/src/openssl/ssl/s3_cbc.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/constant_time_locl.h" |
11 | | #include "ssl_locl.h" |
12 | | #include "internal/cryptlib.h" |
13 | | |
14 | | #include <openssl/md5.h> |
15 | | #include <openssl/sha.h> |
16 | | |
17 | | /* |
18 | | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's |
19 | | * length field. (SHA-384/512 have 128-bit length.) |
20 | | */ |
21 | | #define MAX_HASH_BIT_COUNT_BYTES 16 |
22 | | |
23 | | /* |
24 | | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
25 | | * Currently SHA-384/512 has a 128-byte block size and that's the largest |
26 | | * supported by TLS.) |
27 | | */ |
28 | | #define MAX_HASH_BLOCK_SIZE 128 |
29 | | |
30 | | /* |
31 | | * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in |
32 | | * little-endian order. The value of p is advanced by four. |
33 | | */ |
34 | | #define u32toLE(n, p) \ |
35 | 0 | (*((p)++)=(unsigned char)(n), \ |
36 | 0 | *((p)++)=(unsigned char)(n>>8), \ |
37 | 0 | *((p)++)=(unsigned char)(n>>16), \ |
38 | 0 | *((p)++)=(unsigned char)(n>>24)) |
39 | | |
40 | | /* |
41 | | * These functions serialize the state of a hash and thus perform the |
42 | | * standard "final" operation without adding the padding and length that such |
43 | | * a function typically does. |
44 | | */ |
45 | | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) |
46 | 0 | { |
47 | 0 | MD5_CTX *md5 = ctx; |
48 | 0 | u32toLE(md5->A, md_out); |
49 | 0 | u32toLE(md5->B, md_out); |
50 | 0 | u32toLE(md5->C, md_out); |
51 | 0 | u32toLE(md5->D, md_out); |
52 | 0 | } |
53 | | |
54 | | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) |
55 | 0 | { |
56 | 0 | SHA_CTX *sha1 = ctx; |
57 | 0 | l2n(sha1->h0, md_out); |
58 | 0 | l2n(sha1->h1, md_out); |
59 | 0 | l2n(sha1->h2, md_out); |
60 | 0 | l2n(sha1->h3, md_out); |
61 | 0 | l2n(sha1->h4, md_out); |
62 | 0 | } |
63 | | |
64 | | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) |
65 | 0 | { |
66 | 0 | SHA256_CTX *sha256 = ctx; |
67 | 0 | unsigned i; |
68 | 0 |
|
69 | 0 | for (i = 0; i < 8; i++) { |
70 | 0 | l2n(sha256->h[i], md_out); |
71 | 0 | } |
72 | 0 | } |
73 | | |
74 | | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) |
75 | 0 | { |
76 | 0 | SHA512_CTX *sha512 = ctx; |
77 | 0 | unsigned i; |
78 | 0 |
|
79 | 0 | for (i = 0; i < 8; i++) { |
80 | 0 | l2n8(sha512->h[i], md_out); |
81 | 0 | } |
82 | 0 | } |
83 | | |
84 | | #undef LARGEST_DIGEST_CTX |
85 | | #define LARGEST_DIGEST_CTX SHA512_CTX |
86 | | |
87 | | /* |
88 | | * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function |
89 | | * which ssl3_cbc_digest_record supports. |
90 | | */ |
91 | | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) |
92 | 0 | { |
93 | 0 | switch (EVP_MD_CTX_type(ctx)) { |
94 | 0 | case NID_md5: |
95 | 0 | case NID_sha1: |
96 | 0 | case NID_sha224: |
97 | 0 | case NID_sha256: |
98 | 0 | case NID_sha384: |
99 | 0 | case NID_sha512: |
100 | 0 | return 1; |
101 | 0 | default: |
102 | 0 | return 0; |
103 | 0 | } |
104 | 0 | } |
105 | | |
106 | | /*- |
107 | | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS |
108 | | * record. |
109 | | * |
110 | | * ctx: the EVP_MD_CTX from which we take the hash function. |
111 | | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. |
112 | | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. |
113 | | * md_out_size: if non-NULL, the number of output bytes is written here. |
114 | | * header: the 13-byte, TLS record header. |
115 | | * data: the record data itself, less any preceding explicit IV. |
116 | | * data_plus_mac_size: the secret, reported length of the data and MAC |
117 | | * once the padding has been removed. |
118 | | * data_plus_mac_plus_padding_size: the public length of the whole |
119 | | * record, including padding. |
120 | | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. |
121 | | * |
