Coverage Report

Created: 2018-08-29 13:53

/src/zlib/deflate.c
Line
Count
Source (jump to first uncovered line)
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available in http://tools.ietf.org/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
/* ===========================================================================
64
 *  Function prototypes.
65
 */
66
typedef enum {
67
    need_more,      /* block not completed, need more input or more output */
68
    block_done,     /* block flush performed */
69
    finish_started, /* finish started, need only more output at next deflate */
70
    finish_done     /* finish done, accept no more input or output */
71
} block_state;
72
73
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74
/* Compression function. Returns the block state after the call. */
75
76
local int deflateStateCheck      OF((z_streamp strm));
77
local void slide_hash     OF((deflate_state *s));
78
local void fill_window    OF((deflate_state *s));
79
local block_state deflate_stored OF((deflate_state *s, int flush));
80
local block_state deflate_fast   OF((deflate_state *s, int flush));
81
#ifndef FASTEST
82
local block_state deflate_slow   OF((deflate_state *s, int flush));
83
#endif
84
local block_state deflate_rle    OF((deflate_state *s, int flush));
85
local block_state deflate_huff   OF((deflate_state *s, int flush));
86
local void lm_init        OF((deflate_state *s));
87
local void putShortMSB    OF((deflate_state *s, uInt b));
88
local void flush_pending  OF((z_streamp strm));
89
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90
#ifdef ASMV
91
#  pragma message("Assembler code may have bugs -- use at your own risk")
92
      void match_init OF((void)); /* asm code initialization */
93
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
94
#else
95
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96
#endif
97
98
#ifdef ZLIB_DEBUG
99
local  void check_match OF((deflate_state *s, IPos start, IPos match,
100
                            int length));
101
#endif
102
103
/* ===========================================================================
104
 * Local data
105
 */
106
107
0
#define NIL 0
108
/* Tail of hash chains */
109
110
#ifndef TOO_FAR
111
0
#  define TOO_FAR 4096
112
#endif
113
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115
/* Values for max_lazy_match, good_match and max_chain_length, depending on
116
 * the desired pack level (0..9). The values given below have been tuned to
117
 * exclude worst case performance for pathological files. Better values may be
118
 * found for specific files.
119
 */
120
typedef struct config_s {
121
   ush good_length; /* reduce lazy search above this match length */
122
   ush max_lazy;    /* do not perform lazy search above this match length */
123
   ush nice_length; /* quit search above this match length */
124
   ush max_chain;
125
   compress_func func;
126
} config;
127
128
#ifdef FASTEST
129
local const config configuration_table[2] = {
130
/*      good lazy nice chain */
131
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133
#else
134
local const config configuration_table[10] = {
135
/*      good lazy nice chain */
136
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138
/* 2 */ {4,    5, 16,    8, deflate_fast},
139
/* 3 */ {4,    6, 32,   32, deflate_fast},
140
141
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142
/* 5 */ {8,   16, 32,   32, deflate_slow},
143
/* 6 */ {8,   16, 128, 128, deflate_slow},
144
/* 7 */ {8,   32, 128, 256, deflate_slow},
145
/* 8 */ {32, 128, 258, 1024, deflate_slow},
146
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147
#endif
148
149
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151
 * meaning.
152
 */
153
154
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157
/* ===========================================================================
158
 * Update a hash value with the given input byte
159
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160
 *    characters, so that a running hash key can be computed from the previous
161
 *    key instead of complete recalculation each time.
162
 */
163
0
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166
/* ===========================================================================
167
 * Insert string str in the dictionary and set match_head to the previous head
168
 * of the hash chain (the most recent string with same hash key). Return
169
 * the previous length of the hash chain.
170
 * If this file is compiled with -DFASTEST, the compression level is forced
171
 * to 1, and no hash chains are maintained.
172
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173
 *    characters and the first MIN_MATCH bytes of str are valid (except for
174
 *    the last MIN_MATCH-1 bytes of the input file).
175
 */
176
#ifdef FASTEST
177
#define INSERT_STRING(s, str, match_head) \
178
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179
    match_head = s->head[s->ins_h], \
180
    s->head[s->ins_h] = (Pos)(str))
181
#else
182
#define INSERT_STRING(s, str, match_head) \
183
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185
0
    s->head[s->ins_h] = (Pos)(str))
186
#endif
187
188
/* ===========================================================================
189
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190
 * prev[] will be initialized on the fly.
191
 */
192
#define CLEAR_HASH(s) \
193
0
    s->head[s->hash_size-1] = NIL; \
194
0
    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195
196
/* ===========================================================================
197
 * Slide the hash table when sliding the window down (could be avoided with 32
198
 * bit values at the expense of memory usage). We slide even when level == 0 to
199
 * keep the hash table consistent if we switch back to level > 0 later.
200
 */
201
local void slide_hash(s)
202
    deflate_state *s;
203
0
{
204
0
    unsigned n, m;
205
0
    Posf *p;
206
0
    uInt wsize = s->w_size;
207
0
208
0
    n = s->hash_size;
209
0
    p = &s->head[n];
210
0
    do {
211
0
        m = *--p;
212
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
213
0
    } while (--n);
214
0
    n = wsize;
215
0
#ifndef FASTEST
216
0
    p = &s->prev[n];
217
0
    do {
218
0
        m = *--p;
219
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
220
0
        /* If n is not on any hash chain, prev[n] is garbage but
221
0
         * its value will never be used.
222
0
         */
223
0
    } while (--n);
224
0
#endif
225
0
}
226
227
/* ========================================================================= */
228
int ZEXPORT deflateInit_(strm, level, version, stream_size)
229
    z_streamp strm;
230
    int level;
231
    const char *version;
232
    int stream_size;
233
0
{
234
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
236
0
    /* To do: ignore strm->next_in if we use it as window */
237
0
}
238
239
/* ========================================================================= */
240
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241
                  version, stream_size)
242
    z_streamp strm;
243
    int  level;
244
    int  method;
245
    int  windowBits;
246
    int  memLevel;
247
    int  strategy;
248
    const char *version;
249
    int stream_size;
250
0
{
251
0
    deflate_state *s;
252
0
    int wrap = 1;
253
0
    static const char my_version[] = ZLIB_VERSION;
254
0
255
0
    ushf *overlay;
256
0
    /* We overlay pending_buf and d_buf+l_buf. This works since the average
257
0
     * output size for (length,distance) codes is <= 24 bits.
258
0
     */
259
0
260
0
    if (version == Z_NULL || version[0] != my_version[0] ||
261
0
        stream_size != sizeof(z_stream)) {
262
0
        return Z_VERSION_ERROR;
263
0
    }
264
0
    if (strm == Z_NULL) return Z_STREAM_ERROR;
265
0
266
0
    strm->msg = Z_NULL;
267
0
    if (strm->zalloc == (alloc_func)0) {
268
#ifdef Z_SOLO
269
        return Z_STREAM_ERROR;
270
#else
271
        strm->zalloc = zcalloc;
272
0
        strm->opaque = (voidpf)0;
273
0
#endif
274
0
    }
275
0
    if (strm->zfree == (free_func)0)
276
#ifdef Z_SOLO
277
        return Z_STREAM_ERROR;
278
#else
279
0
        strm->zfree = zcfree;
280
0
#endif
281
0
282
#ifdef FASTEST
283
    if (level != 0) level = 1;
284
#else
285
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
286
0
#endif
287
0
288
0
    if (windowBits < 0) { /* suppress zlib wrapper */
289
0
        wrap = 0;
290
0
        windowBits = -windowBits;
291
0
    }
292
0
#ifdef GZIP
293
0
    else if (windowBits > 15) {
294
0
        wrap = 2;       /* write gzip wrapper instead */
295
0
        windowBits -= 16;
296
0
    }
297
0
#endif
298
0
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
299
0
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
300
0
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
301
0
        return Z_STREAM_ERROR;
302
0
    }
303
0
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
304
0
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
305
0
    if (s == Z_NULL) return Z_MEM_ERROR;
306
0
    strm->state = (struct internal_state FAR *)s;
307
0
    s->strm = strm;
308
0
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
309
0
310
0
    s->wrap = wrap;
311
0
    s->gzhead = Z_NULL;
312
0
    s->w_bits = (uInt)windowBits;
313
0
    s->w_size = 1 << s->w_bits;
314
0
    s->w_mask = s->w_size - 1;
315
0
316
0
    s->hash_bits = (uInt)memLevel + 7;
317
0
    s->hash_size = 1 << s->hash_bits;
318
0
    s->hash_mask = s->hash_size - 1;
319
0
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320
0
321
0
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
322
0
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
323
0
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
324
0
325
0
    s->high_water = 0;      /* nothing written to s->window yet */
326
0
327
0
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
328
0
329
0
    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
330
0
    s->pending_buf = (uchf *) overlay;
331
0
    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
332
0
333
0
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
334
0
