/src/openssl/crypto/bn/bn_sqrt.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "internal/cryptlib.h"  | 
11  |  | #include "bn_local.h"  | 
12  |  |  | 
13  |  | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)  | 
14  |  | /*  | 
15  |  |  * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks  | 
16  |  |  * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number  | 
17  |  |  * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or  | 
18  |  |  * an incorrect "result" will be returned.  | 
19  |  |  */  | 
20  | 0  | { | 
21  | 0  |     BIGNUM *ret = in;  | 
22  | 0  |     int err = 1;  | 
23  | 0  |     int r;  | 
24  | 0  |     BIGNUM *A, *b, *q, *t, *x, *y;  | 
25  | 0  |     int e, i, j;  | 
26  | 0  |     int used_ctx = 0;  | 
27  |  | 
  | 
28  | 0  |     if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | 
29  | 0  |         if (BN_abs_is_word(p, 2)) { | 
30  | 0  |             if (ret == NULL)  | 
31  | 0  |                 ret = BN_new();  | 
32  | 0  |             if (ret == NULL)  | 
33  | 0  |                 goto end;  | 
34  | 0  |             if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | 
35  | 0  |                 if (ret != in)  | 
36  | 0  |                     BN_free(ret);  | 
37  | 0  |                 return NULL;  | 
38  | 0  |             }  | 
39  | 0  |             bn_check_top(ret);  | 
40  | 0  |             return ret;  | 
41  | 0  |         }  | 
42  |  |  | 
43  | 0  |         ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);  | 
44  | 0  |         return NULL;  | 
45  | 0  |     }  | 
46  |  |  | 
47  | 0  |     if (BN_is_zero(a) || BN_is_one(a)) { | 
48  | 0  |         if (ret == NULL)  | 
49  | 0  |             ret = BN_new();  | 
50  | 0  |         if (ret == NULL)  | 
51  | 0  |             goto end;  | 
52  | 0  |         if (!BN_set_word(ret, BN_is_one(a))) { | 
53  | 0  |             if (ret != in)  | 
54  | 0  |                 BN_free(ret);  | 
55  | 0  |             return NULL;  | 
56  | 0  |         }  | 
57  | 0  |         bn_check_top(ret);  | 
58  | 0  |         return ret;  | 
59  | 0  |     }  | 
60  |  |  | 
61  | 0  |     BN_CTX_start(ctx);  | 
62  | 0  |     used_ctx = 1;  | 
63  | 0  |     A = BN_CTX_get(ctx);  | 
64  | 0  |     b = BN_CTX_get(ctx);  | 
65  | 0  |     q = BN_CTX_get(ctx);  | 
66  | 0  |     t = BN_CTX_get(ctx);  | 
67  | 0  |     x = BN_CTX_get(ctx);  | 
68  | 0  |     y = BN_CTX_get(ctx);  | 
69  | 0  |     if (y == NULL)  | 
70  | 0  |         goto end;  | 
71  |  |  | 
72  | 0  |     if (ret == NULL)  | 
73  | 0  |         ret = BN_new();  | 
74  | 0  |     if (ret == NULL)  | 
75  | 0  |         goto end;  | 
76  |  |  | 
77  |  |     /* A = a mod p */  | 
78  | 0  |     if (!BN_nnmod(A, a, p, ctx))  | 
79  | 0  |         goto end;  | 
80  |  |  | 
81  |  |     /* now write  |p| - 1  as  2^e*q  where  q  is odd */  | 
82  | 0  |     e = 1;  | 
83  | 0  |     while (!BN_is_bit_set(p, e))  | 
84  | 0  |         e++;  | 
85  |  |     /* we'll set  q  later (if needed) */  | 
86  |  | 
  | 
87  | 0  |     if (e == 1) { | 
88  |  |         /*-  | 
89  |  |          * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse  | 
90  |  |          * modulo  (|p|-1)/2,  and square roots can be computed  | 
91  |  |          * directly by modular exponentiation.  | 
92  |  |          * We have  | 
93  |  |          *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),  | 
94  |  |          * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.  | 
95  |  |          */  | 
96  | 0  |         if (!BN_rshift(q, p, 2))  | 
97  | 0  |             goto end;  | 
98  | 0  |         q->neg = 0;  | 
99  | 0  |         if (!BN_add_word(q, 1))  | 
