/src/openssl/crypto/ec/ecp_nistp224.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /* Copyright 2011 Google Inc.  | 
11  |  |  *  | 
12  |  |  * Licensed under the Apache License, Version 2.0 (the "License");  | 
13  |  |  *  | 
14  |  |  * you may not use this file except in compliance with the License.  | 
15  |  |  * You may obtain a copy of the License at  | 
16  |  |  *  | 
17  |  |  *     http://www.apache.org/licenses/LICENSE-2.0  | 
18  |  |  *  | 
19  |  |  *  Unless required by applicable law or agreed to in writing, software  | 
20  |  |  *  distributed under the License is distributed on an "AS IS" BASIS,  | 
21  |  |  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
22  |  |  *  See the License for the specific language governing permissions and  | 
23  |  |  *  limitations under the License.  | 
24  |  |  */  | 
25  |  |  | 
26  |  | /*  | 
27  |  |  * ECDSA low level APIs are deprecated for public use, but still ok for  | 
28  |  |  * internal use.  | 
29  |  |  */  | 
30  |  | #include "internal/deprecated.h"  | 
31  |  |  | 
32  |  | /*  | 
33  |  |  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication  | 
34  |  |  *  | 
35  |  |  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation  | 
36  |  |  * and Adam Langley's public domain 64-bit C implementation of curve25519  | 
37  |  |  */  | 
38  |  |  | 
39  |  | #include <openssl/opensslconf.h>  | 
40  |  |  | 
41  |  | #include <stdint.h>  | 
42  |  | #include <string.h>  | 
43  |  | #include <openssl/err.h>  | 
44  |  | #include "ec_local.h"  | 
45  |  |  | 
46  |  | #include "internal/numbers.h"  | 
47  |  |  | 
48  |  | #ifndef INT128_MAX  | 
49  |  | # error "Your compiler doesn't appear to support 128-bit integer types"  | 
50  |  | #endif  | 
51  |  |  | 
52  |  | typedef uint8_t u8;  | 
53  |  | typedef uint64_t u64;  | 
54  |  |  | 
55  |  | /******************************************************************************/  | 
56  |  | /*-  | 
57  |  |  * INTERNAL REPRESENTATION OF FIELD ELEMENTS  | 
58  |  |  *  | 
59  |  |  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3  | 
60  |  |  * using 64-bit coefficients called 'limbs',  | 
61  |  |  * and sometimes (for multiplication results) as  | 
62  |  |  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6  | 
63  |  |  * using 128-bit coefficients called 'widelimbs'.  | 
64  |  |  * A 4-limb representation is an 'felem';  | 
65  |  |  * a 7-widelimb representation is a 'widefelem'.  | 
66  |  |  * Even within felems, bits of adjacent limbs overlap, and we don't always  | 
67  |  |  * reduce the representations: we ensure that inputs to each felem  | 
68  |  |  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,  | 
69  |  |  * and fit into a 128-bit word without overflow. The coefficients are then  | 
70  |  |  * again partially reduced to obtain an felem satisfying a_i < 2^57.  | 
71  |  |  * We only reduce to the unique minimal representation at the end of the  | 
72  |  |  * computation.  | 
73  |  |  */  | 
74  |  |  | 
75  |  | typedef uint64_t limb;  | 
76  |  | typedef uint64_t limb_aX __attribute((__aligned__(1)));  | 
77  |  | typedef uint128_t widelimb;  | 
78  |  |  | 
79  |  | typedef limb felem[4];  | 
80  |  | typedef widelimb widefelem[7];  | 
81  |  |  | 
82  |  | /*  | 
83  |  |  * Field element represented as a byte array. 28*8 = 224 bits is also the  | 
84  |  |  * group order size for the elliptic curve, and we also use this type for  | 
85  |  |  * scalars for point multiplication.  | 
86  |  |  */  | 
87  |  | typedef u8 felem_bytearray[28];  | 
88  |  |  | 
89  |  | static const felem_bytearray nistp224_curve_params[5] = { | 
90  |  |     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | 
91  |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,  | 
92  |  |      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},  | 
93  |  |     {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | 
94  |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,  | 
95  |  |      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},  | 
96  |  |     {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ | 
97  |  |      0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,  | 
98  |  |      0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},  | 
99  |  |     {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ | 
100  |  |      0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,  | 
101  |  |      0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},  | 
102  |  |     {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ | 
103  |  |      0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,  | 
104  |  |      0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}  | 
105  |  | };  | 
106  |  |  | 
107  |  | /*-  | 
108  |  |  * Precomputed multiples of the standard generator  | 
109  |  |  * Points are given in coordinates (X, Y, Z) where Z normally is 1  | 
110  |  |  * (0 for the point at infinity).  | 
111  |  |  * For each field element, slice a_0 is word 0, etc.  | 
112  |  |  *  | 
113  |  |  * The table has 2 * 16 elements, starting with the following:  | 
114  |  |  * index | bits    | point  | 
115  |  |  * ------+---------+------------------------------  | 
116  |  |  *     0 | 0 0 0 0 | 0G  | 
117  |  |  *     1 | 0 0 0 1 | 1G  | 
118  |  |  *     2 | 0 0 1 0 | 2^56G  | 
119  |  |  *     3 | 0 0 1 1 | (2^56 + 1)G  | 
120  |  |  *     4 | 0 1 0 0 | 2^112G  | 
121  |  |  *     5 | 0 1 0 1 | (2^112 + 1)G  | 
122  |  |  *     6 | 0 1 1 0 | (2^112 + 2^56)G  | 
123  |  |  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G  | 
124  |  |  *     8 | 1 0 0 0 | 2^168G  | 
125  |  |  *     9 | 1 0 0 1 | (2^168 + 1)G  | 
126  |  |  *    10 | 1 0 1 0 | (2^168 + 2^56)G  | 
127  |  |  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G  | 
128  |  |  *    12 | 1 1 0 0 | (2^168 + 2^112)G  | 
129  |  |  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G  | 
130  |  |  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G  | 
131  |  |  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G  | 
132  |  |  * followed by a copy of this with each element multiplied by 2^28.  | 
133  |  |  *  | 
134  |  |  * The reason for this is so that we can clock bits into four different  | 
135  |  |  * locations when doing simple scalar multiplies against the base point,  | 
136  |  |  * and then another four locations using the second 16 elements.  | 
137  |  |  */  | 
138  |  | static const felem gmul[2][16][3] = { | 
139  |  | {{{0, 0, 0, 0}, | 
140  |  |   {0, 0, 0, 0}, | 
141  |  |   {0, 0, 0, 0}}, | 
142  |  |  {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | 
143  |  |   {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | 
144  |  |   {1, 0, 0, 0}}, | 
145  |  |  {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | 
146  |  |   {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | 
147  |  |   {1, 0, 0, 0}}, | 
148  |  |  {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | 
149  |  |   {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | 
150  |  |   {1, 0, 0, 0}}, | 
151  |  |  {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | 
152  |  |   {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | 
153  |  |   {1, 0, 0, 0}}, | 
154  |  |  {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | 
155  |  |   {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | 
156  |  |   {1, 0, 0, 0}}, | 
157  |  |  {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | 
158  |  |   {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | 
159  |  |   {1, 0, 0, 0}}, | 
160  |  |  {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | 
161  |  |   {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | 
162  |  |   {1, 0, 0, 0}}, | 
163  |  |  {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | 
164  |  |   {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | 
165  |  |   {1, 0, 0, 0}}, | 
166  |  |  {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | 
167  |  |   {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | 
168  |  |   {1, 0, 0, 0}}, | 
169  |  |  {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | 
170  |  |   {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | 
171  |  |   {1, 0, 0, 0}}, | 
172  |  |  {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | 
173  |  |   {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | 
174  |  |   {1, 0, 0, 0}}, | 
175  |  |  {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | 
176  |  |   {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | 
177  |  |   {1, 0, 0, 0}}, | 
178  |  |  {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | 
179  |  |   {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | 
180  |  |   {1, 0, 0, 0}}, | 
181  |  |  {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | 
182  |  |   {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | 
183  |  |   {1, 0, 0, 0}}, | 
184  |  |  {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | 
185  |  |   {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | 
186  |  |   {1, 0, 0, 0}}}, | 
187  |  | {{{0, 0, 0, 0}, | 
188  |  |   {0, 0, 0, 0}, | 
189  |  |   {0, 0, 0, 0}}, | 
190  |  |  {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | 
191  |  |   {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | 
192  |  |   {1, 0, 0, 0}}, | 
193  |  |  {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | 
194  |  |   {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | 
195  |  |   {1, 0, 0, 0}}, | 
196  |  |  {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | 
197  |  |   {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | 
198  |  |   {1, 0, 0, 0}}, | 
199  |  |  {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | 
200  |  |   {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | 
201  |  |   {1, 0, 0, 0}}, | 
202  |  |  {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | 
203  |  |   {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | 
204  |  |   {1, 0, 0, 0}}, | 
205  |  |  {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | 
206  |  |   {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | 
207  |  |   {1, 0, 0, 0}}, | 
208  |  |  {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | 
209  |  |   {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | 
210  |  |   {1, 0, 0, 0}}, | 
211  |  |  {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | 
212  |  |   {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | 
213  |  |   {1, 0, 0, 0}}, | 
214  |  |  {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | 
215  |  |   {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | 