122 | | * On entry: by virtue of having been through one of the remove_padding |
123 | | * functions, above, we know that data_plus_mac_size is large enough to contain |
124 | | * a padding byte and MAC. (If the padding was invalid, it might contain the |
125 | | * padding too. ) |
126 | | * Returns 1 on success or 0 on error |
127 | | */ |
128 | | int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, |
129 | | unsigned char *md_out, |
130 | | size_t *md_out_size, |
131 | | const unsigned char header[13], |
132 | | const unsigned char *data, |
133 | | size_t data_plus_mac_size, |
134 | | size_t data_plus_mac_plus_padding_size, |
135 | | const unsigned char *mac_secret, |
136 | | size_t mac_secret_length, char is_sslv3) |
137 | 0 | { |
138 | 0 | union { |
139 | 0 | double align; |
140 | 0 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; |
141 | 0 | } md_state; |
142 | 0 | void (*md_final_raw) (void *ctx, unsigned char *md_out); |
143 | 0 | void (*md_transform) (void *ctx, const unsigned char *block); |
144 | 0 | size_t md_size, md_block_size = 64; |
145 | 0 | size_t sslv3_pad_length = 40, header_length, variance_blocks, |
146 | 0 | len, max_mac_bytes, num_blocks, |
147 | 0 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; |
148 | 0 | size_t bits; /* at most 18 bits */ |
149 | 0 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
150 | 0 | /* hmac_pad is the masked HMAC key. */ |
151 | 0 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; |
152 | 0 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; |
153 | 0 | unsigned char mac_out[EVP_MAX_MD_SIZE]; |
154 | 0 | size_t i, j; |
155 | 0 | unsigned md_out_size_u; |
156 | 0 | EVP_MD_CTX *md_ctx = NULL; |
157 | 0 | /* |
158 | 0 | * mdLengthSize is the number of bytes in the length field that |
159 | 0 | * terminates * the hash. |
160 | 0 | */ |
161 | 0 | size_t md_length_size = 8; |
162 | 0 | char length_is_big_endian = 1; |
163 | 0 | int ret; |
164 | 0 |
|
165 | 0 | /* |
166 | 0 | * This is a, hopefully redundant, check that allows us to forget about |
167 | 0 | * many possible overflows later in this function. |
168 | 0 | */ |
169 | 0 | if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024)) |
170 | 0 | return 0; |
171 | 0 | |
172 | 0 | switch (EVP_MD_CTX_type(ctx)) { |
173 | 0 | case NID_md5: |
174 | 0 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0) |
175 | 0 | return 0; |
176 | 0 | md_final_raw = tls1_md5_final_raw; |
177 | 0 | md_transform = |
178 | 0 | (void (*)(void *ctx, const unsigned char *block))MD5_Transform; |
179 | 0 | md_size = 16; |
180 | 0 | sslv3_pad_length = 48; |
181 | 0 | length_is_big_endian = 0; |
182 | 0 | break; |
183 | 0 | case NID_sha1: |
184 | 0 | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) |
185 | 0 | return 0; |
186 | 0 | md_final_raw = tls1_sha1_final_raw; |
187 | 0 | md_transform = |
188 | 0 | (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; |
189 | 0 | md_size = 20; |
190 | 0 | break; |
191 | 0 | case NID_sha224: |
192 | 0 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) |
193 | 0 | return 0; |
194 | 0 | md_final_raw = tls1_sha256_final_raw; |
195 | 0 | md_transform = |
196 | 0 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
197 | 0 | md_size = 224 / 8; |
198 | 0 | break; |
199 | 0 | case NID_sha256: |
200 | 0 | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) |
201 | 0 | return 0; |
202 | 0 | md_final_raw = tls1_sha256_final_raw; |
203 | 0 | md_transform = |
204 | 0 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
205 | 0 | md_size = 32; |
206 | 0 | break; |
207 | 0 | case NID_sha384: |
208 | 0 | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) |
209 | 0 | return 0; |
210 | 0 | md_final_raw = tls1_sha512_final_raw; |
211 | 0 | md_transform = |
212 | 0 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
213 | 0 | md_size = 384 / 8; |
214 | 0 | md_block_size = 128; |
215 | 0 | md_length_size = 16; |
