/src/openssl/crypto/lhash/lhash.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <stdio.h>  | 
11  |  | #include <string.h>  | 
12  |  | #include <stdlib.h>  | 
13  |  | #include <openssl/crypto.h>  | 
14  |  | #include <openssl/lhash.h>  | 
15  |  | #include <openssl/err.h>  | 
16  |  | #include "crypto/ctype.h"  | 
17  |  | #include "crypto/lhash.h"  | 
18  |  | #include "lhash_local.h"  | 
19  |  |  | 
20  |  | /*  | 
21  |  |  * A hashing implementation that appears to be based on the linear hashing  | 
22  |  |  * algorithm:  | 
23  |  |  * https://en.wikipedia.org/wiki/Linear_hashing  | 
24  |  |  *  | 
25  |  |  * Litwin, Witold (1980), "Linear hashing: A new tool for file and table  | 
26  |  |  * addressing", Proc. 6th Conference on Very Large Databases: 212-223  | 
27  |  |  * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf  | 
28  |  |  *  | 
29  |  |  * From the Wikipedia article "Linear hashing is used in the BDB Berkeley  | 
30  |  |  * database system, which in turn is used by many software systems such as  | 
31  |  |  * OpenLDAP, using a C implementation derived from the CACM article and first  | 
32  |  |  * published on the Usenet in 1988 by Esmond Pitt."  | 
33  |  |  *  | 
34  |  |  * The CACM paper is available here:  | 
35  |  |  * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf  | 
36  |  |  */  | 
37  |  |  | 
38  |  | #undef MIN_NODES  | 
39  | 11.9k  | #define MIN_NODES       16  | 
40  | 2.70k  | #define UP_LOAD         (2*LH_LOAD_MULT) /* load times 256 (default 2) */  | 
41  | 2.70k  | #define DOWN_LOAD       (LH_LOAD_MULT) /* load times 256 (default 1) */  | 
42  |  |  | 
43  |  | static int expand(OPENSSL_LHASH *lh);  | 
44  |  | static void contract(OPENSSL_LHASH *lh);  | 
45  |  | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);  | 
46  |  |  | 
47  |  | OPENSSL_LHASH *OPENSSL_LH_set_thunks(OPENSSL_LHASH *lh,  | 
48  |  |                                      OPENSSL_LH_HASHFUNCTHUNK hw,  | 
49  |  |                                      OPENSSL_LH_COMPFUNCTHUNK cw,  | 
50  |  |                                      OPENSSL_LH_DOALL_FUNC_THUNK daw,  | 
51  |  |                                      OPENSSL_LH_DOALL_FUNCARG_THUNK daaw)  | 
52  | 2.70k  | { | 
53  |  |  | 
54  | 2.70k  |     if (lh == NULL)  | 
55  | 0  |         return NULL;  | 
56  | 2.70k  |     lh->compw = cw;  | 
57  | 2.70k  |     lh->hashw = hw;  | 
58  | 2.70k  |     lh->daw = daw;  | 
59  | 2.70k  |     lh->daaw = daaw;  | 
60  | 2.70k  |     return lh;  | 
61  | 2.70k  | }  | 
62  |  |  | 
63  |  | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)  | 
64  | 2.70k  | { | 
65  | 2.70k  |     OPENSSL_LHASH *ret;  | 
66  |  |  | 
67  | 2.70k  |     if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)  | 
68  | 0  |         return NULL;  | 
69  | 2.70k  |     if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)  | 
70  | 0  |         goto err;  | 
71  | 2.70k  |     ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);  | 
72  | 2.70k  |     ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);  | 
73  | 2.70k  |     ret->num_nodes = MIN_NODES / 2;  | 
74  | 2.70k  |     ret->num_alloc_nodes = MIN_NODES;  | 
75  | 2.70k  |     ret->pmax = MIN_NODES / 2;  | 
76  | 2.70k  |     ret->up_load = UP_LOAD;  | 
77  | 2.70k  |     ret->down_load = DOWN_LOAD;  | 
78  | 2.70k  |     return ret;  | 
79  |  |  | 
80  | 0  | err:  | 
81  | 0  |     OPENSSL_free(ret->b);  | 
82  | 0  |     OPENSSL_free(ret);  | 
83  | 0  |     return NULL;  | 
84  | 2.70k  | }  | 
85  |  |  | 
86  |  | void OPENSSL_LH_free(OPENSSL_LHASH *lh)  | 
87  | 2.72k  | { | 
88  | 2.72k  |     if (lh == NULL)  | 