100  | 0  |             goto end;  | 
101  | 0  |         if (!BN_mod_exp(ret, A, q, p, ctx))  | 
102  | 0  |             goto end;  | 
103  | 0  |         err = 0;  | 
104  | 0  |         goto vrfy;  | 
105  | 0  |     }  | 
106  |  |  | 
107  | 0  |     if (e == 2) { | 
108  |  |         /*-  | 
109  |  |          * |p| == 5  (mod 8)  | 
110  |  |          *  | 
111  |  |          * In this case  2  is always a non-square since  | 
112  |  |          * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.  | 
113  |  |          * So if  a  really is a square, then  2*a  is a non-square.  | 
114  |  |          * Thus for  | 
115  |  |          *      b := (2*a)^((|p|-5)/8),  | 
116  |  |          *      i := (2*a)*b^2  | 
117  |  |          * we have  | 
118  |  |          *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)  | 
119  |  |          *         = (2*a)^((p-1)/2)  | 
120  |  |          *         = -1;  | 
121  |  |          * so if we set  | 
122  |  |          *      x := a*b*(i-1),  | 
123  |  |          * then  | 
124  |  |          *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)  | 
125  |  |          *         = a^2 * b^2 * (-2*i)  | 
126  |  |          *         = a*(-i)*(2*a*b^2)  | 
127  |  |          *         = a*(-i)*i  | 
128  |  |          *         = a.  | 
129  |  |          *  | 
130  |  |          * (This is due to A.O.L. Atkin,  | 
131  |  |          * Subject: Square Roots and Cognate Matters modulo p=8n+5.  | 
132  |  |          * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026  | 
133  |  |          * November 1992.)  | 
134  |  |          */  | 
135  |  |  | 
136  |  |         /* t := 2*a */  | 
137  | 0  |         if (!BN_mod_lshift1_quick(t, A, p))  | 
138  | 0  |             goto end;  | 
139  |  |  | 
140  |  |         /* b := (2*a)^((|p|-5)/8) */  | 
141  | 0  |         if (!BN_rshift(q, p, 3))  | 
142  | 0  |             goto end;  | 
143  | 0  |         q->neg = 0;  | 
144  | 0  |         if (!BN_mod_exp(b, t, q, p, ctx))  | 
145  | 0  |             goto end;  | 
146  |  |  | 
147  |  |         /* y := b^2 */  | 
148  | 0  |         if (!BN_mod_sqr(y, b, p, ctx))  | 
149  | 0  |             goto end;  | 
150  |  |  | 
151  |  |         /* t := (2*a)*b^2 - 1 */  | 
152  | 0  |         if (!BN_mod_mul(t, t, y, p, ctx))  | 
153  | 0  |             goto end;  | 
154  | 0  |         if (!BN_sub_word(t, 1))  | 
155  | 0  |             goto end;  | 
156  |  |  | 
157  |  |         /* x = a*b*t */  | 
158  | 0  |         if (!BN_mod_mul(x, A, b, p, ctx))  | 
159  | 0  |             goto end;  | 
160  | 0  |         if (!BN_mod_mul(x, x, t, p, ctx))  | 
161  | 0  |             goto end;  | 
162  |  |  | 
163  | 0  |         if (!BN_copy(ret, x))  | 
164  | 0  |             goto end;  | 
165  | 0  |         err = 0;  | 
166  | 0  |         goto vrfy;  | 
167  | 0  |     }  | 
168  |  |  | 
169  |  |     /*  | 
170  |  |      * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,  | 
171  |  |      * find some y that is not a square.  | 
172  |  |      */  | 
173  | 0  |     if (!BN_copy(q, p))  | 
174  | 0  |         goto end;               /* use 'q' as temp */  | 
175  | 0  |     q->neg = 0;  | 
176  | 0  |     i = 2;  | 
177  | 0  |     do { | 
178  |  |         /*  | 
179  |  |          * For efficiency, try small numbers first; if this fails, try random  | 
180  |  |          * numbers.  | 
181  |  |          */  | 
182  | 0  |         if (i < 22) { | 
183  | 0  |             if (!BN_set_word(y, i))  | 
184  | 0  |                 goto end;  | 
185  | 0  |         } else { | 
186  | 0  |             if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, 0, ctx))  | 
187  | 0  |                 goto end;  | 