        s->pending_buf == Z_NULL) {
335
0
        s->status = FINISH_STATE;
336
0
        strm->msg = ERR_MSG(Z_MEM_ERROR);
337
0
        deflateEnd (strm);
338
0
        return Z_MEM_ERROR;
339
0
    }
340
0
    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
341
0
    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
342
0
343
0
    s->level = level;
344
0
    s->strategy = strategy;
345
0
    s->method = (Byte)method;
346
0
347
0
    return deflateReset(strm);
348
0
}
349
350
/* =========================================================================
351
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
352
 */
353
local int deflateStateCheck (strm)
354
    z_streamp strm;
355
0
{
356
0
    deflate_state *s;
357
0
    if (strm == Z_NULL ||
358
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
359
0
        return 1;
360
0
    s = strm->state;
361
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
362
0
#ifdef GZIP
363
0
                                           s->status != GZIP_STATE &&
364
0
#endif
365
0
                                           s->status != EXTRA_STATE &&
366
0
                                           s->status != NAME_STATE &&
367
0
                                           s->status != COMMENT_STATE &&
368
0
                                           s->status != HCRC_STATE &&
369
0
                                           s->status != BUSY_STATE &&
370
0
                                           s->status != FINISH_STATE))
371
0
        return 1;
372
0
    return 0;
373
0
}
374
375
/* ========================================================================= */
376
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
377
    z_streamp strm;
378
    const Bytef *dictionary;
379
    uInt  dictLength;
380
0
{
381
0
    deflate_state *s;
382
0
    uInt str, n;
383
0
    int wrap;
384
0
    unsigned avail;
385
0
    z_const unsigned char *next;
386
0
387
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
388
0
        return Z_STREAM_ERROR;
389
0
    s = strm->state;
390
0
    wrap = s->wrap;
391
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
392
0
        return Z_STREAM_ERROR;
393
0
394
0
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
395
0
    if (wrap == 1)
396
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
397
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
398
0
399
0
    /* if dictionary would fill window, just replace the history */
400
0
    if (dictLength >= s->w_size) {
401
0
        if (wrap == 0) {            /* already empty otherwise */
402
0
            CLEAR_HASH(s);
403
0
            s->strstart = 0;
404
0
            s->block_start = 0L;
405
0
            s->insert = 0;
406
0
        }
407
0
        dictionary += dictLength - s->w_size;  /* use the tail */
408
0
        dictLength = s->w_size;
409
0
    }
410
0
411
0
    /* insert dictionary into window and hash */
412
0
    avail = strm->avail_in;
413
0
    next = strm->next_in;
414
0
    strm->avail_in = dictLength;
415
0
    strm->next_in = (z_const Bytef *)dictionary;
416
0
    fill_window(s);
417
0
    while (s->lookahead >= MIN_MATCH) {
418
0
        str = s->strstart;
419
0
        n = s->lookahead - (MIN_MATCH-1);
420
0
        do {
421
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
422
0
#ifndef FASTEST
423
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
424
0
#endif
425
0
            s->head[s->ins_h] = (Pos)str;
426
0
            str++;
427
0
        } while (--n);
428
0
        s->strstart = str;
429
0
        s->lookahead = MIN_MATCH-1;
430
0
        fill_window(s);
431
0
    }
432
0
    s->strstart += s->lookahead;
433
0
    s->block_start = (long)s->strstart;
434
0
    s->insert = s->lookahead;
435
0
    s->lookahead = 0;
436
0
    s->match_length = s->prev_length = MIN_MATCH-1;
437
0
    s->match_available = 0;
438
0
    strm->next_in = next;
439
0
    strm->avail_in = avail;
440
0
    s->wrap = wrap;
441
0
    return Z_OK;
442
0
}
443
444
/* ========================================================================= */
445
int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
446
    z_streamp strm;
447
    Bytef *dictionary;
448
    uInt  *dictLength;
449
0
{
450
0
    deflate_state *s;
451
0
    uInt len;
452
0
453
0
    if (deflateStateCheck(strm))
454
0
        return Z_STREAM_ERROR;
455
0
    s = strm->state;
456
0
    len = s->strstart + s->lookahead;
457
0
    if (len > s->w_size)
458
0
        len = s->w_size;
459
0
    if (dictionary != Z_NULL && len)
460
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
461
0
    if (dictLength != Z_NULL)
462
0
        *dictLength = len;
463
0
    return Z_OK;
464
0
}
465
466
/* ========================================================================= */
467
int ZEXPORT deflateResetKeep (strm)
468
    z_streamp strm;
469
0
{
470
0
    deflate_state *s;
471
0
472
0
    if (deflateStateCheck(strm)) {
473
0
        return Z_STREAM_ERROR;
474
0
    }
475
0
476
0
    strm->total_in = strm->total_out = 0;
477
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
478
0
    strm->data_type = Z_UNKNOWN;
479
0
480
0
    s = (deflate_state *)strm->state;
481
0
    s->pending = 0;
482
0
    s->pending_out = s->pending_buf;
483
0
484
0
    if (s->wrap < 0) {
485
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
486
0
    }
487
0
    s->status =
488
0
#ifdef GZIP
489
0
        s->wrap == 2 ? GZIP_STATE :
490
0
#endif
491
0
        s->wrap ? INIT_STATE : BUSY_STATE;
492
0
    strm->adler =
493
0
#ifdef GZIP
494
0
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
495
0
#endif
496
0
        adler32(0L, Z_NULL, 0);
497
0
    s->last_flush = Z_NO_FLUSH;
498
0
499
0
    _tr_init(s);
500
0
501
0
    return Z_OK;
502
0
}
503
504
/* ========================================================================= */
505
int ZEXPORT deflateReset (strm)
506
    z_streamp strm;
507
0
{
508
0
    int ret;
509
0
510
0
    ret = deflateResetKeep(strm);
511
0
    if (ret == Z_OK)
512
0
        lm_init(strm->state);
513
0
    return ret;
514
0
}
515
516
/* ========================================================================= */
517
int ZEXPORT deflateSetHeader (strm, head)
518
    z_streamp strm;
519
    gz_headerp head;
520
0
{
521
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
522
0
        return Z_STREAM_ERROR;
523
0
    strm->state->gzhead = head;
524
0
    return Z_OK;
525
0
}
526
527
/* ========================================================================= */
528
int ZEXPORT deflatePending (strm, pending, bits)
529
    unsigned *pending;
530
    int *bits;
531
    z_streamp strm;
532
0
{
533
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
534
0
    if (pending != Z_NULL)
535
0
        *pending = strm->state->pending;
536
0
    if (bits != Z_NULL)
537
0
        *bits = strm->state->bi_valid;
538
0
    return Z_OK;
539
0
}
540
541
/* ========================================================================= */
542
int ZEXPORT deflatePrime (strm, bits, value)
543
    z_streamp strm;
544
    int bits;
545
    int value;
546
0
{
547
0
    deflate_state *s;
548
0
    int put;
549
0
550
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
551
0
    s = strm->state;
552
0
    if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
553
0
        return Z_BUF_ERROR;
554
0
    do {
555
0
        put = Buf_size - s->bi_valid;
556
0
        if (put > bits)
557
0
            put = bits;
558
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
559
0
        s->bi_valid += put;
560
0
        _tr_flush_bits(s);
561
0
        value >>= put;
562
0
        bits -= put;
563
0
    } while (bits);
564
0
    return Z_OK;
565
0
}
566
567
/* ========================================================================= */
568
int ZEXPORT deflateParams(strm, level, strategy)
569
    z_streamp strm;
570
    int level;
571
    int strategy;
572
0
{
573
0
    deflate_state *s;
574
0
    compress_func func;
575
0
576
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
577
0
    s = strm->state;
578
0
579
#ifdef FASTEST
580
    if (level != 0) level = 1;
581
#else
582
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
583
0
#endif
584
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
585
0
        return Z_STREAM_ERROR;
586
0
    }
587
0
    func = configuration_table[s->level].func;
588
0
589
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
590
0
        s->high_water) {
591
0
        /* Flush the last buffer: */
592
0
        int err = deflate(strm, Z_BLOCK);
593
0
        if (err == Z_STREAM_ERROR)
594
0
            return err;
595
0
        if (strm->avail_out == 0)
596
0
            return Z_BUF_ERROR;
597
0
    }
598
0
    if (s->level != level) {
599
0
        if (s->level == 0 && s->matches != 0) {
600
0
            if (s->matches == 1)
601
0
                slide_hash(s);
602
0
            else
603
0
                CLEAR_HASH(s);
604
0
            s->matches = 0;
605
0
        }
606
0
        s->level = level;
607
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
608
0
        s->good_match       = configuration_table[level].good_length;
609
0
        s->nice_match       = configuration_table[level].nice_length;
610
0
        s->max_chain_length = configuration_table[level].max_chain;
611
0
    }
612
0
    s->strategy = strategy;
613
0
    return Z_OK;
614
0
}
615
616
/* ========================================================================= */
617
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
618
    z_streamp strm;
619
    int good_length;
620
    int max_lazy;
621
    int nice_length;
622
    int max_chain;
623
0
{
624
0
    deflate_state *s;
625
0
626
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
627
0
    s = strm->state;
628
0
    s->good_match = (uInt)good_length;
629
0
    s->max_lazy_match = (uInt)max_lazy;
630
0
    s->nice_match = nice_length;
631
0
    s->max_chain_length = (uInt)max_chain;
632
0
    return Z_OK;
633
0
}
634
635
/* =========================================================================
636
 * For the default windowBits of 15 and memLevel of 8, this function returns
637
 * a close to exact, as well as small, upper bound on the compressed size.
