case 0x1F:
368
0
        j = 3;
369
0
        break;
370
0
    case 0x3F:
371
0
        j = 2;
372
0
        break;
373
0
    case 0x7F:
374
0
        j = 1;
375
0
        break;
376
0
    default:
377
0
        return -1;
378
0
    }
379
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
380
0
        return -1;
381
0
    else
382
0
        return i * 8 + j;
383
0
}
384
385
/*
386
 * Construct a prefix.
387
 */
388
static int make_addressPrefix(IPAddressOrRange **result,
389
                              unsigned char *addr, const int prefixlen)
390
0
{
391
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
392
0
    IPAddressOrRange *aor = IPAddressOrRange_new();
393
0
394
0
    if (aor == NULL)
395
0
        return 0;
396
0
    aor->type = IPAddressOrRange_addressPrefix;
397
0
    if (aor->u.addressPrefix == NULL &&
398
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
399
0
        goto err;
400
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
401
0
        goto err;
402
0
    aor->u.addressPrefix->flags &= ~7;
403
0
    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
404
0
    if (bitlen > 0) {
405
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
406
0
        aor->u.addressPrefix->flags |= 8 - bitlen;
407
0
    }
408
0
409
0
    *result = aor;
410
0
    return 1;
411
0
412
0
 err:
413
0
    IPAddressOrRange_free(aor);
414
0
    return 0;
415
0
}
416
417
/*
418
 * Construct a range.  If it can be expressed as a prefix,
419
 * return a prefix instead.  Doing this here simplifies
420
 * the rest of the code considerably.
421
 */
422
static int make_addressRange(IPAddressOrRange **result,
423
                             unsigned char *min,
424
                             unsigned char *max, const int length)
425
0
{
426
0
    IPAddressOrRange *aor;
427
0
    int i, prefixlen;
428
0
429
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
430
0
        return make_addressPrefix(result, min, prefixlen);
431
0
432
0
    if ((aor = IPAddressOrRange_new()) == NULL)
433
0
        return 0;
434
0
    aor->type = IPAddressOrRange_addressRange;
435
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
436
0
        goto err;
437
0
    if (aor->u.addressRange->min == NULL &&
438
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
439
0
        goto err;
440
0
    if (aor->u.addressRange->max == NULL &&
441
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
442
0
        goto err;
443
0
444
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
445
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
446
0
        goto err;
447
0
    aor->u.addressRange->min->flags &= ~7;
448
0
    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
449
0
    if (i > 0) {
450
0
        unsigned char b = min[i - 1];
451
0
        int j = 1;
452
0
        while ((b & (0xFFU >> j)) != 0)
453
0
            ++j;
454
0
        aor->u.addressRange->min->flags |= 8 - j;
455
0
    }
456
0
457
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
458
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
459
0
        goto err;
460
0
    aor->u.addressRange->max->flags &= ~7;
461
0
    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
462
0
    if (i > 0) {
463
0
        unsigned char b = max[i - 1];
464
0
        int j = 1;
465
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
466
0
            ++j;
467
0
        aor->u.addressRange->max->flags |= 8 - j;
468
0
    }
469
0
470
0
    *result = aor;
471
0
    return 1;
472
0
473
0
 err:
474
0
    IPAddressOrRange_free(aor);
475
0
    return 0;
476
0
}
477
478
/*
479
 * Construct a new address family or find an existing one.
480
 */
481
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
482
                                             const unsigned afi,
483
                                             const unsigned *safi)
484
0
{
485
0
    IPAddressFamily *f;
486
0
    unsigned char key[3];
487
0
    int keylen;
488
0
    int i;
489
0
490
0
    key[0] = (afi >> 8) & 0xFF;
491
0
    key[1] = afi & 0xFF;
492
0
    if (safi != NULL) {
493
0
        key[2] = *safi & 0xFF;
494
0
        keylen = 3;
495
0
    } else {
496
0
        keylen = 2;
497
0
    }
498
0
499
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
500
0
        f = sk_IPAddressFamily_value(addr, i);
501
0
        if (f->addressFamily->length == keylen &&
502
0
            !memcmp(f->addressFamily->data, key, keylen))
503
0
            return f;
504
0
    }
505
0
506
0
    if ((f = IPAddressFamily_new()) == NULL)
507
0
        goto err;
508
0
    if (f->ipAddressChoice == NULL &&
509
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
510
0
        goto err;
511
0
    if (f->addressFamily == NULL &&
512
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
513
0
        goto err;
514
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
515
0
        goto err;
516
0
    if (!sk_IPAddressFamily_push(addr, f))
517
0
        goto err;
518
0
519
0
    return f;
520
0
521
0
 err:
522
0
    IPAddressFamily_free(f);
523
0
    return NULL;
524
0
}
525
526
/*
527
 * Add an inheritance element.