89  | 16  |         return;  | 
90  |  |  | 
91  | 2.70k  |     OPENSSL_LH_flush(lh);  | 
92  | 2.70k  |     OPENSSL_free(lh->b);  | 
93  | 2.70k  |     OPENSSL_free(lh);  | 
94  | 2.70k  | }  | 
95  |  |  | 
96  |  | void OPENSSL_LH_flush(OPENSSL_LHASH *lh)  | 
97  | 2.70k  | { | 
98  | 2.70k  |     unsigned int i;  | 
99  | 2.70k  |     OPENSSL_LH_NODE *n, *nn;  | 
100  |  |  | 
101  | 2.70k  |     if (lh == NULL)  | 
102  | 0  |         return;  | 
103  |  |  | 
104  | 43.6k  |     for (i = 0; i < lh->num_nodes; i++) { | 
105  | 40.9k  |         n = lh->b[i];  | 
106  | 76.5k  |         while (n != NULL) { | 
107  | 35.6k  |             nn = n->next;  | 
108  | 35.6k  |             OPENSSL_free(n);  | 
109  | 35.6k  |             n = nn;  | 
110  | 35.6k  |         }  | 
111  | 40.9k  |         lh->b[i] = NULL;  | 
112  | 40.9k  |     }  | 
113  |  |  | 
114  | 2.70k  |     lh->num_items = 0;  | 
115  | 2.70k  | }  | 
116  |  |  | 
117  |  | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)  | 
118  | 88.4k  | { | 
119  | 88.4k  |     unsigned long hash;  | 
120  | 88.4k  |     OPENSSL_LH_NODE *nn, **rn;  | 
121  | 88.4k  |     void *ret;  | 
122  |  |  | 
123  | 88.4k  |     lh->error = 0;  | 
124  | 88.4k  |     if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))  | 
125  | 0  |         return NULL;        /* 'lh->error++' already done in 'expand' */  | 
126  |  |  | 
127  | 88.4k  |     rn = getrn(lh, data, &hash);  | 
128  |  |  | 
129  | 88.4k  |     if (*rn == NULL) { | 
130  | 39.5k  |         if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { | 
131  | 0  |             lh->error++;  | 
132  | 0  |             return NULL;  | 
133  | 0  |         }  | 
134  | 39.5k  |         nn->data = data;  | 
135  | 39.5k  |         nn->next = NULL;  | 
136  | 39.5k  |         nn->hash = hash;  | 
137  | 39.5k  |         *rn = nn;  | 
138  | 39.5k  |         ret = NULL;  | 
139  | 39.5k  |         lh->num_items++;  | 
140  | 48.8k  |     } else {                    /* replace same key */ | 
141  | 48.8k  |         ret = (*rn)->data;  | 
142  | 48.8k  |         (*rn)->data = data;  | 
143  | 48.8k  |     }  | 
144  | 88.4k  |     return ret;  | 
145  | 88.4k  | }  | 
146  |  |  | 
147  |  | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)  | 
148  | 3.87k  | { | 
149  | 3.87k  |     unsigned long hash;  | 
150  | 3.87k  |     OPENSSL_LH_NODE *nn, **rn;  | 
151  | 3.87k  |     void *ret;  | 
152  |  |  | 
153  | 3.87k  |     lh->error = 0;  | 
154  | 3.87k  |     rn = getrn(lh, data, &hash);  | 
155  |  |  | 
156  | 3.87k  |     if (*rn == NULL) { | 
157  | 0  |         return NULL;  | 
158  | 3.87k  |     } else { | 
159  | 3.87k  |         nn = *rn;  | 
160  | 3.87k  |         *rn = nn->next;  | 
161  | 3.87k  |         ret = nn->data;  | 
162  | 3.87k  |         OPENSSL_free(nn);  | 
163  | 3.87k  |     }  | 
164  |  |  | 
165  | 3.87k  |     lh->num_items--;  | 
166  | 3.87k  |     if ((lh->num_nodes > MIN_NODES) &&  | 
167  | 3.87k  |         (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))  | 
168  | 16  |         contract(lh);  | 
169  |  |  | 
170  | 3.87k  |     return ret;  | 
171  | 3.87k  | }  | 
172  |  |  | 
173  |  | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)  | 
174  | 306k  | { | 
175  | 306k  |     unsigned long hash;  | 
176  | 306k  |     OPENSSL_LH_NODE **rn;  | 
177  |  |  | 
178  | 306k  |     if (lh->error != 0)  | 
179  | 0  |         lh->error = 0;  | 
180  |  |  | 
181  | 306k  |     rn = getrn(lh, data, &hash);  | 
182  |  |  | 
183  | 306k  |     return *rn == NULL ? NULL : (*rn)->data;  | 
184  | 306k  | }  | 
185  |  |  | 