638
 * They are coded as constants here for a reason--if the #define's are
639
 * changed, then this function needs to be changed as well.  The return
640
 * value for 15 and 8 only works for those exact settings.
641
 *
642
 * For any setting other than those defaults for windowBits and memLevel,
643
 * the value returned is a conservative worst case for the maximum expansion
644
 * resulting from using fixed blocks instead of stored blocks, which deflate
645
 * can emit on compressed data for some combinations of the parameters.
646
 *
647
 * This function could be more sophisticated to provide closer upper bounds for
648
 * every combination of windowBits and memLevel.  But even the conservative
649
 * upper bound of about 14% expansion does not seem onerous for output buffer
650
 * allocation.
651
 */
652
uLong ZEXPORT deflateBound(strm, sourceLen)
653
    z_streamp strm;
654
    uLong sourceLen;
655
0
{
656
0
    deflate_state *s;
657
0
    uLong complen, wraplen;
658
0
659
0
    /* conservative upper bound for compressed data */
660
0
    complen = sourceLen +
661
0
              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
662
0
663
0
    /* if can't get parameters, return conservative bound plus zlib wrapper */
664
0
    if (deflateStateCheck(strm))
665
0
        return complen + 6;
666
0
667
0
    /* compute wrapper length */
668
0
    s = strm->state;
669
0
    switch (s->wrap) {
670
0
    case 0:                                 /* raw deflate */
671
0
        wraplen = 0;
672
0
        break;
673
0
    case 1:                                 /* zlib wrapper */
674
0
        wraplen = 6 + (s->strstart ? 4 : 0);
675
0
        break;
676
0
#ifdef GZIP
677
0
    case 2:                                 /* gzip wrapper */
678
0
        wraplen = 18;
679
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
680
0
            Bytef *str;
681
0
            if (s->gzhead->extra != Z_NULL)
682
0
                wraplen += 2 + s->gzhead->extra_len;
683
0
            str = s->gzhead->name;
684
0
            if (str != Z_NULL)
685
0
                do {
686
0
                    wraplen++;
687
0
                } while (*str++);
688
0
            str = s->gzhead->comment;
689
0
            if (str != Z_NULL)
690
0
                do {
691
0
                    wraplen++;
692
0
                } while (*str++);
693
0
            if (s->gzhead->hcrc)
694
0
                wraplen += 2;
695
0
        }
696
0
        break;
697
0
#endif
698
0
    default:                                /* for compiler happiness */
699
0
        wraplen = 6;
700
0
    }
701
0
702
0
    /* if not default parameters, return conservative bound */
703
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
704
0
        return complen + wraplen;
705
0
706
0
    /* default settings: return tight bound for that case */
707
0
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
708
0
           (sourceLen >> 25) + 13 - 6 + wraplen;
709
0
}
710
711
/* =========================================================================
712
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
713
 * IN assertion: the stream state is correct and there is enough room in
714
 * pending_buf.
715
 */
716
local void putShortMSB (s, b)
717
    deflate_state *s;
718
    uInt b;
719
0
{
720
0
    put_byte(s, (Byte)(b >> 8));
721
0
    put_byte(s, (Byte)(b & 0xff));
722
0
}
723
724
/* =========================================================================
725
 * Flush as much pending output as possible. All deflate() output, except for
726
 * some deflate_stored() output, goes through this function so some
727
 * applications may wish to modify it to avoid allocating a large
728
 * strm->next_out buffer and copying into it. (See also read_buf()).
729
 */
730
local void flush_pending(strm)
731
    z_streamp strm;
732
0
{
733
0
    unsigned len;
734
0
    deflate_state *s = strm->state;
735
0
736
0
    _tr_flush_bits(s);
737
0
    len = s->pending;
738
0
    if (len > strm->avail_out) len = strm->avail_out;
739
0
    if (len == 0) return;
740
0
741
0
    zmemcpy(strm->next_out, s->pending_out, len);
742
0
    strm->next_out  += len;
743
0
    s->pending_out  += len;
744
0
    strm->total_out += len;
745
0
    strm->avail_out -= len;
746
0
    s->pending      -= len;
747
0
    if (s->pending == 0) {
748
0
        s->pending_out = s->pending_buf;
749
0
    }
750
0
}
751
752
/* ===========================================================================
753
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
754
 */
755
#define HCRC_UPDATE(beg) \
756
0
    do { \
757
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
758
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
759
0
                                s->pending - (beg)); \
760
0
    } while (0)
761
762
/* ========================================================================= */
763
int ZEXPORT deflate (strm, flush)
764
    z_streamp strm;
765
    int flush;
766
0
{
767
0
    int old_flush; /* value of flush param for previous deflate call */
768
0
    deflate_state *s;
769
0
770
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
771
0
        return Z_STREAM_ERROR;
772
0
    }
773
0
    s = strm->state;
774
0
775
0
    if (strm->next_out == Z_NULL ||
776
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
777
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
778
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
779
0
    }
780
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
781
0
782
0
    old_flush = s->last_flush;
783
0
    s->last_flush = flush;
784
0
785
0
    /* Flush as much pending output as possible */
786
0
    if (s->pending != 0) {
787
0
        flush_pending(strm);
788
0
        if (strm->avail_out == 0) {
789
0
            /* Since avail_out is 0, deflate will be called again with
790
0
             * more output space, but possibly with both pending and
791
0
             * avail_in equal to zero. There won't be anything to do,
792
0
             * but this is not an error situation so make sure we
793
0
             * return OK instead of BUF_ERROR at next call of deflate:
794
0
             */
795
0
            s->last_flush = -1;
796
0
            return Z_OK;
797
0
        }
798
0
799
0
    /* Make sure there is something to do and avoid duplicate consecutive
800
0
     * flushes. For repeated and useless calls with Z_FINISH, we keep
801
0
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
802
0
     */
803
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
804
0
               flush != Z_FINISH) {
805
0
        ERR_RETURN(strm, Z_BUF_ERROR);
806
0
    }
807
0
808
0
    /* User must not provide more input after the first FINISH: */
809
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
810
0
        ERR_RETURN(strm, Z_BUF_ERROR);
811
0
    }
812
0
813
0
    /* Write the header */
814
0
    if (s->status == INIT_STATE) {
815
0
        /* zlib header */
816
0
        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
817
0
        uInt level_flags;
818
0
819
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
820
0
            level_flags = 0;
821
0
        else if (s->level < 6)
822
0
            level_flags = 1;
823
0
        else if (s->level == 6)
824
0
            level_flags = 2;
825
0
        else
826
0
            level_flags = 3;
827
0
        header |= (level_flags << 6);
828
0
        if (s->strstart != 0) header |= PRESET_DICT;
829
0
        header += 31 - (header % 31);
830
0
831
0
        putShortMSB(s, header);
832
0
833
0
        /* Save the adler32 of the preset dictionary: */
834
0
        if (s->strstart != 0) {
835
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
836
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
837
0
        }
838
0
        strm->adler = adler32(0L, Z_NULL, 0);
839
0
        s->status = BUSY_STATE;
840
0
841
0
        /* Compression must start with an empty pending buffer */
842
0
        flush_pending(strm);
843
0
        if (s->pending != 0) {
844
0
            s->last_flush = -1;
845
0
            return Z_OK;
846
0
        }
847
0
    }
848
0
#ifdef GZIP
849
0
    if (s->status == GZIP_STATE) {
850
0
        /* gzip header */
851
0
        strm->adler = crc32(0L, Z_NULL, 0);
852
0
        put_byte(s, 31);
853
0
        put_byte(s, 139);
854
0
        put_byte(s, 8);
855
0
        if (s->gzhead == Z_NULL) {
856
0
            put_byte(s, 0);
857
0
            put_byte(s, 0);
858
0
            put_byte(s, 0);
859
0
            put_byte(s, 0);
860
0
            put_byte(s, 0);
861
0
            put_byte(s, s->level == 9 ? 2 :
862
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
863
0
                      4 : 0));
864
0
            put_byte(s, OS_CODE);
865
0
            s->status = BUSY_STATE;
866
0
867
0
            /* Compression must start with an empty pending buffer */
868
0
            flush_pending(strm);
869
0
            if (s->pending != 0) {
870
0
                s->last_flush = -1;
871
0
                return Z_OK;
872
0
            }
873
0
        }
874
0
        else {
875
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
876
0
                     (s->gzhead->hcrc ? 2 : 0) +
877
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
878
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
879
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
880
0
                     );
881
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
882
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
883
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
884
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
885
0
            put_byte(s, s->level == 9 ? 2 :
886
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
887
0
                      4 : 0));
888
0
            put_byte(s, s->gzhead->os & 0xff);
889
0
            if (s->gzhead->extra != Z_NULL) {
890
0
                put_byte(s, s->gzhead->extra_len & 0xff);
891
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
892
0
            }
893
0
            if (s->gzhead->hcrc)
894
0
                strm->adler = crc32(strm->adler, s->pending_buf,
895
0
                                    s->pending);
896
0
            s->gzindex = 0;
897
0
            s->status = EXTRA_STATE;
898
0
        }
899
0
    }
900
0
    if (s->status == EXTRA_STATE) {
901
0
        if (s->gzhead->extra != Z_NULL) {
902
0
            ulg beg = s->pending;   /* start of bytes to update crc */
903