216  |  |   {1, 0, 0, 0}}, | 
217  |  |  {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | 
218  |  |   {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | 
219  |  |   {1, 0, 0, 0}}, | 
220  |  |  {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | 
221  |  |   {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | 
222  |  |   {1, 0, 0, 0}}, | 
223  |  |  {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | 
224  |  |   {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | 
225  |  |   {1, 0, 0, 0}}, | 
226  |  |  {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | 
227  |  |   {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | 
228  |  |   {1, 0, 0, 0}}, | 
229  |  |  {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | 
230  |  |   {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | 
231  |  |   {1, 0, 0, 0}}, | 
232  |  |  {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | 
233  |  |   {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | 
234  |  |   {1, 0, 0, 0}}} | 
235  |  | };  | 
236  |  |  | 
237  |  | /* Precomputation for the group generator. */  | 
238  |  | struct nistp224_pre_comp_st { | 
239  |  |     felem g_pre_comp[2][16][3];  | 
240  |  |     CRYPTO_REF_COUNT references;  | 
241  |  | };  | 
242  |  |  | 
243  |  | const EC_METHOD *EC_GFp_nistp224_method(void)  | 
244  | 0  | { | 
245  | 0  |     static const EC_METHOD ret = { | 
246  | 0  |         EC_FLAGS_DEFAULT_OCT,  | 
247  | 0  |         NID_X9_62_prime_field,  | 
248  | 0  |         ossl_ec_GFp_nistp224_group_init,  | 
249  | 0  |         ossl_ec_GFp_simple_group_finish,  | 
250  | 0  |         ossl_ec_GFp_simple_group_clear_finish,  | 
251  | 0  |         ossl_ec_GFp_nist_group_copy,  | 
252  | 0  |         ossl_ec_GFp_nistp224_group_set_curve,  | 
253  | 0  |         ossl_ec_GFp_simple_group_get_curve,  | 
254  | 0  |         ossl_ec_GFp_simple_group_get_degree,  | 
255  | 0  |         ossl_ec_group_simple_order_bits,  | 
256  | 0  |         ossl_ec_GFp_simple_group_check_discriminant,  | 
257  | 0  |         ossl_ec_GFp_simple_point_init,  | 
258  | 0  |         ossl_ec_GFp_simple_point_finish,  | 
259  | 0  |         ossl_ec_GFp_simple_point_clear_finish,  | 
260  | 0  |         ossl_ec_GFp_simple_point_copy,  | 
261  | 0  |         ossl_ec_GFp_simple_point_set_to_infinity,  | 
262  | 0  |         ossl_ec_GFp_simple_point_set_affine_coordinates,  | 
263  | 0  |         ossl_ec_GFp_nistp224_point_get_affine_coordinates,  | 
264  | 0  |         0 /* point_set_compressed_coordinates */ ,  | 
265  | 0  |         0 /* point2oct */ ,  | 
266  | 0  |         0 /* oct2point */ ,  | 
267  | 0  |         ossl_ec_GFp_simple_add,  | 
268  | 0  |         ossl_ec_GFp_simple_dbl,  | 
269  | 0  |         ossl_ec_GFp_simple_invert,  | 
270  | 0  |         ossl_ec_GFp_simple_is_at_infinity,  | 
271  | 0  |         ossl_ec_GFp_simple_is_on_curve,  | 
272  | 0  |         ossl_ec_GFp_simple_cmp,  | 
273  | 0  |         ossl_ec_GFp_simple_make_affine,  | 
274  | 0  |         ossl_ec_GFp_simple_points_make_affine,  | 
275  | 0  |         ossl_ec_GFp_nistp224_points_mul,  | 
276  | 0  |         ossl_ec_GFp_nistp224_precompute_mult,  | 
277  | 0  |         ossl_ec_GFp_nistp224_have_precompute_mult,  | 
278  | 0  |         ossl_ec_GFp_nist_field_mul,  | 
279  | 0  |         ossl_ec_GFp_nist_field_sqr,  | 
280  | 0  |         0 /* field_div */ ,  | 
281  | 0  |         ossl_ec_GFp_simple_field_inv,  | 
282  | 0  |         0 /* field_encode */ ,  | 
283  | 0  |         0 /* field_decode */ ,  | 
284  | 0  |         0,                      /* field_set_to_one */  | 
285  | 0  |         ossl_ec_key_simple_priv2oct,  | 
286  | 0  |         ossl_ec_key_simple_oct2priv,  | 
287  | 0  |         0, /* set private */  | 
288  | 0  |         ossl_ec_key_simple_generate_key,  | 
289  | 0  |         ossl_ec_key_simple_check_key,  | 
290  | 0  |         ossl_ec_key_simple_generate_public_key,  | 
291  | 0  |         0, /* keycopy */  | 
292  | 0  |         0, /* keyfinish */  | 
293  | 0  |         ossl_ecdh_simple_compute_key,  | 
294  | 0  |         ossl_ecdsa_simple_sign_setup,  | 
295  | 0  |         ossl_ecdsa_simple_sign_sig,  | 
296  | 0  |         ossl_ecdsa_simple_verify_sig,  | 
297  | 0  |         0, /* field_inverse_mod_ord */  | 
298  | 0  |         0, /* blind_coordinates */  | 
299  | 0  |         0, /* ladder_pre */  | 
300  | 0  |         0, /* ladder_step */  | 
301  | 0  |         0  /* ladder_post */  | 
302  | 0  |     };  | 
303  |  | 
  | 
304  | 0  |     return &ret;  | 
305  | 0  | }  | 
306  |  |  | 
307  |  | /*  | 
308  |  |  * Helper functions to convert field elements to/from internal representation  | 
309  |  |  */  | 
310  |  | static void bin28_to_felem(felem out, const u8 in[28])  | 
311  | 0  | { | 
312  | 0  |     out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;  | 
313  | 0  |     out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;  | 
314  | 0  |     out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;  | 
315  | 0  |     out[3] = (*((const limb_aX *)(in + 20))) >> 8;  | 
316  | 0  | }  | 
317  |  |  | 
318  |  | static void felem_to_bin28(u8 out[28], const felem in)  | 
319  | 0  | { | 
320  | 0  |     unsigned i;  | 
321  | 0  |     for (i = 0; i < 7; ++i) { | 
322  | 0  |         out[i] = in[0] >> (8 * i);  | 
323  | 0  |         out[i + 7] = in[1] >> (8 * i);  | 
324  | 0  |         out[i + 14] = in[2] >> (8 * i);  | 
325  | 0  |         out[i + 21] = in[3] >> (8 * i);  | 
326  | 0  |     }  | 
327  | 0  | }  | 
328  |  |  | 
329  |  | /* From OpenSSL BIGNUM to internal representation */  | 
330  |  | static int BN_to_felem(felem out, const BIGNUM *bn)  | 
331  | 0  | { | 
332  | 0  |     felem_bytearray b_out;  | 
333  | 0  |     int num_bytes;  | 
334  |  | 
  | 
335  | 0  |     if (BN_is_negative(bn)) { | 
336  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);  | 
337  | 0  |         return 0;  | 
338  | 0  |     }  | 
339  | 0  |     num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));  | 
340  | 0  |     if (num_bytes < 0) { | 
341  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);  | 
342  | 0  |         return 0;  | 
343  | 0  |     }  | 
344  | 0  |     bin28_to_felem(out, b_out);  | 
345  | 0  |     return 1;  | 
346  | 0  | }  | 
347  |  |  | 
348  |  | /* From internal representation to OpenSSL BIGNUM */  | 
349  |  | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)  | 
350  | 0  | { | 
351  | 0  |     felem_bytearray b_out;  | 
352  | 0  |     felem_to_bin28(b_out, in);  | 
353  | 0  |     return BN_lebin2bn(b_out, sizeof(b_out), out);  | 
354  | 0  | }  | 
355  |  |  | 
356  |  | /******************************************************************************/  | 
357  |  | /*-  | 
358  |  |  *                              FIELD OPERATIONS  | 
359  |  |  *  | 
360  |  |  * Field operations, using the internal representation of field elements.  | 
361  |  |  * NB! These operations are specific to our point multiplication and cannot be  | 
362  |  |  * expected to be correct in general - e.g., multiplication with a large scalar  | 
363  |  |  * will cause an overflow.  | 
364  |  |  *  | 
365  |  |  */  | 
366  |  |  | 
367  |  | static void felem_one(felem out)  | 
368  | 0  | { | 
369  | 0  |     out[0] = 1;  | 
370  | 0  |     out[1] = 0;  | 
371  | 0  |     out[2] = 0;  | 
372  | 0  |     out[3] = 0;  | 
373  | 0  | }  | 
374  |  |  | 
375  |  | static void felem_assign(felem out, const felem in)  | 
376  | 0  | { | 
377  | 0  |     out[0] = in[0];  | 
378  | 0  |     out[1] = in[1];  | 
379  | 0  |     out[2] = in[2];  | 
380  | 0  |     out[3] = in[3];  | 
381  | 0  | }  | 
382  |  |  | 
383  |  | /* Sum two field elements: out += in */  | 
384  |  | static void felem_sum(felem out, const felem in)  | 
385  | 0  | { | 
386  | 0  |     out[0] += in[0];  | 
387  | 0  |     out[1] += in[1];  | 
388  | 0  |     out[2] += in[2];  | 
389  | 0  |     out[3] += in[3];  | 
390  | 0  | }  | 
391  |  |  | 
392  |  | /* Subtract field elements: out -= in */  | 
393  |  | /* Assumes in[i] < 2^57 */  | 
394  |  | static void felem_diff(felem out, const felem in)  | 
395  | 0  | { | 
396  | 0  |     static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);  | 
397  | 0  |     static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);  | 
398  | 0  |     static const limb two58m42m2 = (((limb) 1) << 58) -  | 
399  | 0  |         (((limb) 1) << 42) - (((limb) 1) << 2);  | 
400  |  |  | 
401  |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */  | 
402  | 0  |     out[0] += two58p2;  | 
403  | 0  |     out[1] += two58m42m2;  | 
404  | 0  |     out[2] += two58m2;  | 
405  | 0  |     out[3] += two58m2;  | 
406  |  | 
  | 
407  | 0  |     out[0] -= in[0];  | 
408  | 0  |     out[1] -= in[1];  | 
409  | 0  |     out[2] -= in[2];  | 
410  | 0  |     out[3] -= in[3];  | 
411  | 0  | }  | 
412  |  |  | 
413  |  | /* Subtract in unreduced 128-bit mode: out -= in */  | 
414  |  | /* Assumes in[i] < 2^119 */  | 
415  |  | static void widefelem_diff(widefelem out, const widefelem in)  | 
416  | 0  | { | 
417  | 0  |     static const widelimb two120 = ((widelimb) 1) << 120;  | 
418  | 0  |     static const widelimb two120m64 = (((widelimb) 1) << 120) -  | 
419  | 0  |         (((widelimb) 1) << 64);  | 
420  | 0  |     static const widelimb two120m104m64 = (((widelimb) 1) << 120) -  | 
421  | 0  |         (((widelimb) 1) << 104) - (((widelimb) 1) << 64);  | 
422  |  |  | 
423  |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */  | 
424  | 0  |     out[0] += two120;  | 
425  | 0  |     out[1] += two120m64;  | 
426  | 0  |     out[2] += two120m64;  | 
427  | 0  |     out[3] += two120;  | 
428  | 0  |     out[4] += two120m104m64;  | 
429  | 0  |     out[5] += two120m64;  | 
430  | 0  |     out[6] += two120m64;  | 
431  |  | 
  | 
432  | 0  |     out[0] -= in[0];  | 
433  | 0  |     out[1] -= in[1];  | 
434  | 0  |     out[2] -= in[2];  | 
435  | 0  |     out[3] -= in[3];  | 
436  | 0  |     out[4] -= in[4];  | 
437  | 0  |     out[5] -= in[5];  | 
438  | 0  |     out[6] -= in[6];  | 
439  | 0  | }  | 
440  |  |  | 
441  |  | /* Subtract in mixed mode: out128 -= in64 */  | 
442  |  | /* in[i] < 2^63 */  | 
443  |  | static void felem_diff_128_64(widefelem out, const felem in)  | 
444  | 0  | { | 
445  | 0  |     static const widelimb two64p8 = (((widelimb) 1) << 64) +  | 
446  | 0  |         (((widelimb) 1) << 8);  | 
447  | 0  |     static const widelimb two64m8 = (((widelimb) 1) << 64) -  | 
448  | 0  |         (((widelimb) 1) << 8);  | 
449  | 0  |     static const widelimb two64m48m8 = (((widelimb) 1) << 64) -  | 