188  | 0  |             if (BN_ucmp(y, p) >= 0) { | 
189  | 0  |                 if (!(p->neg ? BN_add : BN_sub) (y, y, p))  | 
190  | 0  |                     goto end;  | 
191  | 0  |             }  | 
192  |  |             /* now 0 <= y < |p| */  | 
193  | 0  |             if (BN_is_zero(y))  | 
194  | 0  |                 if (!BN_set_word(y, i))  | 
195  | 0  |                     goto end;  | 
196  | 0  |         }  | 
197  |  |  | 
198  | 0  |         r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */  | 
199  | 0  |         if (r < -1)  | 
200  | 0  |             goto end;  | 
201  | 0  |         if (r == 0) { | 
202  |  |             /* m divides p */  | 
203  | 0  |             ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);  | 
204  | 0  |             goto end;  | 
205  | 0  |         }  | 
206  | 0  |     }  | 
207  | 0  |     while (r == 1 && ++i < 82);  | 
208  |  |  | 
209  | 0  |     if (r != -1) { | 
210  |  |         /*  | 
211  |  |          * Many rounds and still no non-square -- this is more likely a bug  | 
212  |  |          * than just bad luck. Even if p is not prime, we should have found  | 
213  |  |          * some y such that r == -1.  | 
214  |  |          */  | 
215  | 0  |         ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);  | 
216  | 0  |         goto end;  | 
217  | 0  |     }  | 
218  |  |  | 
219  |  |     /* Here's our actual 'q': */  | 
220  | 0  |     if (!BN_rshift(q, q, e))  | 
221  | 0  |         goto end;  | 
222  |  |  | 
223  |  |     /*  | 
224  |  |      * Now that we have some non-square, we can find an element of order 2^e  | 
225  |  |      * by computing its q'th power.  | 
226  |  |      */  | 
227  | 0  |     if (!BN_mod_exp(y, y, q, p, ctx))  | 
228  | 0  |         goto end;  | 
229  | 0  |     if (BN_is_one(y)) { | 
230  | 0  |         ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);  | 
231  | 0  |         goto end;  | 
232  | 0  |     }  | 
233  |  |  | 
234  |  |     /*-  | 
235  |  |      * Now we know that (if  p  is indeed prime) there is an integer  | 
236  |  |      * k,  0 <= k < 2^e,  such that  | 
237  |  |      *  | 
238  |  |      *      a^q * y^k == 1   (mod p).  | 
239  |  |      *  | 
240  |  |      * As  a^q  is a square and  y  is not,  k  must be even.  | 
241  |  |      * q+1  is even, too, so there is an element  | 
242  |  |      *  | 
243  |  |      *     X := a^((q+1)/2) * y^(k/2),  | 
244  |  |      *  | 
245  |  |      * and it satisfies  | 
246  |  |      *  | 
247  |  |      *     X^2 = a^q * a     * y^k  | 
248  |  |      *         = a,  | 
249  |  |      *  | 
250  |  |      * so it is the square root that we are looking for.  | 
251  |  |      */  | 
252  |  |  | 
253  |  |     /* t := (q-1)/2  (note that  q  is odd) */  | 
254  | 0  |     if (!BN_rshift1(t, q))  | 
255  | 0  |         goto end;  | 
256  |  |  | 
257  |  |     /* x := a^((q-1)/2) */  | 
258  | 0  |     if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */ | 
259  | 0  |         if (!BN_nnmod(t, A, p, ctx))  | 
260  | 0  |             goto end;  | 
261  | 0  |         if (BN_is_zero(t)) { | 
262  |  |             /* special case: a == 0  (mod p) */  | 
263  | 0  |             BN_zero(ret);  | 
264  | 0  |             err = 0;  | 
265  | 0  |             goto end;  | 
266  | 0  |         } else if (!BN_one(x))  | 
267  | 0  |             goto end;  | 
268  | 0  |     } else { | 
269  | 0  |         if (!BN_mod_exp(x, A, t, p, ctx))  | 
270  | 0  |             goto end;  | 
271  | 0  |         if (BN_is_zero(x)) { | 
272  |  |             /* special case: a == 0  (mod p) */  | 
273  | 0  |             BN_zero(ret);  | 
274  | 0  |             err = 0;  | 