528
 */
529
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
530
                            const unsigned afi, const unsigned *safi)
531
0
{
532
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
533
0
    if (f == NULL ||
534
0
        f->ipAddressChoice == NULL ||
535
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
536
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
537
0
        return 0;
538
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
539
0
        f->ipAddressChoice->u.inherit != NULL)
540
0
        return 1;
541
0
    if (f->ipAddressChoice->u.inherit == NULL &&
542
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
543
0
        return 0;
544
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
545
0
    return 1;
546
0
}
547
548
/*
549
 * Construct an IPAddressOrRange sequence, or return an existing one.
550
 */
551
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
552
                                               const unsigned afi,
553
                                               const unsigned *safi)
554
0
{
555
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
556
0
    IPAddressOrRanges *aors = NULL;
557
0
558
0
    if (f == NULL ||
559
0
        f->ipAddressChoice == NULL ||
560
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
561
0
         f->ipAddressChoice->u.inherit != NULL))
562
0
        return NULL;
563
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
564
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
565
0
    if (aors != NULL)
566
0
        return aors;
567
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
568
0
        return NULL;
569
0
    switch (afi) {
570
0
    case IANA_AFI_IPV4:
571
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
572
0
        break;
573
0
    case IANA_AFI_IPV6:
574
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
575
0
        break;
576
0
    }
577
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
578
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
579
0
    return aors;
580
0
}
581
582
/*
583
 * Add a prefix.
584
 */
585
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
586
                           const unsigned afi,
587
                           const unsigned *safi,
588
                           unsigned char *a, const int prefixlen)
589
0
{
590
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
591
0
    IPAddressOrRange *aor;
592
0
    if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
593
0
        return 0;
594
0
    if (sk_IPAddressOrRange_push(aors, aor))
595
0
        return 1;
596
0
    IPAddressOrRange_free(aor);
597
0
    return 0;
598
0
}
599
600
/*
601
 * Add a range.
602
 */
603
int X509v3_addr_add_range(IPAddrBlocks *addr,
604
                          const unsigned afi,
605
                          const unsigned *safi,
606
                          unsigned char *min, unsigned char *max)
607
0
{
608
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
609
0
    IPAddressOrRange *aor;
610
0
    int length = length_from_afi(afi);
611
0
    if (aors == NULL)
612
0
        return 0;
613
0
    if (!make_addressRange(&aor, min, max, length))
614
0
        return 0;
615
0
    if (sk_IPAddressOrRange_push(aors, aor))
616
0
        return 1;
617
0
    IPAddressOrRange_free(aor);
618
0
    return 0;
619
0
}
620
621
/*
622
 * Extract min and max values from an IPAddressOrRange.
623
 */
624
static int extract_min_max(IPAddressOrRange *aor,
625
                           unsigned char *min, unsigned char *max, int length)
626
0
{
627
0
    if (aor == NULL || min == NULL || max == NULL)
628
0
        return 0;
629
0
    switch (aor->type) {
630
0
    case IPAddressOrRange_addressPrefix:
631
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
632
0
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
633
0
    case IPAddressOrRange_addressRange:
634
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
635
0
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
636
0
    }
637
0
    return 0;
638
0
}
639
640
/*
641
 * Public wrapper for extract_min_max().