216 | 0 | break; |
217 | 0 | case NID_sha512: |
218 | 0 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) |
219 | 0 | return 0; |
220 | 0 | md_final_raw = tls1_sha512_final_raw; |
221 | 0 | md_transform = |
222 | 0 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
223 | 0 | md_size = 64; |
224 | 0 | md_block_size = 128; |
225 | 0 | md_length_size = 16; |
226 | 0 | break; |
227 | 0 | default: |
228 | 0 | /* |
229 | 0 | * ssl3_cbc_record_digest_supported should have been called first to |
230 | 0 | * check that the hash function is supported. |
231 | 0 | */ |
232 | 0 | if (md_out_size != NULL) |
233 | 0 | *md_out_size = 0; |
234 | 0 | return ossl_assert(0); |
235 | 0 | } |
236 | 0 | |
237 | 0 | if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES) |
238 | 0 | || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE) |
239 | 0 | || !ossl_assert(md_size <= EVP_MAX_MD_SIZE)) |
240 | 0 | return 0; |
241 | 0 | |
242 | 0 | header_length = 13; |
243 | 0 | if (is_sslv3) { |
244 | 0 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence |
245 | 0 | * number */ + |
246 | 0 | 1 /* record type */ + |
247 | 0 | 2 /* record length */ ; |
248 | 0 | } |
249 | 0 |
|
250 | 0 | /* |
251 | 0 | * variance_blocks is the number of blocks of the hash that we have to |
252 | 0 | * calculate in constant time because they could be altered by the |
253 | 0 | * padding value. In SSLv3, the padding must be minimal so the end of |
254 | 0 | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively |
255 | 0 | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes |
256 | 0 | * of hash termination (0x80 + 64-bit length) don't fit in the final |
257 | 0 | * block, we say that the final two blocks can vary based on the padding. |
258 | 0 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
259 | 0 | * required to be minimal. Therefore we say that the final six blocks can |
260 | 0 | * vary based on the padding. Later in the function, if the message is |
261 | 0 | * short and there obviously cannot be this many blocks then |
262 | 0 | * variance_blocks can be reduced. |
263 | 0 | */ |
264 | 0 | variance_blocks = is_sslv3 ? 2 : 6; |
265 | 0 | /* |
266 | 0 | * From now on we're dealing with the MAC, which conceptually has 13 |
267 | 0 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes |
268 | 0 | * (SSLv3) |
269 | 0 | */ |
270 | 0 | len = data_plus_mac_plus_padding_size + header_length; |
271 | 0 | /* |
272 | 0 | * max_mac_bytes contains the maximum bytes of bytes in the MAC, |
273 | 0 | * including * |header|, assuming that there's no padding. |
274 | 0 | */ |
275 | 0 | max_mac_bytes = len - md_size - 1; |
276 | 0 | /* num_blocks is the maximum number of hash blocks. */ |
277 | 0 | num_blocks = |
278 | 0 | (max_mac_bytes + 1 + md_length_size + md_block_size - |
279 | 0 | 1) / md_block_size; |
280 | 0 | /* |
281 | 0 | * In order to calculate the MAC in constant time we have to handle the |
282 | 0 | * final blocks specially because the padding value could cause the end |
283 | 0 | * to appear somewhere in the final |variance_blocks| blocks and we can't |
284 | 0 | * leak where. However, |num_starting_blocks| worth of data can be hashed |
285 | 0 | * right away because no padding value can affect whether they are |
286 | 0 | * plaintext. |
287 | 0 | */ |
288 | 0 | num_starting_blocks = 0; |
289 | 0 | /* |
290 | 0 | * k is the starting byte offset into the conceptual header||data where |
291 | 0 | * we start processing. |
292 | 0 | */ |
293 | 0 | k = 0; |
294 | 0 | /* |
295 | 0 | * mac_end_offset is the index just past the end of the data to be MACed. |
296 | 0 | */ |
297 | 0 | mac_end_offset = data_plus_mac_size + header_length - md_size; |
298 | 0 | /* |
299 | 0 | * c is the index of the 0x80 byte in the final hash block that contains |
300 | 0 | * application data. |
301 | 0 | */ |
302 | 0 | c = mac_end_offset % md_block_size; |