275  | 0  |             goto end;  | 
276  | 0  |         }  | 
277  | 0  |     }  | 
278  |  |  | 
279  |  |     /* b := a*x^2  (= a^q) */  | 
280  | 0  |     if (!BN_mod_sqr(b, x, p, ctx))  | 
281  | 0  |         goto end;  | 
282  | 0  |     if (!BN_mod_mul(b, b, A, p, ctx))  | 
283  | 0  |         goto end;  | 
284  |  |  | 
285  |  |     /* x := a*x    (= a^((q+1)/2)) */  | 
286  | 0  |     if (!BN_mod_mul(x, x, A, p, ctx))  | 
287  | 0  |         goto end;  | 
288  |  |  | 
289  | 0  |     while (1) { | 
290  |  |         /*-  | 
291  |  |          * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E  | 
292  |  |          * where  E  refers to the original value of  e,  which we  | 
293  |  |          * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).  | 
294  |  |          *  | 
295  |  |          * We have  a*b = x^2,  | 
296  |  |          *    y^2^(e-1) = -1,  | 
297  |  |          *    b^2^(e-1) = 1.  | 
298  |  |          */  | 
299  |  | 
  | 
300  | 0  |         if (BN_is_one(b)) { | 
301  | 0  |             if (!BN_copy(ret, x))  | 
302  | 0  |                 goto end;  | 
303  | 0  |             err = 0;  | 
304  | 0  |             goto vrfy;  | 
305  | 0  |         }  | 
306  |  |  | 
307  |  |         /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */  | 
308  | 0  |         for (i = 1; i < e; i++) { | 
309  | 0  |             if (i == 1) { | 
310  | 0  |                 if (!BN_mod_sqr(t, b, p, ctx))  | 
311  | 0  |                     goto end;  | 
312  |  | 
  | 
313  | 0  |             } else { | 
314  | 0  |                 if (!BN_mod_mul(t, t, t, p, ctx))  | 
315  | 0  |                     goto end;  | 
316  | 0  |             }  | 
317  | 0  |             if (BN_is_one(t))  | 
318  | 0  |                 break;  | 
319  | 0  |         }  | 
320  |  |         /* If not found, a is not a square or p is not prime. */  | 
321  | 0  |         if (i >= e) { | 
322  | 0  |             ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);  | 
323  | 0  |             goto end;  | 
324  | 0  |         }  | 
325  |  |  | 
326  |  |         /* t := y^2^(e - i - 1) */  | 
327  | 0  |         if (!BN_copy(t, y))  | 
328  | 0  |             goto end;  | 
329  | 0  |         for (j = e - i - 1; j > 0; j--) { | 
330  | 0  |             if (!BN_mod_sqr(t, t, p, ctx))  | 
331  | 0  |                 goto end;  | 
332  | 0  |         }  | 
333  | 0  |         if (!BN_mod_mul(y, t, t, p, ctx))  | 
334  | 0  |             goto end;  | 
335  | 0  |         if (!BN_mod_mul(x, x, t, p, ctx))  | 
336  | 0  |             goto end;  | 
337  | 0  |         if (!BN_mod_mul(b, b, y, p, ctx))  | 
338  | 0  |             goto end;  | 
339  | 0  |         e = i;  | 
340  | 0  |     }  | 
341  |  |  | 
342  | 0  |  vrfy:  | 
343  | 0  |     if (!err) { | 
344  |  |         /*  | 
345  |  |          * verify the result -- the input might have been not a square (test  | 
346  |  |          * added in 0.9.8)  | 
347  |  |          */  | 
348  |  | 
  | 
349  | 0  |         if (!BN_mod_sqr(x, ret, p, ctx))  | 
350  | 0  |             err = 1;  | 
351  |  | 
  | 
352  | 0  |         if (!err && 0 != BN_cmp(x, A)) { | 
353  | 0  |             ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);  | 
354  | 0  |             err = 1;  | 
355  | 0  |         }  | 
356  | 0  |     }  | 
357  |  | 
  | 
358  | 0  |  end:  | 
359  | 0  |     if (err) { | 
360  | 0  |         if (ret != in)  | 
361  | 0  |             BN_clear_free(ret);  | 
362  | 0  |         ret = NULL;  | 
363  | 0  |     }  | 
364  | 0  |     if (used_ctx)  | 
365  | 0  |         BN_CTX_end(ctx);  | 
366  | 0  |     bn_check_top(ret);  | 
367  | 0  |     return ret;  | 
368  | 0  | }  |