450  | 0  |         (((widelimb) 1) << 48) - (((widelimb) 1) << 8);  | 
451  |  |  | 
452  |  |     /* Add 0 mod 2^224-2^96+1 to ensure out > in */  | 
453  | 0  |     out[0] += two64p8;  | 
454  | 0  |     out[1] += two64m48m8;  | 
455  | 0  |     out[2] += two64m8;  | 
456  | 0  |     out[3] += two64m8;  | 
457  |  | 
  | 
458  | 0  |     out[0] -= in[0];  | 
459  | 0  |     out[1] -= in[1];  | 
460  | 0  |     out[2] -= in[2];  | 
461  | 0  |     out[3] -= in[3];  | 
462  | 0  | }  | 
463  |  |  | 
464  |  | /*  | 
465  |  |  * Multiply a field element by a scalar: out = out * scalar The scalars we  | 
466  |  |  * actually use are small, so results fit without overflow  | 
467  |  |  */  | 
468  |  | static void felem_scalar(felem out, const limb scalar)  | 
469  | 0  | { | 
470  | 0  |     out[0] *= scalar;  | 
471  | 0  |     out[1] *= scalar;  | 
472  | 0  |     out[2] *= scalar;  | 
473  | 0  |     out[3] *= scalar;  | 
474  | 0  | }  | 
475  |  |  | 
476  |  | /*  | 
477  |  |  * Multiply an unreduced field element by a scalar: out = out * scalar The  | 
478  |  |  * scalars we actually use are small, so results fit without overflow  | 
479  |  |  */  | 
480  |  | static void widefelem_scalar(widefelem out, const widelimb scalar)  | 
481  | 0  | { | 
482  | 0  |     out[0] *= scalar;  | 
483  | 0  |     out[1] *= scalar;  | 
484  | 0  |     out[2] *= scalar;  | 
485  | 0  |     out[3] *= scalar;  | 
486  | 0  |     out[4] *= scalar;  | 
487  | 0  |     out[5] *= scalar;  | 
488  | 0  |     out[6] *= scalar;  | 
489  | 0  | }  | 
490  |  |  | 
491  |  | /* Square a field element: out = in^2 */  | 
492  |  | static void felem_square(widefelem out, const felem in)  | 
493  | 0  | { | 
494  | 0  |     limb tmp0, tmp1, tmp2;  | 
495  | 0  |     tmp0 = 2 * in[0];  | 
496  | 0  |     tmp1 = 2 * in[1];  | 
497  | 0  |     tmp2 = 2 * in[2];  | 
498  | 0  |     out[0] = ((widelimb) in[0]) * in[0];  | 
499  | 0  |     out[1] = ((widelimb) in[0]) * tmp1;  | 
500  | 0  |     out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];  | 
501  | 0  |     out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;  | 
502  | 0  |     out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];  | 
503  | 0  |     out[5] = ((widelimb) in[3]) * tmp2;  | 
504  | 0  |     out[6] = ((widelimb) in[3]) * in[3];  | 
505  | 0  | }  | 
506  |  |  | 
507  |  | /* Multiply two field elements: out = in1 * in2 */  | 
508  |  | static void felem_mul(widefelem out, const felem in1, const felem in2)  | 
509  | 0  | { | 
510  | 0  |     out[0] = ((widelimb) in1[0]) * in2[0];  | 
511  | 0  |     out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];  | 
512  | 0  |     out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +  | 
513  | 0  |              ((widelimb) in1[2]) * in2[0];  | 
514  | 0  |     out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +  | 
515  | 0  |              ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];  | 
516  | 0  |     out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +  | 
517  | 0  |              ((widelimb) in1[3]) * in2[1];  | 
518  | 0  |     out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];  | 
519  | 0  |     out[6] = ((widelimb) in1[3]) * in2[3];  | 
520  | 0  | }  | 
521  |  |  | 
522  |  | /*-  | 
523  |  |  * Reduce seven 128-bit coefficients to four 64-bit coefficients.  | 
524  |  |  * Requires in[i] < 2^126,  | 
525  |  |  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */  | 
526  |  | static void felem_reduce(felem out, const widefelem in)  | 
527  | 0  | { | 
528  | 0  |     static const widelimb two127p15 = (((widelimb) 1) << 127) +  | 
529  | 0  |         (((widelimb) 1) << 15);  | 
530  | 0  |     static const widelimb two127m71 = (((widelimb) 1) << 127) -  | 
531  | 0  |         (((widelimb) 1) << 71);  | 
532  | 0  |     static const widelimb two127m71m55 = (((widelimb) 1) << 127) -  | 
533  | 0  |         (((widelimb) 1) << 71) - (((widelimb) 1) << 55);  | 
534  | 0  |     widelimb output[5];  | 
535  |  |  | 
536  |  |     /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */  | 
537  | 0  |     output[0] = in[0] + two127p15;  | 
538  | 0  |     output[1] = in[1] + two127m71m55;  | 
539  | 0  |     output[2] = in[2] + two127m71;  | 
540  | 0  |     output[3] = in[3];  | 
541  | 0  |     output[4] = in[4];  | 
542  |  |  | 
543  |  |     /* Eliminate in[4], in[5], in[6] */  | 
544  | 0  |     output[4] += in[6] >> 16;  | 
545  | 0  |     output[3] += (in[6] & 0xffff) << 40;  | 
546  | 0  |     output[2] -= in[6];  | 
547  |  | 
  | 
548  | 0  |     output[3] += in[5] >> 16;  | 
549  | 0  |     output[2] += (in[5] & 0xffff) << 40;  | 
550  | 0  |     output[1] -= in[5];  | 
551  |  | 
  | 
552  | 0  |     output[2] += output[4] >> 16;  | 
553  | 0  |     output[1] += (output[4] & 0xffff) << 40;  | 
554  | 0  |     output[0] -= output[4];  | 
555  |  |  | 
556  |  |     /* Carry 2 -> 3 -> 4 */  | 
557  | 0  |     output[3] += output[2] >> 56;  | 
558  | 0  |     output[2] &= 0x00ffffffffffffff;  | 
559  |  | 
  | 
560  | 0  |     output[4] = output[3] >> 56;  | 
561  | 0  |     output[3] &= 0x00ffffffffffffff;  | 
562  |  |  | 
563  |  |     /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */  | 
564  |  |  | 
565  |  |     /* Eliminate output[4] */  | 
566  | 0  |     output[2] += output[4] >> 16;  | 
567  |  |     /* output[2] < 2^56 + 2^56 = 2^57 */  | 
568  | 0  |     output[1] += (output[4] & 0xffff) << 40;  | 
569  | 0  |     output[0] -= output[4];  | 
570  |  |  | 
571  |  |     /* Carry 0 -> 1 -> 2 -> 3 */  | 
572  | 0  |     output[1] += output[0] >> 56;  | 
573  | 0  |     out[0] = output[0] & 0x00ffffffffffffff;  | 
574  |  | 
  | 
575  | 0  |     output[2] += output[1] >> 56;  | 
576  |  |     /* output[2] < 2^57 + 2^72 */  | 
577  | 0  |     out[1] = output[1] & 0x00ffffffffffffff;  | 
578  | 0  |     output[3] += output[2] >> 56;  | 
579  |  |     /* output[3] <= 2^56 + 2^16 */  | 
580  | 0  |     out[2] = output[2] & 0x00ffffffffffffff;  | 
581  |  |  | 
582  |  |     /*-  | 
583  |  |      * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,  | 
584  |  |      * out[3] <= 2^56 + 2^16 (due to final carry),  | 
585  |  |      * so out < 2*p  | 
586  |  |      */  | 
587  | 0  |     out[3] = output[3];  | 
588  | 0  | }  | 
589  |  |  | 
590  |  | static void felem_square_reduce(felem out, const felem in)  | 
591  | 0  | { | 
592  | 0  |     widefelem tmp;  | 
593  | 0  |     felem_square(tmp, in);  | 
594  | 0  |     felem_reduce(out, tmp);  | 
595  | 0  | }  | 
596  |  |  | 
597  |  | static void felem_mul_reduce(felem out, const felem in1, const felem in2)  | 
598  | 0  | { | 
599  | 0  |     widefelem tmp;  | 
600  | 0  |     felem_mul(tmp, in1, in2);  | 
601  | 0  |     felem_reduce(out, tmp);  | 
602  | 0  | }  | 
603  |  |  | 
604  |  | /*  | 
605  |  |  * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always  | 
606  |  |  * call felem_reduce first)  | 
607  |  |  */  | 
608  |  | static void felem_contract(felem out, const felem in)  | 
609  | 0  | { | 
610  | 0  |     static const int64_t two56 = ((limb) 1) << 56;  | 
611  |  |     /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */  | 
612  |  |     /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */  | 
613  | 0  |     int64_t tmp[4], a;  | 
614  | 0  |     tmp[0] = in[0];  | 
615  | 0  |     tmp[1] = in[1];  | 
616  | 0  |     tmp[2] = in[2];  | 
617  | 0  |     tmp[3] = in[3];  | 
618  |  |     /* Case 1: a = 1 iff in >= 2^224 */  | 
619  | 0  |     a = (in[3] >> 56);  | 
620  | 0  |     tmp[0] -= a;  | 
621  | 0  |     tmp[1] += a << 40;  | 
622  | 0  |     tmp[3] &= 0x00ffffffffffffff;  | 
623  |  |     /*  | 
624  |  |      * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1  | 
625  |  |      * and the lower part is non-zero  | 
626  |  |      */  | 
627  | 0  |     a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |  | 
628  | 0  |         (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);  | 
629  | 0  |     a &= 0x00ffffffffffffff;  | 
630  |  |     /* turn a into an all-one mask (if a = 0) or an all-zero mask */  | 
631  | 0  |     a = (a - 1) >> 63;  | 
632  |  |     /* subtract 2^224 - 2^96 + 1 if a is all-one */  | 
633  | 0  |     tmp[3] &= a ^ 0xffffffffffffffff;  | 
634  | 0  |     tmp[2] &= a ^ 0xffffffffffffffff;  | 
635  | 0  |     tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;  | 
636  | 0  |     tmp[0] -= 1 & a;  | 
637  |  |  | 
638  |  |     /*  | 
639  |  |      * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be  | 
640  |  |      * non-zero, so we only need one step  | 
641  |  |      */  | 
642  | 0  |     a = tmp[0] >> 63;  | 
643  | 0  |     tmp[0] += two56 & a;  | 
644  | 0  |     tmp[1] -= 1 & a;  | 
645  |  |  | 
646  |  |     /* carry 1 -> 2 -> 3 */  | 
647  | 0  |     tmp[2] += tmp[1] >> 56;  | 
648  | 0  |     tmp[1] &= 0x00ffffffffffffff;  | 
649  |  | 
  | 
650  | 0  |     tmp[3] += tmp[2] >> 56;  | 
651  | 0  |     tmp[2] &= 0x00ffffffffffffff;  | 
652  |  |  | 
653  |  |     /* Now 0 <= out < p */  | 
654  | 0  |     out[0] = tmp[0];  | 
655  | 0  |     out[1] = tmp[1];  | 
656  | 0  |     out[2] = tmp[2];  | 
657  | 0  |     out[3] = tmp[3];  | 
658  | 0  | }  | 
659  |  |  | 
660  |  | /*  | 
661  |  |  * Get negative value: out = -in  | 
662  |  |  * Requires in[i] < 2^63,  | 
663  |  |  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16  | 
664  |  |  */  | 
665  |  | static void felem_neg(felem out, const felem in)  | 
666  | 0  | { | 
667  | 0  |     widefelem tmp;  | 
668  |  | 
  | 
669  | 0  |     memset(tmp, 0, sizeof(tmp));  | 
670  | 0  |     felem_diff_128_64(tmp, in);  | 
671  | 0  |     felem_reduce(out, tmp);  | 
672  | 0  | }  | 
673  |  |  | 
674  |  | /*  | 
675  |  |  * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field  | 
676  |  |  * elements are reduced to in < 2^225, so we only need to check three cases:  | 
677  |  |  * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2  | 
678  |  |  */  | 
679  |  | static limb felem_is_zero(const felem in)  | 
680  | 0  | { | 
681  | 0  |     limb zero, two224m96p1, two225m97p2;  | 
682  |  | 
  | 
683  | 0  |     zero = in[0] | in[1] | in[2] | in[3];  | 
684  | 0  |     zero = (((int64_t) (zero) - 1) >> 63) & 1;  | 
685  | 0  |     two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)  | 
686  | 0  |         | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);  | 
687  | 0  |     two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;  | 
688  | 0  |     two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)  | 