303 | 0 | /* |
304 | 0 | * index_a is the hash block number that contains the 0x80 terminating |
305 | 0 | * value. |
306 | 0 | */ |
307 | 0 | index_a = mac_end_offset / md_block_size; |
308 | 0 | /* |
309 | 0 | * index_b is the hash block number that contains the 64-bit hash length, |
310 | 0 | * in bits. |
311 | 0 | */ |
312 | 0 | index_b = (mac_end_offset + md_length_size) / md_block_size; |
313 | 0 | /* |
314 | 0 | * bits is the hash-length in bits. It includes the additional hash block |
315 | 0 | * for the masked HMAC key, or whole of |header| in the case of SSLv3. |
316 | 0 | */ |
317 | 0 |
|
318 | 0 | /* |
319 | 0 | * For SSLv3, if we're going to have any starting blocks then we need at |
320 | 0 | * least two because the header is larger than a single block. |
321 | 0 | */ |
322 | 0 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { |
323 | 0 | num_starting_blocks = num_blocks - variance_blocks; |
324 | 0 | k = md_block_size * num_starting_blocks; |
325 | 0 | } |
326 | 0 |
|
327 | 0 | bits = 8 * mac_end_offset; |
328 | 0 | if (!is_sslv3) { |
329 | 0 | /* |
330 | 0 | * Compute the initial HMAC block. For SSLv3, the padding and secret |
331 | 0 | * bytes are included in |header| because they take more than a |
332 | 0 | * single block. |
333 | 0 | */ |
334 | 0 | bits += 8 * md_block_size; |
335 | 0 | memset(hmac_pad, 0, md_block_size); |
336 | 0 | if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad))) |
337 | 0 | return 0; |
338 | 0 | memcpy(hmac_pad, mac_secret, mac_secret_length); |
339 | 0 | for (i = 0; i < md_block_size; i++) |
340 | 0 | hmac_pad[i] ^= 0x36; |
341 | 0 |
|
342 | 0 | md_transform(md_state.c, hmac_pad); |
343 | 0 | } |
344 | 0 |
|
345 | 0 | if (length_is_big_endian) { |
346 | 0 | memset(length_bytes, 0, md_length_size - 4); |
347 | 0 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); |
348 | 0 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); |
349 | 0 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); |
350 | 0 | length_bytes[md_length_size - 1] = (unsigned char)bits; |
351 | 0 | } else { |
352 | 0 | memset(length_bytes, 0, md_length_size); |
353 | 0 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); |
354 | 0 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); |
355 | 0 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); |
356 | 0 | length_bytes[md_length_size - 8] = (unsigned char)bits; |
357 | 0 | } |
358 | 0 |
|
359 | 0 | if (k > 0) { |
360 | 0 | if (is_sslv3) { |
361 | 0 | size_t overhang; |
362 | 0 |
|
363 | 0 | /* |
364 | 0 | * The SSLv3 header is larger than a single block. overhang is |
365 | 0 | * the number of bytes beyond a single block that the header |
366 | 0 | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no |
367 | 0 | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and |
368 | 0 | * therefore we can be confident that the header_length will be |
369 | 0 | * greater than |md_block_size|. However we add a sanity check just |
370 | 0 | * in case |
371 | 0 | */ |
372 | 0 | if (header_length <= md_block_size) { |
373 | 0 | /* Should never happen */ |
374 | 0 | return 0; |
375 | 0 | } |
376 | 0 | overhang = header_length - md_block_size; |
377 | 0 | md_transform(md_state.c, header); |
378 | 0 | memcpy(first_block, header + md_block_size, overhang); |
379 | 0 | memcpy(first_block + overhang, data, md_block_size - overhang); |
380 | 0 | md_transform(md_state.c, first_block); |
381 | 0 | for (i = 1; i < k / md_block_size - 1; i++) |
382 | 0 | md_transform(md_state.c, data + md_block_size * i - overhang); |
383 | 0 | } else { |
384 | 0 | /* k is a multiple of md_block_size. */ |
385 | 0 | memcpy(first_block, header, 13); |
386 | 0 | memcpy(first_block + 13, data, md_block_size - 13); |
387 | 0 | md_transform(md_state.c, first_block); |
388 | 0 | for (i = 1; i < k / md_block_size; i++) |
389 | 0 | md_transform(md_state.c, data + md_block_size * i - 13); |