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
904
0
            while (s->pending + left > s->pending_buf_size) {
905
0
                uInt copy = s->pending_buf_size - s->pending;
906
0
                zmemcpy(s->pending_buf + s->pending,
907
0
                        s->gzhead->extra + s->gzindex, copy);
908
0
                s->pending = s->pending_buf_size;
909
0
                HCRC_UPDATE(beg);
910
0
                s->gzindex += copy;
911
0
                flush_pending(strm);
912
0
                if (s->pending != 0) {
913
0
                    s->last_flush = -1;
914
0
                    return Z_OK;
915
0
                }
916
0
                beg = 0;
917
0
                left -= copy;
918
0
            }
919
0
            zmemcpy(s->pending_buf + s->pending,
920
0
                    s->gzhead->extra + s->gzindex, left);
921
0
            s->pending += left;
922
0
            HCRC_UPDATE(beg);
923
0
            s->gzindex = 0;
924
0
        }
925
0
        s->status = NAME_STATE;
926
0
    }
927
0
    if (s->status == NAME_STATE) {
928
0
        if (s->gzhead->name != Z_NULL) {
929
0
            ulg beg = s->pending;   /* start of bytes to update crc */
930
0
            int val;
931
0
            do {
932
0
                if (s->pending == s->pending_buf_size) {
933
0
                    HCRC_UPDATE(beg);
934
0
                    flush_pending(strm);
935
0
                    if (s->pending != 0) {
936
0
                        s->last_flush = -1;
937
0
                        return Z_OK;
938
0
                    }
939
0
                    beg = 0;
940
0
                }
941
0
                val = s->gzhead->name[s->gzindex++];
942
0
                put_byte(s, val);
943
0
            } while (val != 0);
944
0
            HCRC_UPDATE(beg);
945
0
            s->gzindex = 0;
946
0
        }
947
0
        s->status = COMMENT_STATE;
948
0
    }
949
0
    if (s->status == COMMENT_STATE) {
950
0
        if (s->gzhead->comment != Z_NULL) {
951
0
            ulg beg = s->pending;   /* start of bytes to update crc */
952
0
            int val;
953
0
            do {
954
0
                if (s->pending == s->pending_buf_size) {
955
0
                    HCRC_UPDATE(beg);
956
0
                    flush_pending(strm);
957
0
                    if (s->pending != 0) {
958
0
                        s->last_flush = -1;
959
0
                        return Z_OK;
960
0
                    }
961
0
                    beg = 0;
962
0
                }
963
0
                val = s->gzhead->comment[s->gzindex++];
964
0
                put_byte(s, val);
965
0
            } while (val != 0);
966
0
            HCRC_UPDATE(beg);
967
0
        }
968
0
        s->status = HCRC_STATE;
969
0
    }
970
0
    if (s->status == HCRC_STATE) {
971
0
        if (s->gzhead->hcrc) {
972
0
            if (s->pending + 2 > s->pending_buf_size) {
973
0
                flush_pending(strm);
974
0
                if (s->pending != 0) {
975
0
                    s->last_flush = -1;
976
0
                    return Z_OK;
977
0
                }
978
0
            }
979
0
            put_byte(s, (Byte)(strm->adler & 0xff));
980
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
981
0
            strm->adler = crc32(0L, Z_NULL, 0);
982
0
        }
983
0
        s->status = BUSY_STATE;
984
0
985
0
        /* Compression must start with an empty pending buffer */
986
0
        flush_pending(strm);
987
0
        if (s->pending != 0) {
988
0
            s->last_flush = -1;
989
0
            return Z_OK;
990
0
        }
991
0
    }
992
0
#endif
993
0
994
0
    /* Start a new block or continue the current one.
995
0
     */
996
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
997
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
998
0
        block_state bstate;
999
0
1000
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1001
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1002
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1003
0
                 (*(configuration_table[s->level].func))(s, flush);
1004
0
1005
0
        if (bstate == finish_started || bstate == finish_done) {
1006
0
            s->status = FINISH_STATE;
1007
0
        }
1008
0
        if (bstate == need_more || bstate == finish_started) {
1009
0
            if (strm->avail_out == 0) {
1010
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1011
0
            }
1012
0
            return Z_OK;
1013
0
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1014
0
             * of deflate should use the same flush parameter to make sure
1015
0
             * that the flush is complete. So we don't have to output an
1016
0
             * empty block here, this will be done at next call. This also
1017
0
             * ensures that for a very small output buffer, we emit at most
1018
0
             * one empty block.
1019
0
             */
1020
0
        }
1021
0
        if (bstate == block_done) {
1022
0
            if (flush == Z_PARTIAL_FLUSH) {
1023
0
                _tr_align(s);
1024
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1025
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1026
0
                /* For a full flush, this empty block will be recognized
1027
0
                 * as a special marker by inflate_sync().
1028
0
                 */
1029
0
                if (flush == Z_FULL_FLUSH) {
1030
0
                    CLEAR_HASH(s);             /* forget history */
1031
0
                    if (s->lookahead == 0) {
1032
0
                        s->strstart = 0;
1033
0
                        s->block_start = 0L;
1034
0
                        s->insert = 0;
1035
0
                    }
1036
0
                }
1037
0
            }
1038
0
            flush_pending(strm);
1039
0
            if (strm->avail_out == 0) {
1040
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1041
0
              return Z_OK;
1042
0
            }
1043
0
        }
1044
0
    }
1045
0
1046
0
    if (flush != Z_FINISH) return Z_OK;
1047
0
    if (s->wrap <= 0) return Z_STREAM_END;
1048
0
1049
0
    /* Write the trailer */
1050
0
#ifdef GZIP
1051
0
    if (s->wrap == 2) {
1052
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1053
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1054
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1055
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1056
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1057
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1058
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1059
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1060
0
    }
1061
0
    else
1062
0
#endif
1063
0
    {
1064
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1065
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1066
0
    }
1067
0
    flush_pending(strm);
1068
0
    /* If avail_out is zero, the application will call deflate again
1069
0
     * to flush the rest.
1070
0
     */
1071
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1072
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1073
0
}
1074
1075
/* ========================================================================= */
1076
int ZEXPORT deflateEnd (strm)
1077
    z_streamp strm;
1078
0
{
1079
0
    int status;
1080
0
1081
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1082
0
1083
0
    status = strm->state->status;
1084
0
1085
0
    /* Deallocate in reverse order of allocations: */
1086
0
    TRY_FREE(strm, strm->state->pending_buf);
1087
0
    TRY_FREE(strm, strm->state->head);
1088
0
    TRY_FREE(strm, strm->state->prev);
1089
0
    TRY_FREE(strm, strm->state->window);
1090
0
1091
0
    ZFREE(strm, strm->state);
1092
0
    strm->state = Z_NULL;
1093
0
1094
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1095
0
}
1096
1097
/* =========================================================================
1098
 * Copy the source state to the destination state.
1099
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1100
 * doesn't have enough memory anyway to duplicate compression states).
1101
 */
1102
int ZEXPORT deflateCopy (dest, source)
1103
    z_streamp dest;
1104
    z_streamp source;
1105
0
{
1106
#ifdef MAXSEG_64K
1107
    return Z_STREAM_ERROR;
1108
#else
1109
    deflate_state *ds;
1110
0
    deflate_state *ss;
1111
0
    ushf *overlay;
1112
0
1113
0
1114
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1115
0
        return Z_STREAM_ERROR;
1116
0
    }
1117
0
1118
0
    ss = source->state;
1119
0
1120
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1121
0
1122
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1123
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1124
0
    dest->state = (struct internal_state FAR *) ds;
1125
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1126
0
    ds->strm = dest;
1127
0
1128
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1129
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1130
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1131
0
    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1132
0
    ds->pending_buf = (uchf *) overlay;
1133
0
1134
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1135
0
        ds->pending_buf == Z_NULL) {
1136
0
        deflateEnd (dest);
1137
0
        return Z_MEM_ERROR;
1138
0
    }
1139
0
    /* following zmemcpy do not work for 16-bit MSDOS */
1140
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1141
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1142
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1143
0
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1144
0
1145
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1146
0
    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1147
0
    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1148
0
1149
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1150
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1151
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1152
0
1153
0
    return Z_OK;
1154
0
#endif /* MAXSEG_64K */
1155
0
}
1156
1157
/* ===========================================================================
1158
 * Read a new buffer from the current input stream, update the adler32
1159
 * and total number of bytes read.  All deflate() input goes through
1160
 * this function so some applications may wish to modify it to avoid
1161
 * allocating a large strm->next_in buffer and copying from it.
1162
 * (See also flush_pending()).