689  | 0  |         | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);  | 
690  | 0  |     two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;  | 
691  | 0  |     return (zero | two224m96p1 | two225m97p2);  | 
692  | 0  | }  | 
693  |  |  | 
694  |  | static int felem_is_zero_int(const void *in)  | 
695  | 0  | { | 
696  | 0  |     return (int)(felem_is_zero(in) & ((limb) 1));  | 
697  | 0  | }  | 
698  |  |  | 
699  |  | /* Invert a field element */  | 
700  |  | /* Computation chain copied from djb's code */  | 
701  |  | static void felem_inv(felem out, const felem in)  | 
702  | 0  | { | 
703  | 0  |     felem ftmp, ftmp2, ftmp3, ftmp4;  | 
704  | 0  |     widefelem tmp;  | 
705  | 0  |     unsigned i;  | 
706  |  | 
  | 
707  | 0  |     felem_square(tmp, in);  | 
708  | 0  |     felem_reduce(ftmp, tmp);    /* 2 */  | 
709  | 0  |     felem_mul(tmp, in, ftmp);  | 
710  | 0  |     felem_reduce(ftmp, tmp);    /* 2^2 - 1 */  | 
711  | 0  |     felem_square(tmp, ftmp);  | 
712  | 0  |     felem_reduce(ftmp, tmp);    /* 2^3 - 2 */  | 
713  | 0  |     felem_mul(tmp, in, ftmp);  | 
714  | 0  |     felem_reduce(ftmp, tmp);    /* 2^3 - 1 */  | 
715  | 0  |     felem_square(tmp, ftmp);  | 
716  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */  | 
717  | 0  |     felem_square(tmp, ftmp2);  | 
718  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */  | 
719  | 0  |     felem_square(tmp, ftmp2);  | 
720  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */  | 
721  | 0  |     felem_mul(tmp, ftmp2, ftmp);  | 
722  | 0  |     felem_reduce(ftmp, tmp);    /* 2^6 - 1 */  | 
723  | 0  |     felem_square(tmp, ftmp);  | 
724  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */  | 
725  | 0  |     for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */ | 
726  | 0  |         felem_square(tmp, ftmp2);  | 
727  | 0  |         felem_reduce(ftmp2, tmp);  | 
728  | 0  |     }  | 
729  | 0  |     felem_mul(tmp, ftmp2, ftmp);  | 
730  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */  | 
731  | 0  |     felem_square(tmp, ftmp2);  | 
732  | 0  |     felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */  | 
733  | 0  |     for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */ | 
734  | 0  |         felem_square(tmp, ftmp3);  | 
735  | 0  |         felem_reduce(ftmp3, tmp);  | 
736  | 0  |     }  | 
737  | 0  |     felem_mul(tmp, ftmp3, ftmp2);  | 
738  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */  | 
739  | 0  |     felem_square(tmp, ftmp2);  | 
740  | 0  |     felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */  | 
741  | 0  |     for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */ | 
742  | 0  |         felem_square(tmp, ftmp3);  | 
743  | 0  |         felem_reduce(ftmp3, tmp);  | 
744  | 0  |     }  | 
745  | 0  |     felem_mul(tmp, ftmp3, ftmp2);  | 
746  | 0  |     felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */  | 
747  | 0  |     felem_square(tmp, ftmp3);  | 
748  | 0  |     felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */  | 
749  | 0  |     for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */ | 
750  | 0  |         felem_square(tmp, ftmp4);  | 
751  | 0  |         felem_reduce(ftmp4, tmp);  | 
752  | 0  |     }  | 
753  | 0  |     felem_mul(tmp, ftmp3, ftmp4);  | 
754  | 0  |     felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */  | 
755  | 0  |     felem_square(tmp, ftmp3);  | 
756  | 0  |     felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */  | 
757  | 0  |     for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */ | 
758  | 0  |         felem_square(tmp, ftmp4);  | 
759  | 0  |         felem_reduce(ftmp4, tmp);  | 
760  | 0  |     }  | 
761  | 0  |     felem_mul(tmp, ftmp2, ftmp4);  | 
762  | 0  |     felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */  | 
763  | 0  |     for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */ | 
764  | 0  |         felem_square(tmp, ftmp2);  | 
765  | 0  |         felem_reduce(ftmp2, tmp);  | 
766  | 0  |     }  | 
767  | 0  |     felem_mul(tmp, ftmp2, ftmp);  | 
768  | 0  |     felem_reduce(ftmp, tmp);    /* 2^126 - 1 */  | 
769  | 0  |     felem_square(tmp, ftmp);  | 
770  | 0  |     felem_reduce(ftmp, tmp);    /* 2^127 - 2 */  | 
771  | 0  |     felem_mul(tmp, ftmp, in);  | 
772  | 0  |     felem_reduce(ftmp, tmp);    /* 2^127 - 1 */  | 
773  | 0  |     for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */ | 
774  | 0  |         felem_square(tmp, ftmp);  | 
775  | 0  |         felem_reduce(ftmp, tmp);  | 
776  | 0  |     }  | 
777  | 0  |     felem_mul(tmp, ftmp, ftmp3);  | 
778  | 0  |     felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */  | 
779  | 0  | }  | 
780  |  |  | 
781  |  | /*  | 
782  |  |  * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy  | 
783  |  |  * out to itself.  | 
784  |  |  */  | 
785  |  | static void copy_conditional(felem out, const felem in, limb icopy)  | 
786  | 0  | { | 
787  | 0  |     unsigned i;  | 
788  |  |     /*  | 
789  |  |      * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one  | 
790  |  |      */  | 
791  | 0  |     const limb copy = -icopy;  | 
792  | 0  |     for (i = 0; i < 4; ++i) { | 
793  | 0  |         const limb tmp = copy & (in[i] ^ out[i]);  | 
794  | 0  |         out[i] ^= tmp;  | 
795  | 0  |     }  | 
796  | 0  | }  | 
797  |  |  | 
798  |  | /******************************************************************************/  | 
799  |  | /*-  | 
800  |  |  *                       ELLIPTIC CURVE POINT OPERATIONS  | 
801  |  |  *  | 
802  |  |  * Points are represented in Jacobian projective coordinates:  | 
803  |  |  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),  | 
804  |  |  * or to the point at infinity if Z == 0.  | 
805  |  |  *  | 
806  |  |  */  | 
807  |  |  | 
808  |  | /*-  | 
809  |  |  * Double an elliptic curve point:  | 
810  |  |  * (X', Y', Z') = 2 * (X, Y, Z), where  | 
811  |  |  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2  | 
812  |  |  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4  | 
813  |  |  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z  | 
814  |  |  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,  | 
815  |  |  * while x_out == y_in is not (maybe this works, but it's not tested).  | 
816  |  |  */  | 
817  |  | static void  | 
818  |  | point_double(felem x_out, felem y_out, felem z_out,  | 
819  |  |              const felem x_in, const felem y_in, const felem z_in)  | 
820  | 0  | { | 
821  | 0  |     widefelem tmp, tmp2;  | 
822  | 0  |     felem delta, gamma, beta, alpha, ftmp, ftmp2;  | 
823  |  | 
  | 
824  | 0  |     felem_assign(ftmp, x_in);  | 
825  | 0  |     felem_assign(ftmp2, x_in);  | 
826  |  |  | 
827  |  |     /* delta = z^2 */  | 
828  | 0  |     felem_square(tmp, z_in);  | 
829  | 0  |     felem_reduce(delta, tmp);  | 
830  |  |  | 
831  |  |     /* gamma = y^2 */  | 
832  | 0  |     felem_square(tmp, y_in);  | 
833  | 0  |     felem_reduce(gamma, tmp);  | 
834  |  |  | 
835  |  |     /* beta = x*gamma */  | 
836  | 0  |     felem_mul(tmp, x_in, gamma);  | 
837  | 0  |     felem_reduce(beta, tmp);  | 
838  |  |  | 
839  |  |     /* alpha = 3*(x-delta)*(x+delta) */  | 
840  | 0  |     felem_diff(ftmp, delta);  | 
841  |  |     /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */  | 
842  | 0  |     felem_sum(ftmp2, delta);  | 
843  |  |     /* ftmp2[i] < 2^57 + 2^57 = 2^58 */  | 
844  | 0  |     felem_scalar(ftmp2, 3);  | 
845  |  |     /* ftmp2[i] < 3 * 2^58 < 2^60 */  | 
846  | 0  |     felem_mul(tmp, ftmp, ftmp2);  | 
847  |  |     /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */  | 
848  | 0  |     felem_reduce(alpha, tmp);  | 
849  |  |  | 
850  |  |     /* x' = alpha^2 - 8*beta */  | 
851  | 0  |     felem_square(tmp, alpha);  | 
852  |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */  | 
853  | 0  |     felem_assign(ftmp, beta);  | 
854  | 0  |     felem_scalar(ftmp, 8);  | 
855  |  |     /* ftmp[i] < 8 * 2^57 = 2^60 */  | 
856  | 0  |     felem_diff_128_64(tmp, ftmp);  | 
857  |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */  | 
858  | 0  |     felem_reduce(x_out, tmp);  | 
859  |  |  | 
860  |  |     /* z' = (y + z)^2 - gamma - delta */  | 
861  | 0  |     felem_sum(delta, gamma);  | 
862  |  |     /* delta[i] < 2^57 + 2^57 = 2^58 */  | 
863  | 0  |     felem_assign(ftmp, y_in);  | 
864  | 0  |     felem_sum(ftmp, z_in);  | 
865  |  |     /* ftmp[i] < 2^57 + 2^57 = 2^58 */  | 
866  | 0  |     felem_square(tmp, ftmp);  | 
867  |  |     /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */  | 
868  | 0  |     felem_diff_128_64(tmp, delta);  | 
869  |  |     /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */  | 
870  | 0  |     felem_reduce(z_out, tmp);  | 
871  |  |  | 
872  |  |     /* y' = alpha*(4*beta - x') - 8*gamma^2 */  | 
873  | 0  |     felem_scalar(beta, 4);  | 
874  |  |     /* beta[i] < 4 * 2^57 = 2^59 */  | 
875  | 0  |     felem_diff(beta, x_out);  | 
876  |  |     /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */  | 
877  | 0  |     felem_mul(tmp, alpha, beta);  | 
878  |  |     /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */  | 
879  | 0  |     felem_square(tmp2, gamma);  | 
880  |  |     /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */  | 
881  | 0  |     widefelem_scalar(tmp2, 8);  | 
882  |  |     /* tmp2[i] < 8 * 2^116 = 2^119 */  | 
883  | 0  |     widefelem_diff(tmp, tmp2);  | 
884  |  |     /* tmp[i] < 2^119 + 2^120 < 2^121 */  | 
885  | 0  |     felem_reduce(y_out, tmp);  | 
886  | 0  | }  | 
887  |  |  | 
888  |  | /*-  | 
889  |  |  * Add two elliptic curve points:  | 
890  |  |  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where  | 
891  |  |  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -  | 
892  |  |  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2  | 
893  |  |  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -  | 
894  |  |  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3  | 
895  |  |  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)  | 
896  |  |  *  | 
897  |  |  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.  | 
898  |  |  */  | 
899  |  |  | 
900  |  | /*  | 
901  |  |  * This function is not entirely constant-time: it includes a branch for  | 
902  |  |  * checking whether the two input points are equal, (while not equal to the  | 
903  |  |  * point at infinity). This case never happens during single point  | 
904  |  |  * multiplication, so there is no timing leak for ECDH or ECDSA signing.  | 
905  |  |  */  | 
906  |  | static void point_add(felem x3, felem y3, felem z3,  | 
907  |  |                       const felem x1, const felem y1, const felem z1,  | 