642
 */
643
int X509v3_addr_get_range(IPAddressOrRange *aor,
644
                          const unsigned afi,
645
                          unsigned char *min,
646
                          unsigned char *max, const int length)
647
0
{
648
0
    int afi_length = length_from_afi(afi);
649
0
    if (aor == NULL || min == NULL || max == NULL ||
650
0
        afi_length == 0 || length < afi_length ||
651
0
        (aor->type != IPAddressOrRange_addressPrefix &&
652
0
         aor->type != IPAddressOrRange_addressRange) ||
653
0
        !extract_min_max(aor, min, max, afi_length))
654
0
        return 0;
655
0
656
0
    return afi_length;
657
0
}
658
659
/*
660
 * Sort comparison function for a sequence of IPAddressFamily.
661
 *
662
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
663
 * the ordering: I can read it as meaning that IPv6 without a SAFI
664
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
665
 * examples in appendix B suggest that the author intended the
666
 * null-SAFI rule to apply only within a single AFI, which is what I
667
 * would have expected and is what the following code implements.
668
 */
669
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
670
                               const IPAddressFamily *const *b_)
671
0
{
672
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
673
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
674
0
    int len = ((a->length <= b->length) ? a->length : b->length);
675
0
    int cmp = memcmp(a->data, b->data, len);
676
0
    return cmp ? cmp : a->length - b->length;
677
0
}
678
679
/*
680
 * Check whether an IPAddrBLocks is in canonical form.
681
 */
682
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
683
0
{
684
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
685
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
686
0
    IPAddressOrRanges *aors;
687
0
    int i, j, k;
688
0
689
0
    /*
690
0
     * Empty extension is canonical.
691
0
     */
692
0
    if (addr == NULL)
693
0
        return 1;
694
0
695
0
    /*
696
0
     * Check whether the top-level list is in order.
697
0
     */
698
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
699
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
700
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
701
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
702
0
            return 0;
703
0
    }
704
0
705
0
    /*
706
0
     * Top level's ok, now check each address family.
707
0
     */
708
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
709
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
710
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
711
0
712
0
        /*
713
0
         * Inheritance is canonical.  Anything other than inheritance or
714
0
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
715
0
         */
716
0
        if (f == NULL || f->ipAddressChoice == NULL)
717
0
            return 0;
718
0
        switch (f->ipAddressChoice->type) {
719
0
        case IPAddressChoice_inherit:
720
0
            continue;
721
0
        case IPAddressChoice_addressesOrRanges:
722
0
            break;
723
0
        default:
724
0
            return 0;
725
0
        }
726
0
727
0
        /*
728
0
         * It's an IPAddressOrRanges sequence, check it.
729
0
         */
730
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
731
0
        if (sk_IPAddressOrRange_num(aors) == 0)
732
0
            return 0;
733
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
734
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
735
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
736
0
737
0
            if (!extract_min_max(a, a_min, a_max, length) ||
738
0
                !extract_min_max(b, b_min, b_max, length))
739
0
                return 0;
740
0
741
0
            /*
742
0
             * Punt misordered list, overlapping start, or inverted range.
743
0
             */
744
0
            if (memcmp(a_min, b_min, length) >= 0 ||
745
0
                memcmp(a_min, a_max, length) > 0 ||
746
0
                memcmp(b_min, b_max, length) > 0)
747
0
                return 0;
748
0
749
0
            /*
750
0
             * Punt if adjacent or overlapping.  Check for adjacency by
751
0
             * subtracting one from b_min first.
752
0
             */
753
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
754
0
            if (memcmp(a_max, b_min, length) >= 0)
755
0
                return 0;
756
0
757
0
            /*
758
0
             * Check for range that should be expressed as a prefix.
759
0
             */
760
0
            if (a->type == IPAddressOrRange_addressRange &&
761
0
                range_should_be_prefix(a_min, a_max, length) >= 0)
762
0
                return 0;
763
0
        }
764
0
765
0
        /*
766
0
         * Check range to see if it's inverted or should be a
767
0
         * prefix.
