/src/openssl/crypto/threads_pthread.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* We need to use the OPENSSL_fork_*() deprecated APIs */ |
11 | | #define OPENSSL_SUPPRESS_DEPRECATED |
12 | | |
13 | | #include <openssl/crypto.h> |
14 | | #include <crypto/cryptlib.h> |
15 | | #include "internal/cryptlib.h" |
16 | | #include "internal/rcu.h" |
17 | | #include "rcu_internal.h" |
18 | | |
19 | | #if defined(__sun) |
20 | | # include <atomic.h> |
21 | | #endif |
22 | | |
23 | | #if defined(__apple_build_version__) && __apple_build_version__ < 6000000 |
24 | | /* |
25 | | * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and |
26 | | * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free() |
27 | | * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))). |
28 | | * All of this makes impossible to use __atomic_is_lock_free here. |
29 | | * |
30 | | * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760 |
31 | | */ |
32 | | #define BROKEN_CLANG_ATOMICS |
33 | | #endif |
34 | | |
35 | | #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS) |
36 | | |
37 | | # if defined(OPENSSL_SYS_UNIX) |
38 | | # include <sys/types.h> |
39 | | # include <unistd.h> |
40 | | #endif |
41 | | |
42 | | # include <assert.h> |
43 | | |
44 | | # ifdef PTHREAD_RWLOCK_INITIALIZER |
45 | | # define USE_RWLOCK |
46 | | # endif |
47 | | |
48 | | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) |
49 | 80 | # define ATOMIC_LOAD_N(p,o) __atomic_load_n(p, o) |
50 | 48 | # define ATOMIC_STORE_N(p, v, o) __atomic_store_n(p, v, o) |
51 | 32 | # define ATOMIC_STORE(p, v, o) __atomic_store(p, v, o) |
52 | 48 | # define ATOMIC_EXCHANGE_N(p, v, o) __atomic_exchange_n(p, v, o) |
53 | 0 | # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o) |
54 | | # define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o) |
55 | 0 | # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o) |
56 | 48 | # define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o) |
57 | 48 | # define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o) |
58 | | #else |
59 | | static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER; |
60 | | |
61 | | static inline void *fallback_atomic_load_n(void **p) |
62 | | { |
63 | | void *ret; |
64 | | |
65 | | pthread_mutex_lock(&atomic_sim_lock); |
66 | | ret = *(void **)p; |
67 | | pthread_mutex_unlock(&atomic_sim_lock); |
68 | | return ret; |
69 | | } |
70 | | |
71 | | # define ATOMIC_LOAD_N(p, o) fallback_atomic_load_n((void **)p) |
72 | | |
73 | | static inline void *fallback_atomic_store_n(void **p, void *v) |
74 | | { |
75 | | void *ret; |
76 | | |
77 | | pthread_mutex_lock(&atomic_sim_lock); |
78 | | ret = *p; |
79 | | *p = v; |
80 | | pthread_mutex_unlock(&atomic_sim_lock); |
81 | | return ret; |
82 | | } |
83 | | |
84 | | # define ATOMIC_STORE_N(p, v, o) fallback_atomic_store_n((void **)p, (void *)v) |
85 | | |
86 | | static inline void fallback_atomic_store(void **p, void **v) |
87 | | { |
88 | | void *ret; |
89 | | |
90 | | pthread_mutex_lock(&atomic_sim_lock); |
91 | | ret = *p; |
92 | | *p = *v; |
93 | | v = ret; |
94 | | pthread_mutex_unlock(&atomic_sim_lock); |
95 | | } |
96 | | |
97 | | # define ATOMIC_STORE(p, v, o) fallback_atomic_store((void **)p, (void **)v) |
98 | | |
99 | | static inline void *fallback_atomic_exchange_n(void **p, void *v) |
100 | | { |
101 | | void *ret; |
102 | | |
103 | | pthread_mutex_lock(&atomic_sim_lock); |
104 | | ret = *p; |
105 | | *p = v; |
106 | | pthread_mutex_unlock(&atomic_sim_lock); |
107 | | return ret; |
108 | | } |
109 | | |
110 | | #define ATOMIC_EXCHANGE_N(p, v, o) fallback_atomic_exchange_n((void **)p, (void *)v) |
111 | | |
112 | | static inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v) |
113 | | { |
114 | | uint64_t ret; |
115 | | |
116 | | pthread_mutex_lock(&atomic_sim_lock); |
117 | | *p += v; |
118 | | ret = *p; |
119 | | pthread_mutex_unlock(&atomic_sim_lock); |
120 | | return ret; |
121 | | } |
122 | | |
123 | | # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v) |
124 | | |
125 | | static inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v) |
126 | | { |
127 | | uint64_t ret; |
128 | | |
129 | | pthread_mutex_lock(&atomic_sim_lock); |
130 | | ret = *p; |
131 | | *p += v; |
132 | | pthread_mutex_unlock(&atomic_sim_lock); |
133 | | return ret; |
134 | | } |
135 | | |
136 | | # define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v) |
137 | | |
138 | | static inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v) |
139 | | { |
140 | | uint64_t ret; |
141 | | |
142 | | pthread_mutex_lock(&atomic_sim_lock); |
143 | | *p -= v; |
144 | | ret = *p; |