908  |  |                       const int mixed, const felem x2, const felem y2,  | 
909  |  |                       const felem z2)  | 
910  | 0  | { | 
911  | 0  |     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;  | 
912  | 0  |     widefelem tmp, tmp2;  | 
913  | 0  |     limb z1_is_zero, z2_is_zero, x_equal, y_equal;  | 
914  | 0  |     limb points_equal;  | 
915  |  | 
  | 
916  | 0  |     if (!mixed) { | 
917  |  |         /* ftmp2 = z2^2 */  | 
918  | 0  |         felem_square(tmp, z2);  | 
919  | 0  |         felem_reduce(ftmp2, tmp);  | 
920  |  |  | 
921  |  |         /* ftmp4 = z2^3 */  | 
922  | 0  |         felem_mul(tmp, ftmp2, z2);  | 
923  | 0  |         felem_reduce(ftmp4, tmp);  | 
924  |  |  | 
925  |  |         /* ftmp4 = z2^3*y1 */  | 
926  | 0  |         felem_mul(tmp2, ftmp4, y1);  | 
927  | 0  |         felem_reduce(ftmp4, tmp2);  | 
928  |  |  | 
929  |  |         /* ftmp2 = z2^2*x1 */  | 
930  | 0  |         felem_mul(tmp2, ftmp2, x1);  | 
931  | 0  |         felem_reduce(ftmp2, tmp2);  | 
932  | 0  |     } else { | 
933  |  |         /*  | 
934  |  |          * We'll assume z2 = 1 (special case z2 = 0 is handled later)  | 
935  |  |          */  | 
936  |  |  | 
937  |  |         /* ftmp4 = z2^3*y1 */  | 
938  | 0  |         felem_assign(ftmp4, y1);  | 
939  |  |  | 
940  |  |         /* ftmp2 = z2^2*x1 */  | 
941  | 0  |         felem_assign(ftmp2, x1);  | 
942  | 0  |     }  | 
943  |  |  | 
944  |  |     /* ftmp = z1^2 */  | 
945  | 0  |     felem_square(tmp, z1);  | 
946  | 0  |     felem_reduce(ftmp, tmp);  | 
947  |  |  | 
948  |  |     /* ftmp3 = z1^3 */  | 
949  | 0  |     felem_mul(tmp, ftmp, z1);  | 
950  | 0  |     felem_reduce(ftmp3, tmp);  | 
951  |  |  | 
952  |  |     /* tmp = z1^3*y2 */  | 
953  | 0  |     felem_mul(tmp, ftmp3, y2);  | 
954  |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */  | 
955  |  |  | 
956  |  |     /* ftmp3 = z1^3*y2 - z2^3*y1 */  | 
957  | 0  |     felem_diff_128_64(tmp, ftmp4);  | 
958  |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */  | 
959  | 0  |     felem_reduce(ftmp3, tmp);  | 
960  |  |  | 
961  |  |     /* tmp = z1^2*x2 */  | 
962  | 0  |     felem_mul(tmp, ftmp, x2);  | 
963  |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */  | 
964  |  |  | 
965  |  |     /* ftmp = z1^2*x2 - z2^2*x1 */  | 
966  | 0  |     felem_diff_128_64(tmp, ftmp2);  | 
967  |  |     /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */  | 
968  | 0  |     felem_reduce(ftmp, tmp);  | 
969  |  |  | 
970  |  |     /*  | 
971  |  |      * The formulae are incorrect if the points are equal, in affine coordinates  | 
972  |  |      * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this  | 
973  |  |      * happens.  | 
974  |  |      *  | 
975  |  |      * We use bitwise operations to avoid potential side-channels introduced by  | 
976  |  |      * the short-circuiting behaviour of boolean operators.  | 
977  |  |      */  | 
978  | 0  |     x_equal = felem_is_zero(ftmp);  | 
979  | 0  |     y_equal = felem_is_zero(ftmp3);  | 
980  |  |     /*  | 
981  |  |      * The special case of either point being the point at infinity (z1 and/or  | 
982  |  |      * z2 are zero), is handled separately later on in this function, so we  | 
983  |  |      * avoid jumping to point_double here in those special cases.  | 
984  |  |      */  | 
985  | 0  |     z1_is_zero = felem_is_zero(z1);  | 
986  | 0  |     z2_is_zero = felem_is_zero(z2);  | 
987  |  |  | 
988  |  |     /*  | 
989  |  |      * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this  | 
990  |  |      * specific implementation `felem_is_zero()` returns truth as `0x1`  | 
991  |  |      * (rather than `0xff..ff`).  | 
992  |  |      *  | 
993  |  |      * This implies that `~true` in this implementation becomes  | 
994  |  |      * `0xff..fe` (rather than `0x0`): for this reason, to be used in  | 
995  |  |      * the if expression, we mask out only the last bit in the next  | 
996  |  |      * line.  | 
997  |  |      */  | 
998  | 0  |     points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;  | 
999  |  | 
  | 
1000  | 0  |     if (points_equal) { | 
1001  |  |         /*  | 
1002  |  |          * This is obviously not constant-time but, as mentioned before, this  | 
1003  |  |          * case never happens during single point multiplication, so there is no  | 
1004  |  |          * timing leak for ECDH or ECDSA signing.  | 
1005  |  |          */  | 
1006  | 0  |         point_double(x3, y3, z3, x1, y1, z1);  | 
1007  | 0  |         return;  | 
1008  | 0  |     }  | 
1009  |  |  | 
1010  |  |     /* ftmp5 = z1*z2 */  | 
1011  | 0  |     if (!mixed) { | 
1012  | 0  |         felem_mul(tmp, z1, z2);  | 
1013  | 0  |         felem_reduce(ftmp5, tmp);  | 
1014  | 0  |     } else { | 
1015  |  |         /* special case z2 = 0 is handled later */  | 
1016  | 0  |         felem_assign(ftmp5, z1);  | 
1017  | 0  |     }  | 
1018  |  |  | 
1019  |  |     /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */  | 
1020  | 0  |     felem_mul(tmp, ftmp, ftmp5);  | 
1021  | 0  |     felem_reduce(z_out, tmp);  | 
1022  |  |  | 
1023  |  |     /* ftmp = (z1^2*x2 - z2^2*x1)^2 */  | 
1024  | 0  |     felem_assign(ftmp5, ftmp);  | 
1025  | 0  |     felem_square(tmp, ftmp);  | 
1026  | 0  |     felem_reduce(ftmp, tmp);  | 
1027  |  |  | 
1028  |  |     /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */  | 
1029  | 0  |     felem_mul(tmp, ftmp, ftmp5);  | 
1030  | 0  |     felem_reduce(ftmp5, tmp);  | 
1031  |  |  | 
1032  |  |     /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */  | 
1033  | 0  |     felem_mul(tmp, ftmp2, ftmp);  | 
1034  | 0  |     felem_reduce(ftmp2, tmp);  | 
1035  |  |  | 
1036  |  |     /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */  | 
1037  | 0  |     felem_mul(tmp, ftmp4, ftmp5);  | 
1038  |  |     /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */  | 
1039  |  |  | 
1040  |  |     /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */  | 
1041  | 0  |     felem_square(tmp2, ftmp3);  | 
1042  |  |     /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */  | 
1043  |  |  | 
1044  |  |     /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */  | 
1045  | 0  |     felem_diff_128_64(tmp2, ftmp5);  | 
1046  |  |     /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */  | 
1047  |  |  | 
1048  |  |     /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */  | 
1049  | 0  |     felem_assign(ftmp5, ftmp2);  | 
1050  | 0  |     felem_scalar(ftmp5, 2);  | 
1051  |  |     /* ftmp5[i] < 2 * 2^57 = 2^58 */  | 
1052  |  |  | 
1053  |  |     /*-  | 
1054  |  |      * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -  | 
1055  |  |      *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2  | 
1056  |  |      */  | 
1057  | 0  |     felem_diff_128_64(tmp2, ftmp5);  | 
1058  |  |     /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */  | 
1059  | 0  |     felem_reduce(x_out, tmp2);  | 
1060  |  |  | 
1061  |  |     /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */  | 
1062  | 0  |     felem_diff(ftmp2, x_out);  | 
1063  |  |     /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */  | 
1064  |  |  | 
1065  |  |     /*  | 
1066  |  |      * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)  | 
1067  |  |      */  | 
1068  | 0  |     felem_mul(tmp2, ftmp3, ftmp2);  | 
1069  |  |     /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */  | 
1070  |  |  | 
1071  |  |     /*-  | 
1072  |  |      * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -  | 
1073  |  |      *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3  | 
1074  |  |      */  | 
1075  | 0  |     widefelem_diff(tmp2, tmp);  | 
1076  |  |     /* tmp2[i] < 2^118 + 2^120 < 2^121 */  | 
1077  | 0  |     felem_reduce(y_out, tmp2);  | 
1078  |  |  | 
1079  |  |     /*  | 
1080  |  |      * the result (x_out, y_out, z_out) is incorrect if one of the inputs is  | 
1081  |  |      * the point at infinity, so we need to check for this separately  | 
1082  |  |      */  | 
1083  |  |  | 
1084  |  |     /*  | 
1085  |  |      * if point 1 is at infinity, copy point 2 to output, and vice versa  | 
1086  |  |      */  | 
1087  | 0  |     copy_conditional(x_out, x2, z1_is_zero);  | 
1088  | 0  |     copy_conditional(x_out, x1, z2_is_zero);  | 
1089  | 0  |     copy_conditional(y_out, y2, z1_is_zero);  | 
1090  | 0  |     copy_conditional(y_out, y1, z2_is_zero);  | 
1091  | 0  |     copy_conditional(z_out, z2, z1_is_zero);  | 
1092  | 0  |     copy_conditional(z_out, z1, z2_is_zero);  | 
1093  | 0  |     felem_assign(x3, x_out);  | 
1094  | 0  |     felem_assign(y3, y_out);  | 
1095  | 0  |     felem_assign(z3, z_out);  | 
1096  | 0  | }  | 
1097  |  |  | 
1098  |  | /*  | 
1099  |  |  * select_point selects the |idx|th point from a precomputation table and  | 
1100  |  |  * copies it to out.  | 
1101  |  |  * The pre_comp array argument should be size of |size| argument  | 
1102  |  |  */  | 
1103  |  | static void select_point(const u64 idx, unsigned int size,  | 
1104  |  |                          const felem pre_comp[][3], felem out[3])  | 
1105  | 0  | { | 
1106  | 0  |     unsigned i, j;  | 
1107  | 0  |     limb *outlimbs = &out[0][0];  | 
1108  |  | 
  | 
1109  | 0  |     memset(out, 0, sizeof(*out) * 3);  | 
1110  | 0  |     for (i = 0; i < size; i++) { | 
1111  | 0  |         const limb *inlimbs = &pre_comp[i][0][0];  | 
1112  | 0  |         u64 mask = i ^ idx;  | 
1113  | 0  |         mask |= mask >> 4;  | 
1114  | 0  |         mask |= mask >> 2;  | 
1115  | 0  |         mask |= mask >> 1;  | 
1116  | 0  |         mask &= 1;  | 
1117  | 0  |         mask--;  | 
1118  | 0  |         for (j = 0; j < 4 * 3; j++)  | 
1119  | 0  |             outlimbs[j] |= inlimbs[j] & mask;  | 
1120  | 0  |     }  | 
1121  | 0  | }  | 
1122  |  |  | 
1123  |  | /* get_bit returns the |i|th bit in |in| */  | 
1124  |  | static char get_bit(const felem_bytearray in, unsigned i)  | 
1125  | 0  | { | 
1126  | 0  |     if (i >= 224)  | 
1127  | 0  |         return 0;  | 
1128  | 0  |     return (in[i >> 3] >> (i & 7)) & 1;  | 
1129  | 0  | }  | 
1130  |  |  | 
1131  |  | /*  | 
1132  |  |  * Interleaved point multiplication using precomputed point multiples: The  | 
1133  |  |  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars  | 
1134  |  |  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the  | 
1135  |  |  * generator, using certain (large) precomputed multiples in g_pre_comp.  | 
1136  |  |  * Output point (X, Y, Z) is stored in x_out, y_out, z_out  | 
1137  |  |  */  | 
1138  |  | static void batch_mul(felem x_out, felem y_out, felem z_out,  | 