1163
 */
1164
local unsigned read_buf(strm, buf, size)
1165
    z_streamp strm;
1166
    Bytef *buf;
1167
    unsigned size;
1168
0
{
1169
0
    unsigned len = strm->avail_in;
1170
0
1171
0
    if (len > size) len = size;
1172
0
    if (len == 0) return 0;
1173
0
1174
0
    strm->avail_in  -= len;
1175
0
1176
0
    zmemcpy(buf, strm->next_in, len);
1177
0
    if (strm->state->wrap == 1) {
1178
0
        strm->adler = adler32(strm->adler, buf, len);
1179
0
    }
1180
0
#ifdef GZIP
1181
0
    else if (strm->state->wrap == 2) {
1182
0
        strm->adler = crc32(strm->adler, buf, len);
1183
0
    }
1184
0
#endif
1185
0
    strm->next_in  += len;
1186
0
    strm->total_in += len;
1187
0
1188
0
    return len;
1189
0
}
1190
1191
/* ===========================================================================
1192
 * Initialize the "longest match" routines for a new zlib stream
1193
 */
1194
local void lm_init (s)
1195
    deflate_state *s;
1196
0
{
1197
0
    s->window_size = (ulg)2L*s->w_size;
1198
0
1199
0
    CLEAR_HASH(s);
1200
0
1201
0
    /* Set the default configuration parameters:
1202
0
     */
1203
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1204
0
    s->good_match       = configuration_table[s->level].good_length;
1205
0
    s->nice_match       = configuration_table[s->level].nice_length;
1206
0
    s->max_chain_length = configuration_table[s->level].max_chain;
1207
0
1208
0
    s->strstart = 0;
1209
0
    s->block_start = 0L;
1210
0
    s->lookahead = 0;
1211
0
    s->insert = 0;
1212
0
    s->match_length = s->prev_length = MIN_MATCH-1;
1213
0
    s->match_available = 0;
1214
0
    s->ins_h = 0;
1215
0
#ifndef FASTEST
1216
#ifdef ASMV
1217
    match_init(); /* initialize the asm code */
1218
#endif
1219
#endif
1220
0
}
1221
1222
#ifndef FASTEST
1223
/* ===========================================================================
1224
 * Set match_start to the longest match starting at the given string and
1225
 * return its length. Matches shorter or equal to prev_length are discarded,
1226
 * in which case the result is equal to prev_length and match_start is
1227
 * garbage.
1228
 * IN assertions: cur_match is the head of the hash chain for the current
1229
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1230
 * OUT assertion: the match length is not greater than s->lookahead.
1231
 */
1232
#ifndef ASMV
1233
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1234
 * match.S. The code will be functionally equivalent.
1235
 */
1236
local uInt longest_match(s, cur_match)
1237
    deflate_state *s;
1238
    IPos cur_match;                             /* current match */
1239
0
{
1240
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1241
0
    register Bytef *scan = s->window + s->strstart; /* current string */
1242
0
    register Bytef *match;                      /* matched string */
1243
0
    register int len;                           /* length of current match */
1244
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1245
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1246
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1247
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1248
0
    /* Stop when cur_match becomes <= limit. To simplify the code,
1249
0
     * we prevent matches with the string of window index 0.
1250
0
     */
1251
0
    Posf *prev = s->prev;
1252
0
    uInt wmask = s->w_mask;
1253
0
1254
#ifdef UNALIGNED_OK
1255
    /* Compare two bytes at a time. Note: this is not always beneficial.
1256
     * Try with and without -DUNALIGNED_OK to check.
1257
     */
1258
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1259
    register ush scan_start = *(ushf*)scan;
1260
    register ush scan_end   = *(ushf*)(scan+best_len-1);
1261
#else
1262
0
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1263
0
    register Byte scan_end1  = scan[best_len-1];
1264
0
    register Byte scan_end   = scan[best_len];
1265
0
#endif
1266
0
1267
0
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1268
0
     * It is easy to get rid of this optimization if necessary.
1269
0
     */
1270
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1271
0
1272
0
    /* Do not waste too much time if we already have a good match: */
1273
0
    if (s->prev_length >= s->good_match) {
1274
0
        chain_length >>= 2;
1275
0
    }
1276
0
    /* Do not look for matches beyond the end of the input. This is necessary
1277
0
     * to make deflate deterministic.
1278
0
     */
1279
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1280
0
1281
0
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1282
0
1283
0
    do {
1284
0
        Assert(cur_match < s->strstart, "no future");
1285
0
        match = s->window + cur_match;
1286
0
1287
0
        /* Skip to next match if the match length cannot increase
1288
0
         * or if the match length is less than 2.  Note that the checks below
1289
0
         * for insufficient lookahead only occur occasionally for performance
1290
0
         * reasons.  Therefore uninitialized memory will be accessed, and
1291
0
         * conditional jumps will be made that depend on those values.
1292
0
         * However the length of the match is limited to the lookahead, so
1293
0
         * the output of deflate is not affected by the uninitialized values.
1294
0
         */
1295
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1296
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1297
         * UNALIGNED_OK if your compiler uses a different size.
1298
         */
1299
        if (*(ushf*)(match+best_len-1) != scan_end ||
1300
            *(ushf*)match != scan_start) continue;
1301
1302
        /* It is not necessary to compare scan[2] and match[2] since they are
1303
         * always equal when the other bytes match, given that the hash keys
1304
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1305
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1306
         * lookahead only every 4th comparison; the 128th check will be made
1307
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1308
         * necessary to put more guard bytes at the end of the window, or
1309
         * to check more often for insufficient lookahead.
1310
         */
1311
        Assert(scan[2] == match[2], "scan[2]?");
1312
        scan++, match++;
1313
        do {
1314
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1315
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318
                 scan < strend);
1319
        /* The funny "do {}" generates better code on most compilers */
1320
1321
        /* Here, scan <= window+strstart+257 */
1322
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1323
        if (*scan == *match) scan++;
1324
1325
        len = (MAX_MATCH - 1) - (int)(strend-scan);
1326
        scan = strend - (MAX_MATCH-1);
1327
1328
#else /* UNALIGNED_OK */
1329
1330
0
        if (match[best_len]   != scan_end  ||
1331
0
            match[best_len-1] != scan_end1 ||
1332
0
            *match            != *scan     ||
1333
0
            *++match          != scan[1])      continue;
1334
0
1335
0
        /* The check at best_len-1 can be removed because it will be made
1336
0
         * again later. (This heuristic is not always a win.)
1337
0
         * It is not necessary to compare scan[2] and match[2] since they
1338
0
         * are always equal when the other bytes match, given that
1339
0
         * the hash keys are equal and that HASH_BITS >= 8.
1340
0
         */
1341
0
        scan += 2, match++;
1342
0
        Assert(*scan == *match, "match[2]?");
1343
0
1344
0
        /* We check for insufficient lookahead only every 8th comparison;
1345
0
         * the 256th check will be made at strstart+258.
1346
0
         */
1347
0
        do {
1348
0
        } while (*++scan == *++match && *++scan == *++match &&
1349
0
                 *++scan == *++match && *++scan == *++match &&
1350
0
                 *++scan == *++match && *++scan == *++match &&
1351
0
                 *++scan == *++match && *++scan == *++match &&
1352
0
                 scan < strend);
1353
0
1354
0
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1355
0
1356
0
        len = MAX_MATCH - (int)(strend - scan);
1357
0
        scan = strend - MAX_MATCH;
1358
0
1359
0
#endif /* UNALIGNED_OK */
1360
0
1361
0
        if (len > best_len) {
1362
0
            s->match_start = cur_match;
1363
0
            best_len = len;
1364
0
            if (len >= nice_match) break;
1365
#ifdef UNALIGNED_OK
1366
            scan_end = *(ushf*)(scan+best_len-1);
1367
#else
1368
0
            scan_end1  = scan[best_len-1];
1369
0
            scan_end   = scan[best_len];
1370
0
#endif
1371
0
        }
1372
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1373
0
             && --chain_length != 0);
1374
0
1375
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1376
0
    return s->lookahead;
1377
0
}
1378
#endif /* ASMV */
1379
1380
#else /* FASTEST */
1381
1382
/* ---------------------------------------------------------------------------
1383
 * Optimized version for FASTEST only
1384
 */
1385
local uInt longest_match(s, cur_match)
1386
    deflate_state *s;
1387
    IPos cur_match;                             /* current match */
1388
{
1389
    register Bytef *scan = s->window + s->strstart; /* current string */
1390
    register Bytef *match;                       /* matched string */
1391
    register int len;                           /* length of current match */
1392
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1393
1394
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1395
     * It is easy to get rid of this optimization if necessary.
1396
     */
1397
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1398
1399
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1400
1401
    Assert(cur_match < s->strstart, "no future");
1402
1403
    match = s->window + cur_match;
1404
1405
    /* Return failure if the match length is less than 2:
1406
     */
1407
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1408
1409
    /* The check at best_len-1 can be removed because it will be made
1410
     * again later. (This heuristic is not always a win.)
1411
     * It is not necessary to compare scan[2] and match[2] since they
1412
     * are always equal when the other bytes match, given that
1413
     * the hash keys are equal and that HASH_BITS >= 8.
1414
     */
1415
    scan += 2, match += 2;
1416
    Assert(*scan == *match, "match[2]?");
1417
1418
    /* We check for insufficient lookahead only every 8th comparison;
1419
     * the 256th check will be made at strstart+258.
