/src/openssl/crypto/bn/bn_sqr.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "internal/cryptlib.h"  | 
11  |  | #include "bn_local.h"  | 
12  |  |  | 
13  |  | /* r must not be a */  | 
14  |  | /*  | 
15  |  |  * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96  | 
16  |  |  */  | 
17  |  | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)  | 
18  | 0  | { | 
19  | 0  |     int ret = bn_sqr_fixed_top(r, a, ctx);  | 
20  |  | 
  | 
21  | 0  |     bn_correct_top(r);  | 
22  | 0  |     bn_check_top(r);  | 
23  |  | 
  | 
24  | 0  |     return ret;  | 
25  | 0  | }  | 
26  |  |  | 
27  |  | int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)  | 
28  | 0  | { | 
29  | 0  |     int max, al;  | 
30  | 0  |     int ret = 0;  | 
31  | 0  |     BIGNUM *tmp, *rr;  | 
32  |  | 
  | 
33  | 0  |     bn_check_top(a);  | 
34  |  | 
  | 
35  | 0  |     al = a->top;  | 
36  | 0  |     if (al <= 0) { | 
37  | 0  |         r->top = 0;  | 
38  | 0  |         r->neg = 0;  | 
39  | 0  |         return 1;  | 
40  | 0  |     }  | 
41  |  |  | 
42  | 0  |     BN_CTX_start(ctx);  | 
43  | 0  |     rr = (a != r) ? r : BN_CTX_get(ctx);  | 
44  | 0  |     tmp = BN_CTX_get(ctx);  | 
45  | 0  |     if (rr == NULL || tmp == NULL)  | 
46  | 0  |         goto err;  | 
47  |  |  | 
48  | 0  |     max = 2 * al;               /* Non-zero (from above) */  | 
49  | 0  |     if (bn_wexpand(rr, max) == NULL)  | 
50  | 0  |         goto err;  | 
51  |  |  | 
52  | 0  |     if (al == 4) { | 
53  |  | #ifndef BN_SQR_COMBA  | 
54  |  |         BN_ULONG t[8];  | 
55  |  |         bn_sqr_normal(rr->d, a->d, 4, t);  | 
56  |  | #else  | 
57  | 0  |         bn_sqr_comba4(rr->d, a->d);  | 
58  | 0  | #endif  | 
59  | 0  |     } else if (al == 8) { | 
60  |  | #ifndef BN_SQR_COMBA  | 
61  |  |         BN_ULONG t[16];  | 
62  |  |         bn_sqr_normal(rr->d, a->d, 8, t);  | 
63  |  | #else  | 
64  | 0  |         bn_sqr_comba8(rr->d, a->d);  | 
65  | 0  | #endif  | 
66  | 0  |     } else { | 
67  | 0  | #if defined(BN_RECURSION)  | 
68  | 0  |         if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
69  | 0  |             BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];  | 
70  | 0  |             bn_sqr_normal(rr->d, a->d, al, t);  | 
71  | 0  |         } else { | 
72  | 0  |             int j, k;  | 
73  |  | 
  | 
74  | 0  |             j = BN_num_bits_word((BN_ULONG)al);  | 
75  | 0  |             j = 1 << (j - 1);  | 
76  | 0  |             k = j + j;  | 
77  | 0  |             if (al == j) { | 
78  | 0  |                 if (bn_wexpand(tmp, k * 2) == NULL)  | 
79  | 0  |                     goto err;  | 
80  | 0  |                 bn_sqr_recursive(rr->d, a->d, al, tmp->d);  | 
81  | 0  |             } else { | 
82  | 0  |                 if (bn_wexpand(tmp, max) == NULL)  | 
83  | 0  |                     goto err;  | 
84  | 0  |                 bn_sqr_normal(rr->d, a->d, al, tmp->d);  | 
85  | 0  |             }  | 
86  | 0  |         }  | 
87  |  | #else  | 
88  |  |         if (bn_wexpand(tmp, max) == NULL)  | 
89  |  |             goto err;  | 
90  |  |         bn_sqr_normal(rr->d, a->d, al, tmp->d);  | 
91  |  | #endif  | 
92  | 0  |     }  | 
93  |  |  | 
94  | 0  |     rr->neg = 0;  | 
95  | 0  |     rr->top = max;  | 
96  | 0  |     rr->flags |= BN_FLG_FIXED_TOP;  | 
97  | 0  |     if (r != rr && BN_copy(r, rr) == NULL)  | 
98  | 0  |         goto err;  | 
99  |  |  | 
100  | 0  |     ret = 1;  | 
101  | 0  |  err:  | 
102  | 0  |     bn_check_top(rr);  | 
103  | 0  |     bn_check_top(tmp);  | 
104  | 0  |     BN_CTX_end(ctx);  | 
105  | 0  |     return ret;  | 
106  | 0  | }  | 
107  |  |  | 
108  |  | /* tmp must have 2*n words */  | 
109  |  | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)  | 
110  | 0  | { | 
111  | 0  |     int i, j, max;  | 
112  | 0  |     const BN_ULONG *ap;  | 
113  | 0  |     BN_ULONG *rp;  | 
114  |  | 
  | 
115  | 0  |     max = n * 2;  | 
116  | 0  |     ap = a;  | 
117  | 0  |     rp = r;  | 
118  | 0  |     rp[0] = rp[max - 1] = 0;  | 
119  | 0  |     rp++;  | 
120  | 0  |     j = n;  | 
121  |  | 
  | 
122  | 0  |     if (--j > 0) { | 
123  | 0  |         ap++;  | 
124  | 0  |         rp[j] = bn_mul_words(rp, ap, j, ap[-1]);  | 
125  | 0  |         rp += 2;  | 
126  | 0  |     }  | 
127  |  | 
  | 