186  |  | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,  | 
187  |  |                           OPENSSL_LH_DOALL_FUNC_THUNK wfunc,  | 
188  |  |                           OPENSSL_LH_DOALL_FUNC func,  | 
189  |  |                           OPENSSL_LH_DOALL_FUNCARG func_arg,  | 
190  |  |                           OPENSSL_LH_DOALL_FUNCARG_THUNK wfunc_arg,  | 
191  |  |                           void *arg)  | 
192  | 5.28k  | { | 
193  | 5.28k  |     int i;  | 
194  | 5.28k  |     OPENSSL_LH_NODE *a, *n;  | 
195  |  |  | 
196  | 5.28k  |     if (lh == NULL)  | 
197  | 0  |         return;  | 
198  |  |  | 
199  |  |     /*  | 
200  |  |      * reverse the order so we search from 'top to bottom' We were having  | 
201  |  |      * memory leaks otherwise  | 
202  |  |      */  | 
203  | 449k  |     for (i = lh->num_nodes - 1; i >= 0; i--) { | 
204  | 444k  |         a = lh->b[i];  | 
205  | 1.28M  |         while (a != NULL) { | 
206  | 838k  |             n = a->next;  | 
207  | 838k  |             if (use_arg)  | 
208  | 822k  |                 wfunc_arg(a->data, arg, func_arg);  | 
209  | 15.2k  |             else  | 
210  | 15.2k  |                 wfunc(a->data, func);  | 
211  | 838k  |             a = n;  | 
212  | 838k  |         }  | 
213  | 444k  |     }  | 
214  | 5.28k  | }  | 
215  |  |  | 
216  |  | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)  | 
217  | 2.73k  | { | 
218  | 2.73k  |     if (lh == NULL)  | 
219  | 0  |         return;  | 
220  |  |  | 
221  | 2.73k  |     doall_util_fn(lh, 0, lh->daw, func, (OPENSSL_LH_DOALL_FUNCARG)NULL,  | 
222  | 2.73k  |                   (OPENSSL_LH_DOALL_FUNCARG_THUNK)NULL, NULL);  | 
223  | 2.73k  | }  | 
224  |  |  | 
225  |  | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh,  | 
226  |  |                           OPENSSL_LH_DOALL_FUNCARG func, void *arg)  | 
227  | 0  | { | 
228  | 0  |     if (lh == NULL)  | 
229  | 0  |         return;  | 
230  |  |  | 
231  | 0  |     doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC_THUNK)NULL,  | 
232  | 0  |                   (OPENSSL_LH_DOALL_FUNC)NULL, func, lh->daaw, arg);  | 
233  | 0  | }  | 
234  |  |  | 
235  |  | void OPENSSL_LH_doall_arg_thunk(OPENSSL_LHASH *lh,  | 
236  |  |                                 OPENSSL_LH_DOALL_FUNCARG_THUNK daaw,  | 
237  |  |                                 OPENSSL_LH_DOALL_FUNCARG fn, void *arg)  | 
238  | 2.54k  | { | 
239  | 2.54k  |     doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC_THUNK)NULL,  | 
240  | 2.54k  |                   (OPENSSL_LH_DOALL_FUNC)NULL, fn, daaw, arg);  | 
241  | 2.54k  | }  | 
242  |  |  | 
243  |  | static int expand(OPENSSL_LHASH *lh)  | 
244  | 19.2k  | { | 
245  | 19.2k  |     OPENSSL_LH_NODE **n, **n1, **n2, *np;  | 
246  | 19.2k  |     unsigned int p, pmax, nni, j;  | 
247  | 19.2k  |     unsigned long hash;  | 
248  |  |  | 
249  | 19.2k  |     nni = lh->num_alloc_nodes;  | 
250  | 19.2k  |     p = lh->p;  | 
251  | 19.2k  |     pmax = lh->pmax;  | 
252  | 19.2k  |     if (p + 1 >= pmax) { | 
253  | 208  |         j = nni * 2;  | 
254  | 208  |         n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);  | 
255  | 208  |         if (n == NULL) { | 
256  | 0  |             lh->error++;  | 
257  | 0  |             return 0;  | 
258  | 0  |         }  | 
259  | 208  |         lh->b = n;  | 
260  | 208  |         memset(n + nni, 0, sizeof(*n) * (j - nni));  | 
261  | 208  |         lh->pmax = nni;  | 
262  | 208  |         lh->num_alloc_nodes = j;  | 
263  | 208  |         lh->p = 0;  | 
264  | 19.0k  |     } else { | 
265  | 19.0k  |         lh->p++;  | 
266  | 19.0k  |     }  | 
267  |  |  | 
268  | 19.2k  |     lh->num_nodes++;  | 