1420
     */
1421
    do {
1422
    } while (*++scan == *++match && *++scan == *++match &&
1423
             *++scan == *++match && *++scan == *++match &&
1424
             *++scan == *++match && *++scan == *++match &&
1425
             *++scan == *++match && *++scan == *++match &&
1426
             scan < strend);
1427
1428
    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1429
1430
    len = MAX_MATCH - (int)(strend - scan);
1431
1432
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1433
1434
    s->match_start = cur_match;
1435
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1436
}
1437
1438
#endif /* FASTEST */
1439
1440
#ifdef ZLIB_DEBUG
1441
1442
#define EQUAL 0
1443
/* result of memcmp for equal strings */
1444
1445
/* ===========================================================================
1446
 * Check that the match at match_start is indeed a match.
1447
 */
1448
local void check_match(s, start, match, length)
1449
    deflate_state *s;
1450
    IPos start, match;
1451
    int length;
1452
{
1453
    /* check that the match is indeed a match */
1454
    if (zmemcmp(s->window + match,
1455
                s->window + start, length) != EQUAL) {
1456
        fprintf(stderr, " start %u, match %u, length %d\n",
1457
                start, match, length);
1458
        do {
1459
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1460
        } while (--length != 0);
1461
        z_error("invalid match");
1462
    }
1463
    if (z_verbose > 1) {
1464
        fprintf(stderr,"\\[%d,%d]", start-match, length);
1465
        do { putc(s->window[start++], stderr); } while (--length != 0);
1466
    }
1467
}
1468
#else
1469
#  define check_match(s, start, match, length)
1470
#endif /* ZLIB_DEBUG */
1471
1472
/* ===========================================================================
1473
 * Fill the window when the lookahead becomes insufficient.
1474
 * Updates strstart and lookahead.
1475
 *
1476
 * IN assertion: lookahead < MIN_LOOKAHEAD
1477
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1478
 *    At least one byte has been read, or avail_in == 0; reads are
1479
 *    performed for at least two bytes (required for the zip translate_eol
1480
 *    option -- not supported here).
1481
 */
1482
local void fill_window(s)
1483
    deflate_state *s;
1484
0
{
1485
0
    unsigned n;
1486
0
    unsigned more;    /* Amount of free space at the end of the window. */
1487
0
    uInt wsize = s->w_size;
1488
0
1489
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1490
0
1491
0
    do {
1492
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1493
0
1494
0
        /* Deal with !@#$% 64K limit: */
1495
0
        if (sizeof(int) <= 2) {
1496
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1497
0
                more = wsize;
1498
0
1499
0
            } else if (more == (unsigned)(-1)) {
1500
0
                /* Very unlikely, but possible on 16 bit machine if
1501
0
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1502
0
                 */
1503
0
                more--;
1504
0
            }
1505
0
        }
1506
0
1507
0
        /* If the window is almost full and there is insufficient lookahead,
1508
0
         * move the upper half to the lower one to make room in the upper half.
1509
0
         */
1510
0
        if (s->strstart >= wsize+MAX_DIST(s)) {
1511
0
1512
0
            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1513
0
            s->match_start -= wsize;
1514
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1515
0
            s->block_start -= (long) wsize;
1516
0
            slide_hash(s);
1517
0
            more += wsize;
1518
0
        }
1519
0
        if (s->strm->avail_in == 0) break;
1520
0
1521
0
        /* If there was no sliding:
1522
0
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1523
0
         *    more == window_size - lookahead - strstart
1524
0
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1525
0
         * => more >= window_size - 2*WSIZE + 2
1526
0
         * In the BIG_MEM or MMAP case (not yet supported),
1527
0
         *   window_size == input_size + MIN_LOOKAHEAD  &&
1528
0
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1529
0
         * Otherwise, window_size == 2*WSIZE so more >= 2.
1530
0
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1531
0
         */
1532
0
        Assert(more >= 2, "more < 2");
1533
0
1534
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1535
0
        s->lookahead += n;
1536
0
1537
0
        /* Initialize the hash value now that we have some input: */
1538
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
1539
0
            uInt str = s->strstart - s->insert;
1540
0
            s->ins_h = s->window[str];
1541
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1542
#if MIN_MATCH != 3
1543
            Call UPDATE_HASH() MIN_MATCH-3 more times
1544
#endif
1545
0
            while (s->insert) {
1546
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1547
0
#ifndef FASTEST
1548
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
1549
0
#endif
1550
0
                s->head[s->ins_h] = (Pos)str;
1551
0
                str++;
1552
0
                s->insert--;
1553
0
                if (s->lookahead + s->insert < MIN_MATCH)
1554
0
                    break;
1555
0
            }
1556
0
        }
1557
0
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1558
0
         * but this is not important since only literal bytes will be emitted.
1559
0
         */
1560
0
1561
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1562
0
1563
0
    /* If the WIN_INIT bytes after the end of the current data have never been
1564
0
     * written, then zero those bytes in order to avoid memory check reports of
1565
0
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1566
0
     * the longest match routines.  Update the high water mark for the next
1567
0
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1568
0
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1569
0
     */
1570
0
    if (s->high_water < s->window_size) {
1571
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
1572
0
        ulg init;
1573
0
1574
0
        if (s->high_water < curr) {
1575
0
            /* Previous high water mark below current data -- zero WIN_INIT
1576
0
             * bytes or up to end of window, whichever is less.
1577
0
             */
1578
0
            init = s->window_size - curr;
1579
0
            if (init > WIN_INIT)
1580
0
                init = WIN_INIT;
1581
0
            zmemzero(s->window + curr, (unsigned)init);
1582
0
            s->high_water = curr + init;
1583
0
        }
1584
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
1585
0
            /* High water mark at or above current data, but below current data
1586
0
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1587
0
             * to end of window, whichever is less.
1588
0
             */
1589
0
            init = (ulg)curr + WIN_INIT - s->high_water;
1590
0
            if (init > s->window_size - s->high_water)
1591
0
                init = s->window_size - s->high_water;
1592
0
            zmemzero(s->window + s->high_water, (unsigned)init);
1593
0
            s->high_water += init;
1594
0
        }
1595
0
    }
1596
0
1597
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1598
0
           "not enough room for search");
1599
0
}
1600
1601
/* ===========================================================================
1602
 * Flush the current block, with given end-of-file flag.
1603
 * IN assertion: strstart is set to the end of the current match.
1604
 */
1605
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1606
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1607
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1608
0
                   (charf *)Z_NULL), \
1609
0
                (ulg)((long)s->strstart - s->block_start), \
1610
0
                (last)); \
1611
0
   s->block_start = s->strstart; \
1612
0
   flush_pending(s->strm); \
1613
0
   Tracev((stderr,"[FLUSH]")); \
1614
0
}
1615
1616
/* Same but force premature exit if necessary. */
1617
0
#define FLUSH_BLOCK(s, last) { \
1618
0
   FLUSH_BLOCK_ONLY(s, last); \
1619
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1620
0
}
1621
1622
/* Maximum stored block length in deflate format (not including header). */
1623
0
#define MAX_STORED 65535
1624
1625
/* Minimum of a and b. */
1626
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1627
1628
/* ===========================================================================
1629
 * Copy without compression as much as possible from the input stream, return
1630
 * the current block state.
1631
 *
1632
 * In case deflateParams() is used to later switch to a non-zero compression
1633
 * level, s->matches (otherwise unused when storing) keeps track of the number
1634
 * of hash table slides to perform. If s->matches is 1, then one hash table
1635
 * slide will be done when switching. If s->matches is 2, the maximum value
1636
 * allowed here, then the hash table will be cleared, since two or more slides
1637
 * is the same as a clear.
1638
 *
1639
 * deflate_stored() is written to minimize the number of times an input byte is
1640
 * copied. It is most efficient with large input and output buffers, which
1641
 * maximizes the opportunites to have a single copy from next_in to next_out.
1642
 */
1643
local block_state deflate_stored(s, flush)
1644
    deflate_state *s;
1645
    int flush;
1646
0
{
1647
0
    /* Smallest worthy block size when not flushing or finishing. By default
1648
0
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1649
0
     * large input and output buffers, the stored block size will be larger.
1650
0
     */
1651
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1652
0
1653
0
    /* Copy as many min_block or larger stored blocks directly to next_out as
1654
0
     * possible. If flushing, copy the remaining available input to next_out as
1655
0
     * stored blocks, if there is enough space.
1656
0
     */
1657
0
    unsigned len, left, have, last = 0;
1658
0
    unsigned used = s->strm->avail_in;
1659
0
    do {
1660
0
        /* Set len to the maximum size block that we can copy directly with the
1661
0
         * available input data and output space. Set left to how much of that
1662
0
         * would be copied from what's left in the window.
1663
0
         */
1664
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1665
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1666
0
        if (s->strm->avail_out < have)          /* need room for header */
1667
0
            break;
1668
0
            /* maximum stored block length that will fit in avail_out: */
1669
0
        have = s->strm->avail_out - have;
1670
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1671
0
        if (len > (ulg)left + s->strm->avail_in)
1672
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1673
0
        if (len > have)
1674
0
            len = have;                         /* limit len to the output */
1675
0
1676
0
        /* If the stored block would be less than min_block in length, or if
1677
0
         * unable to copy all of the available input when flushing, then try
1678
0
         * copying to the window and the pending buffer instead. Also don't
1679
0
         * write an empty block when flushing -- deflate() does that.