768
0
         */
769
0
        j = sk_IPAddressOrRange_num(aors) - 1;
770
0
        {
771
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
772
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
773
0
                if (!extract_min_max(a, a_min, a_max, length))
774
0
                    return 0;
775
0
                if (memcmp(a_min, a_max, length) > 0 ||
776
0
                    range_should_be_prefix(a_min, a_max, length) >= 0)
777
0
                    return 0;
778
0
            }
779
0
        }
780
0
    }
781
0
782
0
    /*
783
0
     * If we made it through all that, we're happy.
784
0
     */
785
0
    return 1;
786
0
}
787
788
/*
789
 * Whack an IPAddressOrRanges into canonical form.
790
 */
791
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
792
                                      const unsigned afi)
793
0
{
794
0
    int i, j, length = length_from_afi(afi);
795
0
796
0
    /*
797
0
     * Sort the IPAddressOrRanges sequence.
798
0
     */
799
0
    sk_IPAddressOrRange_sort(aors);
800
0
801
0
    /*
802
0
     * Clean up representation issues, punt on duplicates or overlaps.
803
0
     */
804
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
805
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
806
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
807
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
808
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
809
0
810
0
        if (!extract_min_max(a, a_min, a_max, length) ||
811
0
            !extract_min_max(b, b_min, b_max, length))
812
0
            return 0;
813
0
814
0
        /*
815
0
         * Punt inverted ranges.
816
0
         */
817
0
        if (memcmp(a_min, a_max, length) > 0 ||
818
0
            memcmp(b_min, b_max, length) > 0)
819
0
            return 0;
820
0
821
0
        /*
822
0
         * Punt overlaps.
823
0
         */
824
0
        if (memcmp(a_max, b_min, length) >= 0)
825
0
            return 0;
826
0
827
0
        /*
828
0
         * Merge if a and b are adjacent.  We check for
829
0
         * adjacency by subtracting one from b_min first.
830
0
         */
831
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
832
0
        if (memcmp(a_max, b_min, length) == 0) {
833
0
            IPAddressOrRange *merged;
834
0
            if (!make_addressRange(&merged, a_min, b_max, length))
835
0
                return 0;
836
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
837
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
838
0
            IPAddressOrRange_free(a);
839
0
            IPAddressOrRange_free(b);
840
0
            --i;
841
0
            continue;
842
0
        }
843
0
    }
844
0
845
0
    /*
846
0
     * Check for inverted final range.
847
0
     */
848
0
    j = sk_IPAddressOrRange_num(aors) - 1;
849
0
    {
850
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
851
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
852
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
853
0
            if (!extract_min_max(a, a_min, a_max, length))
854
0
                return 0;
855
0
            if (memcmp(a_min, a_max, length) > 0)
856
0
                return 0;
857
0
        }
858
0
    }
859
0
860
0
    return 1;
861
0
}
862
863
/*
864
 * Whack an IPAddrBlocks extension into canonical form.
865
 */
866
int X509v3_addr_canonize(IPAddrBlocks *addr)
867
0
{
868
0
    int i;
869
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
870
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
871
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
872
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
873
0
                                        u.addressesOrRanges,
874
0
                                        X509v3_addr_get_afi(f)))
875
0
            return 0;
876
0
    }
877
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
878
0
    sk_IPAddressFamily_sort(addr);
879
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
880
0
        return 0;
881
0
    return 1;
882
0
}
883
884
/*
885
 * v2i handler for the IPAddrBlocks extension.