269  | 19.2k  |     n1 = &(lh->b[p]);  | 
270  | 19.2k  |     n2 = &(lh->b[p + pmax]);  | 
271  | 19.2k  |     *n2 = NULL;  | 
272  |  |  | 
273  | 78.6k  |     for (np = *n1; np != NULL;) { | 
274  | 59.3k  |         hash = np->hash;  | 
275  | 59.3k  |         if ((hash % nni) != p) { /* move it */ | 
276  | 13.1k  |             *n1 = (*n1)->next;  | 
277  | 13.1k  |             np->next = *n2;  | 
278  | 13.1k  |             *n2 = np;  | 
279  | 13.1k  |         } else  | 
280  | 46.1k  |             n1 = &((*n1)->next);  | 
281  | 59.3k  |         np = *n1;  | 
282  | 59.3k  |     }  | 
283  |  |  | 
284  | 19.2k  |     return 1;  | 
285  | 19.2k  | }  | 
286  |  |  | 
287  |  | static void contract(OPENSSL_LHASH *lh)  | 
288  | 16  | { | 
289  | 16  |     OPENSSL_LH_NODE **n, *n1, *np;  | 
290  |  |  | 
291  | 16  |     np = lh->b[lh->p + lh->pmax - 1];  | 
292  | 16  |     lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */  | 
293  | 16  |     if (lh->p == 0) { | 
294  | 0  |         n = OPENSSL_realloc(lh->b,  | 
295  | 0  |                             (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));  | 
296  | 0  |         if (n == NULL) { | 
297  |  |             /* fputs("realloc error in lhash", stderr); */ | 
298  | 0  |             lh->error++;  | 
299  | 0  |         } else { | 
300  | 0  |             lh->b = n;  | 
301  | 0  |         }  | 
302  | 0  |         lh->num_alloc_nodes /= 2;  | 
303  | 0  |         lh->pmax /= 2;  | 
304  | 0  |         lh->p = lh->pmax - 1;  | 
305  | 0  |     } else  | 
306  | 16  |         lh->p--;  | 
307  |  |  | 
308  | 16  |     lh->num_nodes--;  | 
309  |  |  | 
310  | 16  |     n1 = lh->b[(int)lh->p];  | 
311  | 16  |     if (n1 == NULL)  | 
312  | 16  |         lh->b[(int)lh->p] = np;  | 
313  | 0  |     else { | 
314  | 0  |         while (n1->next != NULL)  | 
315  | 0  |             n1 = n1->next;  | 
316  | 0  |         n1->next = np;  | 
317  | 0  |     }  | 
318  | 16  | }  | 
319  |  |  | 
320  |  | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,  | 
321  |  |                                const void *data, unsigned long *rhash)  | 
322  | 398k  | { | 
323  | 398k  |     OPENSSL_LH_NODE **ret, *n1;  | 
324  | 398k  |     unsigned long hash, nn;  | 
325  |  |  | 
326  | 398k  |     if (lh->hashw != NULL)  | 
327  | 398k  |         hash = lh->hashw(data, lh->hash);  | 
328  | 0  |     else  | 
329  | 0  |         hash = lh->hash(data);  | 
330  |  |  | 
331  | 398k  |     *rhash = hash;  | 
332  |  |  | 
333  | 398k  |     nn = hash % lh->pmax;  | 
334  | 398k  |     if (nn < lh->p)  | 
335  | 217k  |         nn = hash % lh->num_alloc_nodes;  | 
336  |  |  | 
337  | 398k  |     ret = &(lh->b[(int)nn]);  | 
338  | 670k  |     for (n1 = *ret; n1 != NULL; n1 = n1->next) { | 
339  | 602k  |         if (n1->hash != hash) { | 
340  | 265k  |             ret = &(n1->next);  | 
341  | 265k  |             continue;  | 
342  | 265k  |         }  | 
343  |  |  | 
344  | 337k  |         if (lh->compw != NULL) { | 
345  | 337k  |             if (lh->compw(n1->data, data, lh->comp) == 0)  | 
346  | 330k  |                 break;  | 
347  | 337k  |         } else { | 
348  | 0  |             if (lh->comp(n1->data, data) == 0)  | 
349  | 0  |                 break;  | 
350  | 0  |         }  | 
351  | 6.35k  |         ret = &(n1->next);  | 
352  | 6.35k  |     }  | 
353  | 398k  |     return ret;  | 
354  | 398k  | }  | 
355  |  |  | 
356  |  | /*  | 
357  |  |  * The following hash seems to work very well on normal text strings no  | 
358  |  |  * collisions on /usr/dict/words and it distributes on %2^n quite well, not  | 