1139  |  |                       const felem_bytearray scalars[],  | 
1140  |  |                       const unsigned num_points, const u8 *g_scalar,  | 
1141  |  |                       const int mixed, const felem pre_comp[][17][3],  | 
1142  |  |                       const felem g_pre_comp[2][16][3])  | 
1143  | 0  | { | 
1144  | 0  |     int i, skip;  | 
1145  | 0  |     unsigned num;  | 
1146  | 0  |     unsigned gen_mul = (g_scalar != NULL);  | 
1147  | 0  |     felem nq[3], tmp[4];  | 
1148  | 0  |     u64 bits;  | 
1149  | 0  |     u8 sign, digit;  | 
1150  |  |  | 
1151  |  |     /* set nq to the point at infinity */  | 
1152  | 0  |     memset(nq, 0, sizeof(nq));  | 
1153  |  |  | 
1154  |  |     /*  | 
1155  |  |      * Loop over all scalars msb-to-lsb, interleaving additions of multiples  | 
1156  |  |      * of the generator (two in each of the last 28 rounds) and additions of  | 
1157  |  |      * other points multiples (every 5th round).  | 
1158  |  |      */  | 
1159  | 0  |     skip = 1;                   /* save two point operations in the first  | 
1160  |  |                                  * round */  | 
1161  | 0  |     for (i = (num_points ? 220 : 27); i >= 0; --i) { | 
1162  |  |         /* double */  | 
1163  | 0  |         if (!skip)  | 
1164  | 0  |             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);  | 
1165  |  |  | 
1166  |  |         /* add multiples of the generator */  | 
1167  | 0  |         if (gen_mul && (i <= 27)) { | 
1168  |  |             /* first, look 28 bits upwards */  | 
1169  | 0  |             bits = get_bit(g_scalar, i + 196) << 3;  | 
1170  | 0  |             bits |= get_bit(g_scalar, i + 140) << 2;  | 
1171  | 0  |             bits |= get_bit(g_scalar, i + 84) << 1;  | 
1172  | 0  |             bits |= get_bit(g_scalar, i + 28);  | 
1173  |  |             /* select the point to add, in constant time */  | 
1174  | 0  |             select_point(bits, 16, g_pre_comp[1], tmp);  | 
1175  |  | 
  | 
1176  | 0  |             if (!skip) { | 
1177  |  |                 /* value 1 below is argument for "mixed" */  | 
1178  | 0  |                 point_add(nq[0], nq[1], nq[2],  | 
1179  | 0  |                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);  | 
1180  | 0  |             } else { | 
1181  | 0  |                 memcpy(nq, tmp, 3 * sizeof(felem));  | 
1182  | 0  |                 skip = 0;  | 
1183  | 0  |             }  | 
1184  |  |  | 
1185  |  |             /* second, look at the current position */  | 
1186  | 0  |             bits = get_bit(g_scalar, i + 168) << 3;  | 
1187  | 0  |             bits |= get_bit(g_scalar, i + 112) << 2;  | 
1188  | 0  |             bits |= get_bit(g_scalar, i + 56) << 1;  | 
1189  | 0  |             bits |= get_bit(g_scalar, i);  | 
1190  |  |             /* select the point to add, in constant time */  | 
1191  | 0  |             select_point(bits, 16, g_pre_comp[0], tmp);  | 
1192  | 0  |             point_add(nq[0], nq[1], nq[2],  | 
1193  | 0  |                       nq[0], nq[1], nq[2],  | 
1194  | 0  |                       1 /* mixed */ , tmp[0], tmp[1], tmp[2]);  | 
1195  | 0  |         }  | 
1196  |  |  | 
1197  |  |         /* do other additions every 5 doublings */  | 
1198  | 0  |         if (num_points && (i % 5 == 0)) { | 
1199  |  |             /* loop over all scalars */  | 
1200  | 0  |             for (num = 0; num < num_points; ++num) { | 
1201  | 0  |                 bits = get_bit(scalars[num], i + 4) << 5;  | 
1202  | 0  |                 bits |= get_bit(scalars[num], i + 3) << 4;  | 
1203  | 0  |                 bits |= get_bit(scalars[num], i + 2) << 3;  | 
1204  | 0  |                 bits |= get_bit(scalars[num], i + 1) << 2;  | 
1205  | 0  |                 bits |= get_bit(scalars[num], i) << 1;  | 
1206  | 0  |                 bits |= get_bit(scalars[num], i - 1);  | 
1207  | 0  |                 ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);  | 
1208  |  |  | 
1209  |  |                 /* select the point to add or subtract */  | 
1210  | 0  |                 select_point(digit, 17, pre_comp[num], tmp);  | 
1211  | 0  |                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative  | 
1212  |  |                                             * point */  | 
1213  | 0  |                 copy_conditional(tmp[1], tmp[3], sign);  | 
1214  |  | 
  | 
1215  | 0  |                 if (!skip) { | 
1216  | 0  |                     point_add(nq[0], nq[1], nq[2],  | 
1217  | 0  |                               nq[0], nq[1], nq[2],  | 
1218  | 0  |                               mixed, tmp[0], tmp[1], tmp[2]);  | 
1219  | 0  |                 } else { | 
1220  | 0  |                     memcpy(nq, tmp, 3 * sizeof(felem));  | 
1221  | 0  |                     skip = 0;  | 
1222  | 0  |                 }  | 
1223  | 0  |             }  | 
1224  | 0  |         }  | 
1225  | 0  |     }  | 
1226  | 0  |     felem_assign(x_out, nq[0]);  | 
1227  | 0  |     felem_assign(y_out, nq[1]);  | 
1228  | 0  |     felem_assign(z_out, nq[2]);  | 
1229  | 0  | }  | 
1230  |  |  | 
1231  |  | /******************************************************************************/  | 
1232  |  | /*  | 
1233  |  |  * FUNCTIONS TO MANAGE PRECOMPUTATION  | 
1234  |  |  */  | 
1235  |  |  | 
1236  |  | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)  | 
1237  | 0  | { | 
1238  | 0  |     NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));  | 
1239  |  | 
  | 
1240  | 0  |     if (ret == NULL)  | 
1241  | 0  |         return ret;  | 
1242  |  |  | 
1243  |  |  | 
1244  | 0  |     if (!CRYPTO_NEW_REF(&ret->references, 1)) { | 
1245  | 0  |         OPENSSL_free(ret);  | 
1246  | 0  |         return NULL;  | 
1247  | 0  |     }  | 
1248  | 0  |     return ret;  | 
1249  | 0  | }  | 
1250  |  |  | 
1251  |  | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)  | 
1252  | 0  | { | 
1253  | 0  |     int i;  | 
1254  | 0  |     if (p != NULL)  | 
1255  | 0  |         CRYPTO_UP_REF(&p->references, &i);  | 
1256  | 0  |     return p;  | 
1257  | 0  | }  | 
1258  |  |  | 
1259  |  | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)  | 
1260  | 0  | { | 
1261  | 0  |     int i;  | 
1262  |  | 
  | 
1263  | 0  |     if (p == NULL)  | 
1264  | 0  |         return;  | 
1265  |  |  | 
1266  | 0  |     CRYPTO_DOWN_REF(&p->references, &i);  | 
1267  | 0  |     REF_PRINT_COUNT("EC_nistp224", p); | 
1268  | 0  |     if (i > 0)  | 
1269  | 0  |         return;  | 
1270  | 0  |     REF_ASSERT_ISNT(i < 0);  | 
1271  |  | 
  | 
1272  | 0  |     CRYPTO_FREE_REF(&p->references);  | 
1273  | 0  |     OPENSSL_free(p);  | 
1274  | 0  | }  | 
1275  |  |  | 
1276  |  | /******************************************************************************/  | 
1277  |  | /*  | 
1278  |  |  * OPENSSL EC_METHOD FUNCTIONS  | 
1279  |  |  */  | 
1280  |  |  | 
1281  |  | int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)  | 
1282  | 0  | { | 
1283  | 0  |     int ret;  | 
1284  | 0  |     ret = ossl_ec_GFp_simple_group_init(group);  | 
1285  | 0  |     group->a_is_minus3 = 1;  | 
1286  | 0  |     return ret;  | 
1287  | 0  | }  | 
1288  |  |  | 
1289  |  | int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,  | 
1290  |  |                                          const BIGNUM *a, const BIGNUM *b,  | 
1291  |  |                                          BN_CTX *ctx)  | 
1292  | 0  | { | 
1293  | 0  |     int ret = 0;  | 
1294  | 0  |     BIGNUM *curve_p, *curve_a, *curve_b;  | 
1295  | 0  | #ifndef FIPS_MODULE  | 
1296  | 0  |     BN_CTX *new_ctx = NULL;  | 
1297  |  | 
  | 
1298  | 0  |     if (ctx == NULL)  | 
1299  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
1300  | 0  | #endif  | 
1301  | 0  |     if (ctx == NULL)  | 
1302  | 0  |         return 0;  | 
1303  |  |  | 
1304  | 0  |     BN_CTX_start(ctx);  | 
1305  | 0  |     curve_p = BN_CTX_get(ctx);  | 
1306  | 0  |     curve_a = BN_CTX_get(ctx);  | 
1307  | 0  |     curve_b = BN_CTX_get(ctx);  | 
1308  | 0  |     if (curve_b == NULL)  | 
1309  | 0  |         goto err;  | 
1310  | 0  |     BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);  | 
1311  | 0  |     BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);  | 
1312  | 0  |     BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);  | 
1313  | 0  |     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { | 
1314  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);  | 
1315  | 0  |         goto err;  | 
1316  | 0  |     }  | 
1317  | 0  |     group->field_mod_func = BN_nist_mod_224;  | 
1318  | 0  |     ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);  | 
1319  | 0  |  err:  | 
1320  | 0  |     BN_CTX_end(ctx);  | 
1321  | 0  | #ifndef FIPS_MODULE  | 
1322  | 0  |     BN_CTX_free(new_ctx);  | 
1323  | 0  | #endif  | 
1324  | 0  |     return ret;  | 
1325  | 0  | }  | 
1326  |  |  | 
1327  |  | /*  | 
1328  |  |  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =  | 
1329  |  |  * (X/Z^2, Y/Z^3)  | 
1330  |  |  */  | 
1331  |  | int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,  | 
1332  |  |                                                       const EC_POINT *point,  | 
1333  |  |                                                       BIGNUM *x, BIGNUM *y,  | 
1334  |  |                                                       BN_CTX *ctx)  | 
1335  | 0  | { | 
1336  | 0  |     felem z1, z2, x_in, y_in, x_out, y_out;  | 
1337  | 0  |     widefelem tmp;  | 
1338  |  | 
  | 
1339  | 0  |     if (EC_POINT_is_at_infinity(group, point)) { | 
1340  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);  | 
1341  | 0  |         return 0;  | 
1342  | 0  |     }  | 
1343  | 0  |     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||  | 
1344  | 0  |         (!BN_to_felem(z1, point->Z)))  | 
1345  | 0  |         return 0;  | 
1346  | 0  |     felem_inv(z2, z1);  | 
1347  | 0  |     felem_square(tmp, z2);  | 
1348  | 0  |     felem_reduce(z1, tmp);  | 
1349  | 0  |     felem_mul(tmp, x_in, z1);  | 
1350  | 0  |     felem_reduce(x_in, tmp);  | 
1351  | 0  |     felem_contract(x_out, x_in);  | 
1352  | 0  |     if (x != NULL) { | 
1353  | 0  |         if (!felem_to_BN(x, x_out)) { | 
1354  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1355  | 0  |             return 0;  | 
1356  | 0  |         }  | 
1357  | 0  |     }  | 
1358  | 0  |     felem_mul(tmp, z1, z2);  | 
1359  | 0  |     felem_reduce(z1, tmp);  | 
1360  | 0  |     felem_mul(tmp, y_in, z1);  | 
1361  | 0  |     felem_reduce(y_in, tmp);  | 
1362  | 0  |     felem_contract(y_out, y_in);  | 
1363  | 0  |     if (y != NULL) { | 