1680
0
         */
1681
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1682
0
                                flush == Z_NO_FLUSH ||
1683
0
                                len != left + s->strm->avail_in))
1684
0
            break;
1685
0
1686
0
        /* Make a dummy stored block in pending to get the header bytes,
1687
0
         * including any pending bits. This also updates the debugging counts.
1688
0
         */
1689
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1690
0
        _tr_stored_block(s, (char *)0, 0L, last);
1691
0
1692
0
        /* Replace the lengths in the dummy stored block with len. */
1693
0
        s->pending_buf[s->pending - 4] = len;
1694
0
        s->pending_buf[s->pending - 3] = len >> 8;
1695
0
        s->pending_buf[s->pending - 2] = ~len;
1696
0
        s->pending_buf[s->pending - 1] = ~len >> 8;
1697
0
1698
0
        /* Write the stored block header bytes. */
1699
0
        flush_pending(s->strm);
1700
0
1701
#ifdef ZLIB_DEBUG
1702
        /* Update debugging counts for the data about to be copied. */
1703
        s->compressed_len += len << 3;
1704
        s->bits_sent += len << 3;
1705
#endif
1706
1707
0
        /* Copy uncompressed bytes from the window to next_out. */
1708
0
        if (left) {
1709
0
            if (left > len)
1710
0
                left = len;
1711
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1712
0
            s->strm->next_out += left;
1713
0
            s->strm->avail_out -= left;
1714
0
            s->strm->total_out += left;
1715
0
            s->block_start += left;
1716
0
            len -= left;
1717
0
        }
1718
0
1719
0
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1720
0
         * the check value.
1721
0
         */
1722
0
        if (len) {
1723
0
            read_buf(s->strm, s->strm->next_out, len);
1724
0
            s->strm->next_out += len;
1725
0
            s->strm->avail_out -= len;
1726
0
            s->strm->total_out += len;
1727
0
        }
1728
0
    } while (last == 0);
1729
0
1730
0
    /* Update the sliding window with the last s->w_size bytes of the copied
1731
0
     * data, or append all of the copied data to the existing window if less
1732
0
     * than s->w_size bytes were copied. Also update the number of bytes to
1733
0
     * insert in the hash tables, in the event that deflateParams() switches to
1734
0
     * a non-zero compression level.
1735
0
     */
1736
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1737
0
    if (used) {
1738
0
        /* If any input was used, then no unused input remains in the window,
1739
0
         * therefore s->block_start == s->strstart.
1740
0
         */
1741
0
        if (used >= s->w_size) {    /* supplant the previous history */
1742
0
            s->matches = 2;         /* clear hash */
1743
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1744
0
            s->strstart = s->w_size;
1745
0
        }
1746
0
        else {
1747
0
            if (s->window_size - s->strstart <= used) {
1748
0
                /* Slide the window down. */
1749
0
                s->strstart -= s->w_size;
1750
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1751
0
                if (s->matches < 2)
1752
0
                    s->matches++;   /* add a pending slide_hash() */
1753
0
            }
1754
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1755
0
            s->strstart += used;
1756
0
        }
1757
0
        s->block_start = s->strstart;
1758
0
        s->insert += MIN(used, s->w_size - s->insert);
1759
0
    }
1760
0
    if (s->high_water < s->strstart)
1761
0
        s->high_water = s->strstart;
1762
0
1763
0
    /* If the last block was written to next_out, then done. */
1764
0
    if (last)
1765
0
        return finish_done;
1766
0
1767
0
    /* If flushing and all input has been consumed, then done. */
1768
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1769
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1770
0
        return block_done;
1771
0
1772
0
    /* Fill the window with any remaining input. */
1773
0
    have = s->window_size - s->strstart - 1;
1774
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1775
0
        /* Slide the window down. */
1776
0
        s->block_start -= s->w_size;
1777
0
        s->strstart -= s->w_size;
1778
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1779
0
        if (s->matches < 2)
1780
0
            s->matches++;           /* add a pending slide_hash() */
1781
0
        have += s->w_size;          /* more space now */
1782
0
    }
1783
0
    if (have > s->strm->avail_in)
1784
0
        have = s->strm->avail_in;
1785
0
    if (have) {
1786
0
        read_buf(s->strm, s->window + s->strstart, have);
1787
0
        s->strstart += have;
1788
0
    }
1789
0
    if (s->high_water < s->strstart)
1790
0
        s->high_water = s->strstart;
1791
0
1792
0
    /* There was not enough avail_out to write a complete worthy or flushed
1793
0
     * stored block to next_out. Write a stored block to pending instead, if we
1794
0
     * have enough input for a worthy block, or if flushing and there is enough
1795
0
     * room for the remaining input as a stored block in the pending buffer.
1796
0
     */
1797
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1798
0
        /* maximum stored block length that will fit in pending: */
1799
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1800
0
    min_block = MIN(have, s->w_size);
1801
0
    left = s->strstart - s->block_start;
1802
0
    if (left >= min_block ||
1803
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1804
0
         s->strm->avail_in == 0 && left <= have)) {
1805
0
        len = MIN(left, have);
1806
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1807
0
               len == left ? 1 : 0;
1808
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1809
0
        s->block_start += len;
1810
0
        flush_pending(s->strm);
1811
0
    }
1812
0
1813
0
    /* We've done all we can with the available input and output. */
1814
0
    return last ? finish_started : need_more;
1815
0
}
1816
1817
/* ===========================================================================
1818
 * Compress as much as possible from the input stream, return the current
1819
 * block state.
1820
 * This function does not perform lazy evaluation of matches and inserts
1821
 * new strings in the dictionary only for unmatched strings or for short
1822
 * matches. It is used only for the fast compression options.
1823
 */
1824
local block_state deflate_fast(s, flush)
1825
    deflate_state *s;
1826
    int flush;
1827
0
{
1828
0
    IPos hash_head;       /* head of the hash chain */
1829
0
    int bflush;           /* set if current block must be flushed */
1830
0
1831
0
    for (;;) {
1832
0
        /* Make sure that we always have enough lookahead, except
1833
0
         * at the end of the input file. We need MAX_MATCH bytes
1834
0
         * for the next match, plus MIN_MATCH bytes to insert the
1835
0
         * string following the next match.
1836
0
         */
1837
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1838
0
            fill_window(s);
1839
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1840
0
                return need_more;
1841
0
            }
1842
0
            if (s->lookahead == 0) break; /* flush the current block */
1843
0
        }
1844
0
1845
0
        /* Insert the string window[strstart .. strstart+2] in the
1846
0
         * dictionary, and set hash_head to the head of the hash chain:
1847
0
         */
1848
0
        hash_head = NIL;
1849
0
        if (s->lookahead >= MIN_MATCH) {
1850
0
            INSERT_STRING(s, s->strstart, hash_head);
1851
0
        }
1852
0
1853
0
        /* Find the longest match, discarding those <= prev_length.
1854
0
         * At this point we have always match_length < MIN_MATCH
1855
0
         */
1856
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1857
0
            /* To simplify the code, we prevent matches with the string
1858
0
             * of window index 0 (in particular we have to avoid a match
1859
0
             * of the string with itself at the start of the input file).
1860
0
             */
1861
0
            s->match_length = longest_match (s, hash_head);
1862
0
            /* longest_match() sets match_start */
1863
0
        }
1864
0
        if (s->match_length >= MIN_MATCH) {
1865
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1866
0
1867
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1868
0
                           s->match_length - MIN_MATCH, bflush);
1869
0
1870
0
            s->lookahead -= s->match_length;
1871
0
1872
0
            /* Insert new strings in the hash table only if the match length
1873
0
             * is not too large. This saves time but degrades compression.
1874
0
             */
1875
0
#ifndef FASTEST
1876
0
            if (s->match_length <= s->max_insert_length &&
1877
0
                s->lookahead >= MIN_MATCH) {
1878
0
                s->match_length--; /* string at strstart already in table */
1879
0
                do {
1880
0
                    s->strstart++;
1881
0
                    INSERT_STRING(s, s->strstart, hash_head);
1882
0
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1883
0
                     * always MIN_MATCH bytes ahead.
1884
0
                     */
1885
0
                } while (--s->match_length != 0);
1886
0
                s->strstart++;
1887
0
            } else
1888
0
#endif
1889
0
            {
1890
0
                s->strstart += s->match_length;
1891
0
                s->match_length = 0;
1892
0
                s->ins_h = s->window[s->strstart];
1893
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1894
#if MIN_MATCH != 3
1895
                Call UPDATE_HASH() MIN_MATCH-3 more times
1896
#endif
1897
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1898
0
                 * matter since it will be recomputed at next deflate call.
1899
0
                 */
1900
0
            }
1901
0
        } else {
1902
0
            /* No match, output a literal byte */
1903
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1904
0
            _tr_tally_lit (s, s->window[s->strstart], bflush);
1905
0
            s->lookahead--;
1906
0
            s->strstart++;
1907
0
        }
1908
0
        if (bflush) FLUSH_BLOCK(s, 0);
1909
0
    }
1910
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1911
0
    if (flush == Z_FINISH) {
1912
0
        FLUSH_BLOCK(s, 1);
1913
0
        return finish_done;
1914
0
    }
1915
0
    if (s->last_lit)
1916
0
        FLUSH_BLOCK(s, 0);
1917
0
    return block_done;
1918
0
}
1919
1920
#ifndef FASTEST
1921
/* ===========================================================================
1922
 * Same as above, but achieves better compression. We use a lazy
1923
 * evaluation for matches: a match is finally adopted only if there is
1924
 * no better match at the next window position.