886
 */
887
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
888
                              struct v3_ext_ctx *ctx,
889
                              STACK_OF(CONF_VALUE) *values)
890
0
{
891
0
    static const char v4addr_chars[] = "0123456789.";
892
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
893
0
    IPAddrBlocks *addr = NULL;
894
0
    char *s = NULL, *t;
895
0
    int i;
896
0
897
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
898
0
        X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
899
0
        return NULL;
900
0
    }
901
0
902
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
903
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
904
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
905
0
        unsigned afi, *safi = NULL, safi_;
906
0
        const char *addr_chars = NULL;
907
0
        int prefixlen, i1, i2, delim, length;
908
0
909
0
        if (!name_cmp(val->name, "IPv4")) {
910
0
            afi = IANA_AFI_IPV4;
911
0
        } else if (!name_cmp(val->name, "IPv6")) {
912
0
            afi = IANA_AFI_IPV6;
913
0
        } else if (!name_cmp(val->name, "IPv4-SAFI")) {
914
0
            afi = IANA_AFI_IPV4;
915
0
            safi = &safi_;
916
0
        } else if (!name_cmp(val->name, "IPv6-SAFI")) {
917
0
            afi = IANA_AFI_IPV6;
918
0
            safi = &safi_;
919
0
        } else {
920
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
921
0
                      X509V3_R_EXTENSION_NAME_ERROR);
922
0
            X509V3_conf_err(val);
923
0
            goto err;
924
0
        }
925
0
926
0
        switch (afi) {
927
0
        case IANA_AFI_IPV4:
928
0
            addr_chars = v4addr_chars;
929
0
            break;
930
0
        case IANA_AFI_IPV6:
931
0
            addr_chars = v6addr_chars;
932
0
            break;
933
0
        }
934
0
935
0
        length = length_from_afi(afi);
936
0
937
0
        /*
938
0
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
939
0
         * the other input values.
940
0
         */
941
0
        if (safi != NULL) {
942
0
            *safi = strtoul(val->value, &t, 0);
943
0
            t += strspn(t, " \t");
944
0
            if (*safi > 0xFF || *t++ != ':') {
945
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
946
0
                X509V3_conf_err(val);
947
0
                goto err;
948
0
            }
949
0
            t += strspn(t, " \t");
950
0
            s = OPENSSL_strdup(t);
951
0
        } else {
952
0
            s = OPENSSL_strdup(val->value);
953
0
        }
954
0
        if (s == NULL) {
955
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
956
0
            goto err;
957
0
        }
958
0
959
0
        /*
960
0
         * Check for inheritance.  Not worth additional complexity to
961
0
         * optimize this (seldom-used) case.
962
0
         */
963
0
        if (strcmp(s, "inherit") == 0) {
964
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
965
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
966
0
                          X509V3_R_INVALID_INHERITANCE);
967
0
                X509V3_conf_err(val);
968
0
                goto err;
969
0
            }
970
0
            OPENSSL_free(s);
971
0
            s = NULL;
972
0
            continue;
973
0
        }
974
0
975
0
        i1 = strspn(s, addr_chars);
976
0
        i2 = i1 + strspn(s + i1, " \t");
977
0
        delim = s[i2++];
978
0
        s[i1] = '\0';
979
0
980
0
        if (a2i_ipadd(min, s) != length) {
981
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
982
0
            X509V3_conf_err(val);
983
0
            goto err;
984
0
        }
985
0
986
0
        switch (delim) {
987
0
        case '/':
988
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
989
0
            if (t == s + i2 || *t != '\0') {
990
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
991
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
992
0
                X509V3_conf_err(val);
993
0
                goto err;
994
0
            }
995
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
996
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
997
0
                goto err;
998
0
            }
999
0
            break;
1000
0
        case '-':
1001
0
            i1 = i2 + strspn(s + i2, " \t");
1002
0
            i2 = i1 + strspn(s + i1, addr_chars);
1003
0
            if (i1 == i2 || s[i2] != '\0') {
1004
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1005
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
1006
0
                X509V3_conf_err(val);
1007
0
                goto err;
1008
0
            }
1009
0
            if (a2i_ipadd(max, s + i1) != length) {
1010
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1011
0
                          X509V3_R_INVALID_IPADDRESS);
1012
0
                X509V3_conf_err(val);
1013
0
                goto err;
1014
0
            }
1015
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1016
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1017
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
1018
0
                X509V3_conf_err(val);
1019
0
                goto err;
1020
0
            }
1021
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1022
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1023
0
                goto err;
1024
0
            }
1025
0
            break;
1026
0
        case '\0':
1027
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1028
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1029
0
                goto err;
1030
0
            }
1031
0
            break;
1032
0
        default:
1033
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034
0
                      X509V3_R_EXTENSION_VALUE_ERROR);
1035
0
            X509V3_conf_err(val);
1036
0
            goto err;
1037
0
        }
1038
0
1039
0
        OPENSSL_free(s);
1040
0
        s = NULL;
1041
0
    }
1042
0
1043
0
    /*
1044
0
     * Canonize the result, then we're done.