1364  | 0  |         if (!felem_to_BN(y, y_out)) { | 
1365  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1366  | 0  |             return 0;  | 
1367  | 0  |         }  | 
1368  | 0  |     }  | 
1369  | 0  |     return 1;  | 
1370  | 0  | }  | 
1371  |  |  | 
1372  |  | static void make_points_affine(size_t num, felem points[ /* num */ ][3],  | 
1373  |  |                                felem tmp_felems[ /* num+1 */ ])  | 
1374  | 0  | { | 
1375  |  |     /*  | 
1376  |  |      * Runs in constant time, unless an input is the point at infinity (which  | 
1377  |  |      * normally shouldn't happen).  | 
1378  |  |      */  | 
1379  | 0  |     ossl_ec_GFp_nistp_points_make_affine_internal(num,  | 
1380  | 0  |                                                   points,  | 
1381  | 0  |                                                   sizeof(felem),  | 
1382  | 0  |                                                   tmp_felems,  | 
1383  | 0  |                                                   (void (*)(void *))felem_one,  | 
1384  | 0  |                                                   felem_is_zero_int,  | 
1385  | 0  |                                                   (void (*)(void *, const void *))  | 
1386  | 0  |                                                   felem_assign,  | 
1387  | 0  |                                                   (void (*)(void *, const void *))  | 
1388  | 0  |                                                   felem_square_reduce, (void (*)  | 
1389  | 0  |                                                                         (void *,  | 
1390  | 0  |                                                                          const void  | 
1391  | 0  |                                                                          *,  | 
1392  | 0  |                                                                          const void  | 
1393  | 0  |                                                                          *))  | 
1394  | 0  |                                                   felem_mul_reduce,  | 
1395  | 0  |                                                   (void (*)(void *, const void *))  | 
1396  | 0  |                                                   felem_inv,  | 
1397  | 0  |                                                   (void (*)(void *, const void *))  | 
1398  | 0  |                                                   felem_contract);  | 
1399  | 0  | }  | 
1400  |  |  | 
1401  |  | /*  | 
1402  |  |  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL  | 
1403  |  |  * values Result is stored in r (r can equal one of the inputs).  | 
1404  |  |  */  | 
1405  |  | int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,  | 
1406  |  |                                     const BIGNUM *scalar, size_t num,  | 
1407  |  |                                     const EC_POINT *points[],  | 
1408  |  |                                     const BIGNUM *scalars[], BN_CTX *ctx)  | 
1409  | 0  | { | 
1410  | 0  |     int ret = 0;  | 
1411  | 0  |     int j;  | 
1412  | 0  |     unsigned i;  | 
1413  | 0  |     int mixed = 0;  | 
1414  | 0  |     BIGNUM *x, *y, *z, *tmp_scalar;  | 
1415  | 0  |     felem_bytearray g_secret;  | 
1416  | 0  |     felem_bytearray *secrets = NULL;  | 
1417  | 0  |     felem (*pre_comp)[17][3] = NULL;  | 
1418  | 0  |     felem *tmp_felems = NULL;  | 
1419  | 0  |     int num_bytes;  | 
1420  | 0  |     int have_pre_comp = 0;  | 
1421  | 0  |     size_t num_points = num;  | 
1422  | 0  |     felem x_in, y_in, z_in, x_out, y_out, z_out;  | 
1423  | 0  |     NISTP224_PRE_COMP *pre = NULL;  | 
1424  | 0  |     const felem(*g_pre_comp)[16][3] = NULL;  | 
1425  | 0  |     EC_POINT *generator = NULL;  | 
1426  | 0  |     const EC_POINT *p = NULL;  | 
1427  | 0  |     const BIGNUM *p_scalar = NULL;  | 
1428  |  | 
  | 
1429  | 0  |     BN_CTX_start(ctx);  | 
1430  | 0  |     x = BN_CTX_get(ctx);  | 
1431  | 0  |     y = BN_CTX_get(ctx);  | 
1432  | 0  |     z = BN_CTX_get(ctx);  | 
1433  | 0  |     tmp_scalar = BN_CTX_get(ctx);  | 
1434  | 0  |     if (tmp_scalar == NULL)  | 
1435  | 0  |         goto err;  | 
1436  |  |  | 
1437  | 0  |     if (scalar != NULL) { | 
1438  | 0  |         pre = group->pre_comp.nistp224;  | 
1439  | 0  |         if (pre)  | 
1440  |  |             /* we have precomputation, try to use it */  | 
1441  | 0  |             g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;  | 
1442  | 0  |         else  | 
1443  |  |             /* try to use the standard precomputation */  | 
1444  | 0  |             g_pre_comp = &gmul[0];  | 
1445  | 0  |         generator = EC_POINT_new(group);  | 
1446  | 0  |         if (generator == NULL)  | 
1447  | 0  |             goto err;  | 
1448  |  |         /* get the generator from precomputation */  | 
1449  | 0  |         if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||  | 
1450  | 0  |             !felem_to_BN(y, g_pre_comp[0][1][1]) ||  | 
1451  | 0  |             !felem_to_BN(z, g_pre_comp[0][1][2])) { | 
1452  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1453  | 0  |             goto err;  | 
1454  | 0  |         }  | 
1455  | 0  |         if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,  | 
1456  | 0  |                                                                 generator,  | 
1457  | 0  |                                                                 x, y, z, ctx))  | 
1458  | 0  |             goto err;  | 
1459  | 0  |         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))  | 
1460  |  |             /* precomputation matches generator */  | 
1461  | 0  |             have_pre_comp = 1;  | 
1462  | 0  |         else  | 
1463  |  |             /*  | 
1464  |  |              * we don't have valid precomputation: treat the generator as a  | 
1465  |  |              * random point  | 
1466  |  |              */  | 
1467  | 0  |             num_points = num_points + 1;  | 
1468  | 0  |     }  | 
1469  |  |  | 
1470  | 0  |     if (num_points > 0) { | 
1471  | 0  |         if (num_points >= 3) { | 
1472  |  |             /*  | 
1473  |  |              * unless we precompute multiples for just one or two points,  | 
1474  |  |              * converting those into affine form is time well spent  | 
1475  |  |              */  | 
1476  | 0  |             mixed = 1;  | 
1477  | 0  |         }  | 
1478  | 0  |         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);  | 
1479  | 0  |         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);  | 
1480  | 0  |         if (mixed)  | 
1481  | 0  |             tmp_felems =  | 
1482  | 0  |                 OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));  | 
1483  | 0  |         if ((secrets == NULL) || (pre_comp == NULL)  | 
1484  | 0  |             || (mixed && (tmp_felems == NULL)))  | 
1485  | 0  |             goto err;  | 
1486  |  |  | 
1487  |  |         /*  | 
1488  |  |          * we treat NULL scalars as 0, and NULL points as points at infinity,  | 
1489  |  |          * i.e., they contribute nothing to the linear combination  | 
1490  |  |          */  | 
1491  | 0  |         for (i = 0; i < num_points; ++i) { | 
1492  | 0  |             if (i == num) { | 
1493  |  |                 /* the generator */  | 
1494  | 0  |                 p = EC_GROUP_get0_generator(group);  | 
1495  | 0  |                 p_scalar = scalar;  | 
1496  | 0  |             } else { | 
1497  |  |                 /* the i^th point */  | 
1498  | 0  |                 p = points[i];  | 
1499  | 0  |                 p_scalar = scalars[i];  | 
1500  | 0  |             }  | 
1501  | 0  |             if ((p_scalar != NULL) && (p != NULL)) { | 
1502  |  |                 /* reduce scalar to 0 <= scalar < 2^224 */  | 
1503  | 0  |                 if ((BN_num_bits(p_scalar) > 224)  | 
1504  | 0  |                     || (BN_is_negative(p_scalar))) { | 
1505  |  |                     /*  | 
1506  |  |                      * this is an unusual input, and we don't guarantee  | 
1507  |  |                      * constant-timeness  | 
1508  |  |                      */  | 
1509  | 0  |                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { | 
1510  | 0  |                         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1511  | 0  |                         goto err;  | 
1512  | 0  |                     }  | 
1513  | 0  |                     num_bytes = BN_bn2lebinpad(tmp_scalar,  | 
1514  | 0  |                                                secrets[i], sizeof(secrets[i]));  | 
1515  | 0  |                 } else { | 
1516  | 0  |                     num_bytes = BN_bn2lebinpad(p_scalar,  | 
1517  | 0  |                                                secrets[i], sizeof(secrets[i]));  | 
1518  | 0  |                 }  | 
1519  | 0  |                 if (num_bytes < 0) { | 
1520  | 0  |                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1521  | 0  |                     goto err;  | 
1522  | 0  |                 }  | 
1523  |  |                 /* precompute multiples */  | 
1524  | 0  |                 if ((!BN_to_felem(x_out, p->X)) ||  | 
1525  | 0  |                     (!BN_to_felem(y_out, p->Y)) ||  | 
1526  | 0  |                     (!BN_to_felem(z_out, p->Z)))  | 
1527  | 0  |                     goto err;  | 
1528  | 0  |                 felem_assign(pre_comp[i][1][0], x_out);  | 
1529  | 0  |                 felem_assign(pre_comp[i][1][1], y_out);  | 
1530  | 0  |                 felem_assign(pre_comp[i][1][2], z_out);  | 
1531  | 0  |                 for (j = 2; j <= 16; ++j) { | 
1532  | 0  |                     if (j & 1) { | 
1533  | 0  |                         point_add(pre_comp[i][j][0], pre_comp[i][j][1],  | 
1534  | 0  |                                   pre_comp[i][j][2], pre_comp[i][1][0],  | 
1535  | 0  |                                   pre_comp[i][1][1], pre_comp[i][1][2], 0,  | 
1536  | 0  |                                   pre_comp[i][j - 1][0],  | 
1537  | 0  |                                   pre_comp[i][j - 1][1],  | 
1538  | 0  |                                   pre_comp[i][j - 1][2]);  | 
1539  | 0  |                     } else { | 
1540  | 0  |                         point_double(pre_comp[i][j][0], pre_comp[i][j][1],  | 
1541  | 0  |                                      pre_comp[i][j][2], pre_comp[i][j / 2][0],  | 
1542  | 0  |                                      pre_comp[i][j / 2][1],  | 
1543  | 0  |                                      pre_comp[i][j / 2][2]);  | 
1544  | 0  |                     }  | 
1545  | 0  |                 }  | 
1546  | 0  |             }  | 
1547  | 0  |         }  | 