1925
 */
1926
local block_state deflate_slow(s, flush)
1927
    deflate_state *s;
1928
    int flush;
1929
0
{
1930
0
    IPos hash_head;          /* head of hash chain */
1931
0
    int bflush;              /* set if current block must be flushed */
1932
0
1933
0
    /* Process the input block. */
1934
0
    for (;;) {
1935
0
        /* Make sure that we always have enough lookahead, except
1936
0
         * at the end of the input file. We need MAX_MATCH bytes
1937
0
         * for the next match, plus MIN_MATCH bytes to insert the
1938
0
         * string following the next match.
1939
0
         */
1940
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1941
0
            fill_window(s);
1942
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1943
0
                return need_more;
1944
0
            }
1945
0
            if (s->lookahead == 0) break; /* flush the current block */
1946
0
        }
1947
0
1948
0
        /* Insert the string window[strstart .. strstart+2] in the
1949
0
         * dictionary, and set hash_head to the head of the hash chain:
1950
0
         */
1951
0
        hash_head = NIL;
1952
0
        if (s->lookahead >= MIN_MATCH) {
1953
0
            INSERT_STRING(s, s->strstart, hash_head);
1954
0
        }
1955
0
1956
0
        /* Find the longest match, discarding those <= prev_length.
1957
0
         */
1958
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1959
0
        s->match_length = MIN_MATCH-1;
1960
0
1961
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1962
0
            s->strstart - hash_head <= MAX_DIST(s)) {
1963
0
            /* To simplify the code, we prevent matches with the string
1964
0
             * of window index 0 (in particular we have to avoid a match
1965
0
             * of the string with itself at the start of the input file).
1966
0
             */
1967
0
            s->match_length = longest_match (s, hash_head);
1968
0
            /* longest_match() sets match_start */
1969
0
1970
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1971
0
#if TOO_FAR <= 32767
1972
0
                || (s->match_length == MIN_MATCH &&
1973
0
                    s->strstart - s->match_start > TOO_FAR)
1974
0
#endif
1975
0
                )) {
1976
0
1977
0
                /* If prev_match is also MIN_MATCH, match_start is garbage
1978
0
                 * but we will ignore the current match anyway.
1979
0
                 */
1980
0
                s->match_length = MIN_MATCH-1;
1981
0
            }
1982
0
        }
1983
0
        /* If there was a match at the previous step and the current
1984
0
         * match is not better, output the previous match:
1985
0
         */
1986
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1987
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1988
0
            /* Do not insert strings in hash table beyond this. */
1989
0
1990
0
            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1991
0
1992
0
            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1993
0
                           s->prev_length - MIN_MATCH, bflush);
1994
0
1995
0
            /* Insert in hash table all strings up to the end of the match.
1996
0
             * strstart-1 and strstart are already inserted. If there is not
1997
0
             * enough lookahead, the last two strings are not inserted in
1998
0
             * the hash table.
1999
0
             */
2000
0
            s->lookahead -= s->prev_length-1;
2001
0
            s->prev_length -= 2;
2002
0
            do {
2003
0
                if (++s->strstart <= max_insert) {
2004
0
                    INSERT_STRING(s, s->strstart, hash_head);
2005
0
                }
2006
0
            } while (--s->prev_length != 0);
2007
0
            s->match_available = 0;
2008
0
            s->match_length = MIN_MATCH-1;
2009
0
            s->strstart++;
2010
0
2011
0
            if (bflush) FLUSH_BLOCK(s, 0);
2012
0
2013
0
        } else if (s->match_available) {
2014
0
            /* If there was no match at the previous position, output a
2015
0
             * single literal. If there was a match but the current match
2016
0
             * is longer, truncate the previous match to a single literal.
2017
0
             */
2018
0
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
2019
0
            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2020
0
            if (bflush) {
2021
0
                FLUSH_BLOCK_ONLY(s, 0);
2022
0
            }
2023
0
            s->strstart++;
2024
0
            s->lookahead--;
2025
0
            if (s->strm->avail_out == 0) return need_more;
2026
0
        } else {
2027
0
            /* There is no previous match to compare with, wait for
2028
0
             * the next step to decide.
2029
0
             */
2030
0
            s->match_available = 1;
2031
0
            s->strstart++;
2032
0
            s->lookahead--;
2033
0
        }
2034
0
    }
2035
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
2036
0
    if (s->match_available) {
2037
0
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
2038
0
        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2039
0
        s->match_available = 0;
2040
0
    }
2041
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2042
0
    if (flush == Z_FINISH) {
2043
0
        FLUSH_BLOCK(s, 1);
2044
0
        return finish_done;
2045
0
    }
2046
0
    if (s->last_lit)
2047
0
        FLUSH_BLOCK(s, 0);
2048
0
    return block_done;
2049
0
}
2050
#endif /* FASTEST */
2051
2052
/* ===========================================================================
2053
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2054
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2055
 * deflate switches away from Z_RLE.)
2056
 */
2057
local block_state deflate_rle(s, flush)
2058
    deflate_state *s;
2059
    int flush;
2060
0
{
2061
0
    int bflush;             /* set if current block must be flushed */
2062
0
    uInt prev;              /* byte at distance one to match */
2063
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2064
0
2065
0
    for (;;) {
2066
0
        /* Make sure that we always have enough lookahead, except
2067
0
         * at the end of the input file. We need MAX_MATCH bytes
2068
0
         * for the longest run, plus one for the unrolled loop.
2069
0
         */
2070
0
        if (s->lookahead <= MAX_MATCH) {
2071
0
            fill_window(s);
2072
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2073
0
                return need_more;
2074
0
            }
2075
0
            if (s->lookahead == 0) break; /* flush the current block */
2076
0
        }
2077
0
2078
0
        /* See how many times the previous byte repeats */
2079
0
        s->match_length = 0;
2080
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2081
0
            scan = s->window + s->strstart - 1;
2082
0
            prev = *scan;
2083
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2084
0
                strend = s->window + s->strstart + MAX_MATCH;
2085
0
                do {
2086
0
                } while (prev == *++scan && prev == *++scan &&
2087
0
                         prev == *++scan && prev == *++scan &&
2088
0
                         prev == *++scan && prev == *++scan &&
2089
0
                         prev == *++scan && prev == *++scan &&
2090
0
                         scan < strend);
2091
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2092
0
                if (s->match_length > s->lookahead)
2093
0
                    s->match_length = s->lookahead;
2094
0
            }
2095
0
            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2096
0
        }
2097
0
2098
0
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2099
0
        if (s->match_length >= MIN_MATCH) {
2100
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2101
0
2102
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2103
0
2104
0
            s->lookahead -= s->match_length;
2105
0
            s->strstart += s->match_length;
2106
0
            s->match_length = 0;
2107
0
        } else {
2108
0
            /* No match, output a literal byte */
2109
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2110
0
            _tr_tally_lit (s, s->window[s->strstart], bflush);
2111
0
            s->lookahead--;
2112
0
            s->strstart++;
2113
0
        }
2114
0
        if (bflush) FLUSH_BLOCK(s, 0);
2115
0
    }
2116
0
    s->insert = 0;
2117
0
    if (flush == Z_FINISH) {
2118
0
        FLUSH_BLOCK(s, 1);
2119
0
        return finish_done;
2120
0
    }
2121
0
    if (s->last_lit)
2122
0
        FLUSH_BLOCK(s, 0);
2123
0
    return block_done;
2124
0
}
2125
2126
/* ===========================================================================
2127
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2128
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2129
 */
2130
local block_state deflate_huff(s, flush)
2131
    deflate_state *s;
2132
    int flush;
2133
0
{
2134
0
    int bflush;             /* set if current block must be flushed */
2135
0
2136
0
    for (;;) {
2137
0
        /* Make sure that we have a literal to write. */
2138
0
        if (s->lookahead == 0) {
2139
0
            fill_window(s);
2140
0
            if (s->lookahead == 0) {
2141
0
                if (flush == Z_NO_FLUSH)
2142
0
                    return need_more;
2143
0
                break;      /* flush the current block */
2144
0
            }
2145
0
        }
2146
0
2147
0
        /* Output a literal byte */
2148
0
        s->match_length = 0;
2149
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2150
0
        _tr_tally_lit (s, s->window[s->strstart], bflush);
2151
0
        s->lookahead--;
2152
0
        s->strstart++;
2153
0
        if (bflush) FLUSH_BLOCK(s, 0);
2154
0
    }
2155
0
    s->insert = 0;
2156
0
    if (flush == Z_FINISH) {
2157
0
        FLUSH_BLOCK(s, 1);
2158
0
        return finish_done;
2159
0
    }
2160
0
    if (s->last_lit)
2161
0
        FLUSH_BLOCK(s, 0);
2162
0
    return block_done;
2163
0
}