1045
0
     */
1046
0
    if (!X509v3_addr_canonize(addr))
1047
0
        goto err;
1048
0
    return addr;
1049
0
1050
0
 err:
1051
0
    OPENSSL_free(s);
1052
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1053
0
    return NULL;
1054
0
}
1055
1056
/*
1057
 * OpenSSL dispatch
1058
 */
1059
const X509V3_EXT_METHOD v3_addr = {
1060
    NID_sbgp_ipAddrBlock,       /* nid */
1061
    0,                          /* flags */
1062
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1063
    0, 0, 0, 0,                 /* old functions, ignored */
1064
    0,                          /* i2s */
1065
    0,                          /* s2i */
1066
    0,                          /* i2v */
1067
    v2i_IPAddrBlocks,           /* v2i */
1068
    i2r_IPAddrBlocks,           /* i2r */
1069
    0,                          /* r2i */
1070
    NULL                        /* extension-specific data */
1071
};
1072
1073
/*
1074
 * Figure out whether extension sues inheritance.
1075
 */
1076
int X509v3_addr_inherits(IPAddrBlocks *addr)
1077
0
{
1078
0
    int i;
1079
0
    if (addr == NULL)
1080
0
        return 0;
1081
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1082
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1083
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1084
0
            return 1;
1085
0
    }
1086
0
    return 0;
1087
0
}
1088
1089
/*
1090
 * Figure out whether parent contains child.
1091
 */
1092
static int addr_contains(IPAddressOrRanges *parent,
1093
                         IPAddressOrRanges *child, int length)
1094
0
{
1095
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1096
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1097
0
    int p, c;
1098
0
1099
0
    if (child == NULL || parent == child)
1100
0
        return 1;
1101
0
    if (parent == NULL)
1102
0
        return 0;
1103
0
1104
0
    p = 0;
1105
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1106
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1107
0
                             c_min, c_max, length))
1108
0
            return -1;
1109
0
        for (;; p++) {
1110
0
            if (p >= sk_IPAddressOrRange_num(parent))
1111
0
                return 0;
1112
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1113
0
                                 p_min, p_max, length))
1114
0
                return 0;
1115
0
            if (memcmp(p_max, c_max, length) < 0)
1116
0
                continue;
1117
0
            if (memcmp(p_min, c_min, length) > 0)
1118
0
                return 0;
1119
0
            break;
1120
0
        }
1121
0
    }
1122
0
1123
0
    return 1;
1124
0
}
1125
1126
/*
1127
 * Test whether a is a subset of b.
1128
 */
1129
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1130
0
{
1131
0
    int i;
1132
0
    if (a == NULL || a == b)
1133
0
        return 1;
1134
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1135
0
        return 0;
1136
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1137
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1138
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1139
0
        int j = sk_IPAddressFamily_find(b, fa);
1140
0
        IPAddressFamily *fb;
1141
0
        fb = sk_IPAddressFamily_value(b, j);
1142
0
        if (fb == NULL)
1143
0
            return 0;
1144
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1145
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1146
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1147
0
            return 0;
1148
0
    }
1149
0
    return 1;
1150
0
}
1151
1152
/*
1153
 * Validation error handling via callback.
1154
 */
1155
#define validation_err(_err_)           \
1156
0
  do {                                  \
1157
0
    if (ctx != NULL) {                  \
1158
0
      ctx->error = _err_;               \
1159
0
      ctx->error_depth = i;             \
1160
0
      ctx->current_cert = x;            \
1161
0
      ret = ctx->verify_cb(0, ctx);     \
1162
0
    } else {                            \
1163
0
      ret = 0;                          \
1164
0
    }                                   \
1165
0
    if (!ret)                           \
1166
0
      goto done;                        \
1167
0
  } while (0)
1168
1169
/*
1170
 * Core code for RFC 3779 2.3 path validation.
1171
 *
1172
 * Returns 1 for success, 0 on error.
1173
 *
1174
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1175
 * X509_V_OK.