1548  | 0  |         if (mixed)  | 
1549  | 0  |             make_points_affine(num_points * 17, pre_comp[0], tmp_felems);  | 
1550  | 0  |     }  | 
1551  |  |  | 
1552  |  |     /* the scalar for the generator */  | 
1553  | 0  |     if ((scalar != NULL) && (have_pre_comp)) { | 
1554  | 0  |         memset(g_secret, 0, sizeof(g_secret));  | 
1555  |  |         /* reduce scalar to 0 <= scalar < 2^224 */  | 
1556  | 0  |         if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { | 
1557  |  |             /*  | 
1558  |  |              * this is an unusual input, and we don't guarantee  | 
1559  |  |              * constant-timeness  | 
1560  |  |              */  | 
1561  | 0  |             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
1562  | 0  |                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1563  | 0  |                 goto err;  | 
1564  | 0  |             }  | 
1565  | 0  |             num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));  | 
1566  | 0  |         } else { | 
1567  | 0  |             num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));  | 
1568  | 0  |         }  | 
1569  |  |         /* do the multiplication with generator precomputation */  | 
1570  | 0  |         batch_mul(x_out, y_out, z_out,  | 
1571  | 0  |                   (const felem_bytearray(*))secrets, num_points,  | 
1572  | 0  |                   g_secret,  | 
1573  | 0  |                   mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);  | 
1574  | 0  |     } else { | 
1575  |  |         /* do the multiplication without generator precomputation */  | 
1576  | 0  |         batch_mul(x_out, y_out, z_out,  | 
1577  | 0  |                   (const felem_bytearray(*))secrets, num_points,  | 
1578  | 0  |                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);  | 
1579  | 0  |     }  | 
1580  |  |     /* reduce the output to its unique minimal representation */  | 
1581  | 0  |     felem_contract(x_in, x_out);  | 
1582  | 0  |     felem_contract(y_in, y_out);  | 
1583  | 0  |     felem_contract(z_in, z_out);  | 
1584  | 0  |     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||  | 
1585  | 0  |         (!felem_to_BN(z, z_in))) { | 
1586  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1587  | 0  |         goto err;  | 
1588  | 0  |     }  | 
1589  | 0  |     ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,  | 
1590  | 0  |                                                              ctx);  | 
1591  |  | 
  | 
1592  | 0  |  err:  | 
1593  | 0  |     BN_CTX_end(ctx);  | 
1594  | 0  |     EC_POINT_free(generator);  | 
1595  | 0  |     OPENSSL_free(secrets);  | 
1596  | 0  |     OPENSSL_free(pre_comp);  | 
1597  | 0  |     OPENSSL_free(tmp_felems);  | 
1598  | 0  |     return ret;  | 
1599  | 0  | }  | 
1600  |  |  | 
1601  |  | int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)  | 
1602  | 0  | { | 
1603  | 0  |     int ret = 0;  | 
1604  | 0  |     NISTP224_PRE_COMP *pre = NULL;  | 
1605  | 0  |     int i, j;  | 
1606  | 0  |     BIGNUM *x, *y;  | 
1607  | 0  |     EC_POINT *generator = NULL;  | 
1608  | 0  |     felem tmp_felems[32];  | 
1609  | 0  | #ifndef FIPS_MODULE  | 
1610  | 0  |     BN_CTX *new_ctx = NULL;  | 
1611  | 0  | #endif  | 
1612  |  |  | 
1613  |  |     /* throw away old precomputation */  | 
1614  | 0  |     EC_pre_comp_free(group);  | 
1615  |  | 
  | 
1616  | 0  | #ifndef FIPS_MODULE  | 
1617  | 0  |     if (ctx == NULL)  | 
1618  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
1619  | 0  | #endif  | 
1620  | 0  |     if (ctx == NULL)  | 
1621  | 0  |         return 0;  | 
1622  |  |  | 
1623  | 0  |     BN_CTX_start(ctx);  | 
1624  | 0  |     x = BN_CTX_get(ctx);  | 
1625  | 0  |     y = BN_CTX_get(ctx);  | 
1626  | 0  |     if (y == NULL)  | 
1627  | 0  |         goto err;  | 
1628  |  |     /* get the generator */  | 
1629  | 0  |     if (group->generator == NULL)  | 
1630  | 0  |         goto err;  | 
1631  | 0  |     generator = EC_POINT_new(group);  | 
1632  | 0  |     if (generator == NULL)  | 
1633  | 0  |         goto err;  | 
1634  | 0  |     BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);  | 
1635  | 0  |     BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);  | 
1636  | 0  |     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))  | 
1637  | 0  |         goto err;  | 
1638  | 0  |     if ((pre = nistp224_pre_comp_new()) == NULL)  | 
1639  | 0  |         goto err;  | 
1640  |  |     /*  | 
1641  |  |      * if the generator is the standard one, use built-in precomputation  | 
1642  |  |      */  | 
1643  | 0  |     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | 
1644  | 0  |         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));  | 
1645  | 0  |         goto done;  | 
1646  | 0  |     }  | 
1647  | 0  |     if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||  | 
1648  | 0  |         (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||  | 
1649  | 0  |         (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))  | 
1650  | 0  |         goto err;  | 
1651  |  |     /*  | 
1652  |  |      * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,  | 
1653  |  |      * 2^140*G, 2^196*G for the second one  | 
1654  |  |      */  | 
1655  | 0  |     for (i = 1; i <= 8; i <<= 1) { | 
1656  | 0  |         point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],  | 
1657  | 0  |                      pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],  | 
1658  | 0  |                      pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);  | 
1659  | 0  |         for (j = 0; j < 27; ++j) { | 
1660  | 0  |             point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],  | 
1661  | 0  |                          pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],  | 
1662  | 0  |                          pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);  | 
1663  | 0  |         }  | 
1664  | 0  |         if (i == 8)  | 
1665  | 0  |             break;  | 
1666  | 0  |         point_double(pre->g_pre_comp[0][2 * i][0],  | 
1667  | 0  |                      pre->g_pre_comp[0][2 * i][1],  | 
1668  | 0  |                      pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],  | 
1669  | 0  |                      pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);  | 
1670  | 0  |         for (j = 0; j < 27; ++j) { | 
1671  | 0  |             point_double(pre->g_pre_comp[0][2 * i][0],  | 
1672  | 0  |                          pre->g_pre_comp[0][2 * i][1],  | 
1673  | 0  |                          pre->g_pre_comp[0][2 * i][2],  | 
1674  | 0  |                          pre->g_pre_comp[0][2 * i][0],  | 
1675  | 0  |                          pre->g_pre_comp[0][2 * i][1],  | 
1676  | 0  |                          pre->g_pre_comp[0][2 * i][2]);  | 
1677  | 0  |         }  | 
1678  | 0  |     }  | 
1679  | 0  |     for (i = 0; i < 2; i++) { | 
1680  |  |         /* g_pre_comp[i][0] is the point at infinity */  | 
1681  | 0  |         memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));  | 
1682  |  |         /* the remaining multiples */  | 
1683  |  |         /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */  | 
1684  | 0  |         point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],  | 
1685  | 0  |                   pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],  | 
1686  | 0  |                   pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],  | 
1687  | 0  |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],  | 
1688  | 0  |                   pre->g_pre_comp[i][2][2]);  | 
1689  |  |         /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */  | 
1690  | 0  |         point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],  | 
1691  | 0  |                   pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],  | 
1692  | 0  |                   pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],  | 
1693  | 0  |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],  | 
1694  | 0  |                   pre->g_pre_comp[i][2][2]);  | 
1695  |  |         /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */  | 
1696  | 0  |         point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],  | 
1697  | 0  |                   pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],  | 
1698  | 0  |                   pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],  | 
1699  | 0  |                   0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],  | 
1700  | 0  |                   pre->g_pre_comp[i][4][2]);  | 
1701  |  |         /*  | 
1702  |  |          * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G  | 
1703  |  |          */  | 
1704  | 0  |         point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],  | 
1705  | 0  |                   pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],  | 
1706  | 0  |                   pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],  | 
1707  | 0  |                   0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],  | 
1708  | 0  |                   pre->g_pre_comp[i][2][2]);  | 
1709  | 0  |         for (j = 1; j < 8; ++j) { | 
1710  |  |             /* odd multiples: add G resp. 2^28*G */  | 
1711  | 0  |             point_add(pre->g_pre_comp[i][2 * j + 1][0],  | 
1712  | 0  |                       pre->g_pre_comp[i][2 * j + 1][1],  | 
1713  | 0  |                       pre->g_pre_comp[i][2 * j + 1][2],  | 
1714  | 0  |                       pre->g_pre_comp[i][2 * j][0],  | 
1715  | 0  |                       pre->g_pre_comp[i][2 * j][1],  | 
1716  | 0  |                       pre->g_pre_comp[i][2 * j][2], 0,  | 
1717  | 0  |                       pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],  | 
1718  | 0  |                       pre->g_pre_comp[i][1][2]);  | 
1719  | 0  |         }  | 
1720  | 0  |     }  | 
1721  | 0  |     make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);  | 
1722  |  | 
  | 
1723  | 0  |  done:  | 
1724  | 0  |     SETPRECOMP(group, nistp224, pre);  | 
1725  | 0  |     pre = NULL;  | 
1726  | 0  |     ret = 1;  | 
1727  | 0  |  err:  | 
1728  | 0  |     BN_CTX_end(ctx);  | 
1729  | 0  |     EC_POINT_free(generator);  | 
1730  | 0  | #ifndef FIPS_MODULE  | 
1731  | 0  |     BN_CTX_free(new_ctx);  | 
1732  | 0  | #endif  | 
1733  | 0  |     EC_nistp224_pre_comp_free(pre);  | 
1734  | 0  |     return ret;  | 
1735  | 0  | }  | 
1736  |  |  | 
1737  |  | int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)  | 
1738  | 0  | { | 
1739  | 0  |     return HAVEPRECOMP(group, nistp224);  | 
1740  | 0  | }  |