359  |  |  * as good as MD5, but still good.  | 
360  |  |  */  | 
361  |  | unsigned long OPENSSL_LH_strhash(const char *c)  | 
362  | 85.4k  | { | 
363  | 85.4k  |     unsigned long ret = 0;  | 
364  | 85.4k  |     long n;  | 
365  | 85.4k  |     unsigned long v;  | 
366  | 85.4k  |     int r;  | 
367  |  |  | 
368  | 85.4k  |     if ((c == NULL) || (*c == '\0'))  | 
369  | 82.3k  |         return ret;  | 
370  |  |  | 
371  | 3.10k  |     n = 0x100;  | 
372  | 47.8k  |     while (*c) { | 
373  | 44.7k  |         v = n | (*c);  | 
374  | 44.7k  |         n += 0x100;  | 
375  | 44.7k  |         r = (int)((v >> 2) ^ v) & 0x0f;  | 
376  |  |         /* cast to uint64_t to avoid 32 bit shift of 32 bit value */  | 
377  | 44.7k  |         ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));  | 
378  | 44.7k  |         ret &= 0xFFFFFFFFL;  | 
379  | 44.7k  |         ret ^= v * v;  | 
380  | 44.7k  |         c++;  | 
381  | 44.7k  |     }  | 
382  | 3.10k  |     return (ret >> 16) ^ ret;  | 
383  | 85.4k  | }  | 
384  |  |  | 
385  |  | /*  | 
386  |  |  * Case insensitive string hashing.  | 
387  |  |  *  | 
388  |  |  * The lower/upper case bit is masked out (forcing all letters to be capitals).  | 
389  |  |  * The major side effect on non-alpha characters is mapping the symbols and  | 
390  |  |  * digits into the control character range (which should be harmless).  | 
391  |  |  * The duplication (with respect to the hash value) of printable characters  | 
392  |  |  * are that '`', '{', '|', '}' and '~' map to '@', '[', '\', ']' and '^' | 
393  |  |  * respectively (which seems tolerable).  | 
394  |  |  *  | 
395  |  |  * For EBCDIC, the alpha mapping is to lower case, most symbols go to control  | 
396  |  |  * characters.  The only duplication is '0' mapping to '^', which is better  | 
397  |  |  * than for ASCII.  | 
398  |  |  */  | 
399  |  | unsigned long ossl_lh_strcasehash(const char *c)  | 
400  | 133k  | { | 
401  | 133k  |     unsigned long ret = 0;  | 
402  | 133k  |     long n;  | 
403  | 133k  |     unsigned long v;  | 
404  | 133k  |     int r;  | 
405  |  | #if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST)  | 
406  |  |     const long int case_adjust = ~0x40;  | 
407  |  | #else  | 
408  | 133k  |     const long int case_adjust = ~0x20;  | 
409  | 133k  | #endif  | 
410  |  |  | 
411  | 133k  |     if (c == NULL || *c == '\0')  | 
412  | 0  |         return ret;  | 
413  |  |  | 
414  | 1.25M  |     for (n = 0x100; *c != '\0'; n += 0x100) { | 
415  | 1.11M  |         v = n | (case_adjust & *c);  | 
416  | 1.11M  |         r = (int)((v >> 2) ^ v) & 0x0f;  | 
417  |  |         /* cast to uint64_t to avoid 32 bit shift of 32 bit value */  | 
418  | 1.11M  |         ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));  | 
419  | 1.11M  |         ret &= 0xFFFFFFFFL;  | 
420  | 1.11M  |         ret ^= v * v;  | 
421  | 1.11M  |         c++;  | 
422  | 1.11M  |     }  | 
423  | 133k  |     return (ret >> 16) ^ ret;  | 
424  | 133k  | }  | 
425  |  |  | 
426  |  | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)  | 
427  | 2.51k  | { | 
428  | 2.51k  |     return lh ? lh->num_items : 0;  | 
429  | 2.51k  | }  | 
430  |  |  | 
431  |  | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)  | 
432  | 64  | { | 
433  | 64  |     return lh->down_load;  | 
434  | 64  | }  | 
435  |  |  | 
436  |  | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)  | 
437  | 112  | { | 
438  | 112  |     lh->down_load = down_load;  | 
439  | 112  | }  | 
440  |  |  | 
441  |  | int OPENSSL_LH_error(OPENSSL_LHASH *lh)  | 
442  | 10.4k  | { | 
443  | 10.4k  |     return lh->error;  | 
444  | 10.4k  | }  |