128  | 0  |     for (i = n - 2; i > 0; i--) { | 
129  | 0  |         j--;  | 
130  | 0  |         ap++;  | 
131  | 0  |         rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);  | 
132  | 0  |         rp += 2;  | 
133  | 0  |     }  | 
134  |  | 
  | 
135  | 0  |     bn_add_words(r, r, r, max);  | 
136  |  |  | 
137  |  |     /* There will not be a carry */  | 
138  |  | 
  | 
139  | 0  |     bn_sqr_words(tmp, a, n);  | 
140  |  | 
  | 
141  | 0  |     bn_add_words(r, r, tmp, max);  | 
142  | 0  | }  | 
143  |  |  | 
144  |  | #ifdef BN_RECURSION  | 
145  |  | /*-  | 
146  |  |  * r is 2*n words in size,  | 
147  |  |  * a and b are both n words in size.    (There's not actually a 'b' here ...)  | 
148  |  |  * n must be a power of 2.  | 
149  |  |  * We multiply and return the result.  | 
150  |  |  * t must be 2*n words in size  | 
151  |  |  * We calculate  | 
152  |  |  * a[0]*b[0]  | 
153  |  |  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])  | 
154  |  |  * a[1]*b[1]  | 
155  |  |  */  | 
156  |  | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)  | 
157  | 0  | { | 
158  | 0  |     int n = n2 / 2;  | 
159  | 0  |     int zero, c1;  | 
160  | 0  |     BN_ULONG ln, lo, *p;  | 
161  |  | 
  | 
162  | 0  |     if (n2 == 4) { | 
163  |  | # ifndef BN_SQR_COMBA  | 
164  |  |         bn_sqr_normal(r, a, 4, t);  | 
165  |  | # else  | 
166  | 0  |         bn_sqr_comba4(r, a);  | 
167  | 0  | # endif  | 
168  | 0  |         return;  | 
169  | 0  |     } else if (n2 == 8) { | 
170  |  | # ifndef BN_SQR_COMBA  | 
171  |  |         bn_sqr_normal(r, a, 8, t);  | 
172  |  | # else  | 
173  | 0  |         bn_sqr_comba8(r, a);  | 
174  | 0  | # endif  | 
175  | 0  |         return;  | 
176  | 0  |     }  | 
177  | 0  |     if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
178  | 0  |         bn_sqr_normal(r, a, n2, t);  | 
179  | 0  |         return;  | 
180  | 0  |     }  | 
181  |  |     /* r=(a[0]-a[1])*(a[1]-a[0]) */  | 
182  | 0  |     c1 = bn_cmp_words(a, &(a[n]), n);  | 
183  | 0  |     zero = 0;  | 
184  | 0  |     if (c1 > 0)  | 
185  | 0  |         bn_sub_words(t, a, &(a[n]), n);  | 
186  | 0  |     else if (c1 < 0)  | 
187  | 0  |         bn_sub_words(t, &(a[n]), a, n);  | 
188  | 0  |     else  | 
189  | 0  |         zero = 1;  | 
190  |  |  | 
191  |  |     /* The result will always be negative unless it is zero */  | 
192  | 0  |     p = &(t[n2 * 2]);  | 
193  |  | 
  | 
194  | 0  |     if (!zero)  | 
195  | 0  |         bn_sqr_recursive(&(t[n2]), t, n, p);  | 
196  | 0  |     else  | 
197  | 0  |         memset(&t[n2], 0, sizeof(*t) * n2);  | 
198  | 0  |     bn_sqr_recursive(r, a, n, p);  | 
199  | 0  |     bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);  | 
200  |  |  | 
201  |  |     /*-  | 
202  |  |      * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero  | 
203  |  |      * r[10] holds (a[0]*b[0])  | 
204  |  |      * r[32] holds (b[1]*b[1])  | 
205  |  |      */  | 
206  |  | 
  | 
207  | 0  |     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));  | 
208  |  |  | 
209  |  |     /* t[32] is negative */  | 
210  | 0  |     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));  | 
211  |  |  | 
212  |  |     /*-  | 
213  |  |      * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])  | 
214  |  |      * r[10] holds (a[0]*a[0])  | 
215  |  |      * r[32] holds (a[1]*a[1])  | 
216  |  |      * c1 holds the carry bits  | 
217  |  |      */  | 
218  | 0  |     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));  | 
219  | 0  |     if (c1) { | 
220  | 0  |         p = &(r[n + n2]);  | 
221  | 0  |         lo = *p;  | 
222  | 0  |         ln = (lo + c1) & BN_MASK2;  | 
223  | 0  |         *p = ln;  | 
224  |  |  | 
225  |  |         /*  | 
226  |  |          * The overflow will stop before we over write words we should not  | 
227  |  |          * overwrite  | 
228  |  |          */  | 
229  | 0  |         if (ln < (BN_ULONG)c1) { | 
230  | 0  |             do { | 
231  | 0  |                 p++;  | 
232  | 0  |                 lo = *p;  | 
233  | 0  |                 ln = (lo + 1) & BN_MASK2;  | 
234  | 0  |                 *p = ln;  | 
235  | 0  |             } while (ln == 0);  | 
236  | 0  |         }  | 
237  | 0  |     }  | 
238  | 0  | }  | 
239  |  | #endif  |