1176
 */
1177
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1178
                                       STACK_OF(X509) *chain,
1179
                                       IPAddrBlocks *ext)
1180
0
{
1181
0
    IPAddrBlocks *child = NULL;
1182
0
    int i, j, ret = 1;
1183
0
    X509 *x;
1184
0
1185
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1186
0
            || !ossl_assert(ctx != NULL || ext != NULL)
1187
0
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1188
0
        if (ctx != NULL)
1189
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1190
0
        return 0;
1191
0
    }
1192
0
1193
0
    /*
1194
0
     * Figure out where to start.  If we don't have an extension to
1195
0
     * check, we're done.  Otherwise, check canonical form and
1196
0
     * set up for walking up the chain.
1197
0
     */
1198
0
    if (ext != NULL) {
1199
0
        i = -1;
1200
0
        x = NULL;
1201
0
    } else {
1202
0
        i = 0;
1203
0
        x = sk_X509_value(chain, i);
1204
0
        if ((ext = x->rfc3779_addr) == NULL)
1205
0
            goto done;
1206
0
    }
1207
0
    if (!X509v3_addr_is_canonical(ext))
1208
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1209
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1210
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1211
0
        X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1212
0
                  ERR_R_MALLOC_FAILURE);
1213
0
        if (ctx != NULL)
1214
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1215
0
        ret = 0;
1216
0
        goto done;
1217
0
    }
1218
0
1219
0
    /*
1220
0
     * Now walk up the chain.  No cert may list resources that its
1221
0
     * parent doesn't list.
1222
0
     */
1223
0
    for (i++; i < sk_X509_num(chain); i++) {
1224
0
        x = sk_X509_value(chain, i);
1225
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1226
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1227
0
        if (x->rfc3779_addr == NULL) {
1228
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1229
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1230
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1231
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1232
0
                    break;
1233
0
                }
1234
0
            }
1235
0
            continue;
1236
0
        }
1237
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1238
0
                                              IPAddressFamily_cmp);
1239
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1240
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1241
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1242
0
            IPAddressFamily *fp =
1243
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1244
0
            if (fp == NULL) {
1245
0
                if (fc->ipAddressChoice->type ==
1246
0
                    IPAddressChoice_addressesOrRanges) {
1247
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1248
0
                    break;
1249
0
                }
1250
0
                continue;
1251
0
            }
1252
0
            if (fp->ipAddressChoice->type ==
1253
0
                IPAddressChoice_addressesOrRanges) {
1254
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1255
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1256
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1257
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1258
0
                    sk_IPAddressFamily_set(child, j, fp);
1259
0
                else
1260
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1261
0
            }
1262
0
        }
1263
0
    }
1264
0
1265
0
    /*
1266
0
     * Trust anchor can't inherit.
1267
0
     */
1268
0
    if (x->rfc3779_addr != NULL) {
1269
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1270
0
            IPAddressFamily *fp =
1271
0
                sk_IPAddressFamily_value(x->rfc3779_addr, j);
1272
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1273
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1274
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1275
0
        }
1276
0
    }
1277
0
1278
0
 done:
1279
0
    sk_IPAddressFamily_free(child);
1280
0
    return ret;
1281
0
}
1282
1283
#undef validation_err
1284
1285
/*
1286
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1287
 */
1288
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1289
0
{
1290
0
    if (ctx->chain == NULL
1291
0
            || sk_X509_num(ctx->chain) == 0
1292
0
            || ctx->verify_cb == NULL) {
1293
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1294
0
        return 0;
1295
0
    }
1296
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1297
0
}
1298
1299
/*
1300
 * RFC 3779 2.3 path validation of an extension.
1301
 * Test whether chain covers extension.
1302
 */
1303
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1304
                                  IPAddrBlocks *ext, int allow_inheritance)
1305
0
{
1306
0
    if (ext == NULL)
1307
0
        return 1;
1308
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1309
0
        return 0;
1310
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1311
0
        return 0;
1312
0
    return addr_validate_path_internal(NULL, chain, ext);
1313
0
}
1314
1315
#endif                          /* OPENSSL_NO_RFC3779 */