390 | 0 | } |
391 | 0 | } |
392 | 0 |
|
393 | 0 | memset(mac_out, 0, sizeof(mac_out)); |
394 | 0 |
|
395 | 0 | /* |
396 | 0 | * We now process the final hash blocks. For each block, we construct it |
397 | 0 | * in constant time. If the |i==index_a| then we'll include the 0x80 |
398 | 0 | * bytes and zero pad etc. For each block we selectively copy it, in |
399 | 0 | * constant time, to |mac_out|. |
400 | 0 | */ |
401 | 0 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; |
402 | 0 | i++) { |
403 | 0 | unsigned char block[MAX_HASH_BLOCK_SIZE]; |
404 | 0 | unsigned char is_block_a = constant_time_eq_8_s(i, index_a); |
405 | 0 | unsigned char is_block_b = constant_time_eq_8_s(i, index_b); |
406 | 0 | for (j = 0; j < md_block_size; j++) { |
407 | 0 | unsigned char b = 0, is_past_c, is_past_cp1; |
408 | 0 | if (k < header_length) |
409 | 0 | b = header[k]; |
410 | 0 | else if (k < data_plus_mac_plus_padding_size + header_length) |
411 | 0 | b = data[k - header_length]; |
412 | 0 | k++; |
413 | 0 |
|
414 | 0 | is_past_c = is_block_a & constant_time_ge_8_s(j, c); |
415 | 0 | is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1); |
416 | 0 | /* |
417 | 0 | * If this is the block containing the end of the application |
418 | 0 | * data, and we are at the offset for the 0x80 value, then |
419 | 0 | * overwrite b with 0x80. |
420 | 0 | */ |
421 | 0 | b = constant_time_select_8(is_past_c, 0x80, b); |
422 | 0 | /* |
423 | 0 | * If this block contains the end of the application data |
424 | 0 | * and we're past the 0x80 value then just write zero. |
425 | 0 | */ |
426 | 0 | b = b & ~is_past_cp1; |
427 | 0 | /* |
428 | 0 | * If this is index_b (the final block), but not index_a (the end |
429 | 0 | * of the data), then the 64-bit length didn't fit into index_a |
430 | 0 | * and we're having to add an extra block of zeros. |
431 | 0 | */ |
432 | 0 | b &= ~is_block_b | is_block_a; |
433 | 0 |
|
434 | 0 | /* |
435 | 0 | * The final bytes of one of the blocks contains the length. |
436 | 0 | */ |
437 | 0 | if (j >= md_block_size - md_length_size) { |
438 | 0 | /* If this is index_b, write a length byte. */ |
439 | 0 | b = constant_time_select_8(is_block_b, |
440 | 0 | length_bytes[j - |
441 | 0 | (md_block_size - |
442 | 0 | md_length_size)], b); |
443 | 0 | } |
444 | 0 | block[j] = b; |
445 | 0 | } |
446 | 0 |
|
447 | 0 | md_transform(md_state.c, block); |
448 | 0 | md_final_raw(md_state.c, block); |
449 | 0 | /* If this is index_b, copy the hash value to |mac_out|. */ |
450 | 0 | for (j = 0; j < md_size; j++) |
451 | 0 | mac_out[j] |= block[j] & is_block_b; |
452 | 0 | } |
453 | 0 |
|
454 | 0 | md_ctx = EVP_MD_CTX_new(); |
455 | 0 | if (md_ctx == NULL) |
456 | 0 | goto err; |
457 | 0 | if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0) |
458 | 0 | goto err; |
459 | 0 | if (is_sslv3) { |
460 | 0 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ |
461 | 0 | memset(hmac_pad, 0x5c, sslv3_pad_length); |
462 | 0 |
|
463 | 0 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0 |
464 | 0 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0 |
465 | 0 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
466 | 0 | goto err; |
467 | 0 | } else { |
468 | 0 | /* Complete the HMAC in the standard manner. */ |
469 | 0 | for (i = 0; i < md_block_size; i++) |
470 | 0 | hmac_pad[i] ^= 0x6a; |
471 | 0 |
|
472 | 0 | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0 |
473 | 0 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
474 | 0 | goto err; |
475 | 0 | } |
476 | 0 | /* TODO(size_t): Convert me */ |
477 | 0 | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u); |
478 | 0 | if (ret && md_out_size) |
479 | 0 | *md_out_size = md_out_size_u; |
480 | 0 | EVP_MD_CTX_free(md_ctx); |
481 | 0 |
|
482 | 0 | return 1; |
483 | 0 | err: |
484 | 0 | EVP_MD_CTX_free(md_ctx); |
485 | 0 | return 0; |
486 | 0 | } |