145 | | pthread_mutex_unlock(&atomic_sim_lock); |
146 | | return ret; |
147 | | } |
148 | | |
149 | | # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v) |
150 | | |
151 | | static inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m) |
152 | | { |
153 | | uint64_t ret; |
154 | | |
155 | | pthread_mutex_lock(&atomic_sim_lock); |
156 | | *p &= m; |
157 | | ret = *p; |
158 | | pthread_mutex_unlock(&atomic_sim_lock); |
159 | | return ret; |
160 | | } |
161 | | |
162 | | # define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v) |
163 | | |
164 | | static inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m) |
165 | | { |
166 | | uint64_t ret; |
167 | | |
168 | | pthread_mutex_lock(&atomic_sim_lock); |
169 | | *p |= m; |
170 | | ret = *p; |
171 | | pthread_mutex_unlock(&atomic_sim_lock); |
172 | | return ret; |
173 | | } |
174 | | |
175 | | # define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v) |
176 | | #endif |
177 | | |
178 | | static CRYPTO_THREAD_LOCAL rcu_thr_key; |
179 | | |
180 | | /* |
181 | | * users is broken up into 2 parts |
182 | | * bits 0-15 current readers |
183 | | * bit 32-63 - ID |
184 | | */ |
185 | 48 | # define READER_SHIFT 0 |
186 | 96 | # define ID_SHIFT 32 |
187 | 48 | # define READER_SIZE 16 |
188 | 48 | # define ID_SIZE 32 |
189 | | |
190 | 48 | # define READER_MASK (((uint64_t)1 << READER_SIZE) - 1) |
191 | 48 | # define ID_MASK (((uint64_t)1 << ID_SIZE) - 1) |
192 | 48 | # define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK) |
193 | 48 | # define ID_VAL(x) (((uint64_t)(x) >> ID_SHIFT) & ID_MASK) |
194 | | # define VAL_READER ((uint64_t)1 << READER_SHIFT) |
195 | 48 | # define VAL_ID(x) ((uint64_t)x << ID_SHIFT) |
196 | | |
197 | | /* |
198 | | * This is the core of an rcu lock. It tracks the readers and writers for the |
199 | | * current quiescence point for a given lock. Users is the 64 bit value that |
200 | | * stores the READERS/ID as defined above |
201 | | * |
202 | | */ |
203 | | struct rcu_qp { |
204 | | uint64_t users; |
205 | | }; |
206 | | |
207 | | struct thread_qp { |
208 | | struct rcu_qp *qp; |
209 | | unsigned int depth; |
210 | | CRYPTO_RCU_LOCK *lock; |
211 | | }; |
212 | | |
213 | 0 | #define MAX_QPS 10 |
214 | | /* |
215 | | * This is the per thread tracking data |
216 | | * that is assigned to each thread participating |
217 | | * in an rcu qp |
218 | | * |
219 | | * qp points to the qp that it last acquired |
220 | | * |
221 | | */ |
222 | | struct rcu_thr_data { |
223 | | struct thread_qp thread_qps[MAX_QPS]; |
224 | | }; |
225 | | |
226 | | /* |
227 | | * This is the internal version of a CRYPTO_RCU_LOCK |
228 | | * it is cast from CRYPTO_RCU_LOCK |
229 | | */ |
230 | | struct rcu_lock_st { |
231 | | /* Callbacks to call for next ossl_synchronize_rcu */ |
232 | | struct rcu_cb_item *cb_items; |
233 | | |
234 | | /* rcu generation counter for in-order retirement */ |
235 | | uint32_t id_ctr; |
236 | | |
237 | | /* Array of quiescent points for synchronization */ |
238 | | struct rcu_qp *qp_group; |
239 | | |
240 | | /* Number of elements in qp_group array */ |
241 | | size_t group_count; |
242 | | |
243 | | /* Index of the current qp in the qp_group array */ |
244 | | uint64_t reader_idx; |
245 | | |
246 | | /* value of the next id_ctr value to be retired */ |
247 | | uint32_t next_to_retire; |
248 | | |
249 | | /* index of the next free rcu_qp in the qp_group */ |
250 | | uint64_t current_alloc_idx; |
251 | | |
252 | | /* number of qp's in qp_group array currently being retired */ |
253 | | uint32_t writers_alloced; |
254 | | |
255 | | /* lock protecting write side operations */ |
256 | | pthread_mutex_t write_lock; |
257 | | |
258 | | /* lock protecting updates to writers_alloced/current_alloc_idx */ |
259 | | pthread_mutex_t alloc_lock; |
260 | | |
261 | | /* signal to wake threads waiting on alloc_lock */ |
262 | | pthread_cond_t alloc_signal; |
263 | | |
264 | | /* lock to enforce in-order retirement */ |
265 | | pthread_mutex_t prior_lock; |
266 | | |
267 | | /* signal to wake threads waiting on prior_lock */ |
268 | | pthread_cond_t prior_signal; |
269 | | }; |
270 | | |
271 | | /* |
272 | | * Called on thread exit to free the pthread key |
273 | | * associated with this thread, if any |
274 | | */ |
275 | | static void free_rcu_thr_data(void *ptr) |
276 | 0 | { |
277 | 0 | struct rcu_thr_data *data = |
278 | 0 | (struct rcu_thr_data *)CRYPTO_THREAD_get_local(&rcu_thr_key); |
279 | |
|
280 | 0 | OPENSSL_free(data); |
281 | 0 | CRYPTO_THREAD_set_local(&rcu_thr_key, NULL); |
282 | 0 | } |
283 | | |
284 | | static void ossl_rcu_init(void) |
285 | 16 | { |
286 | 16 | CRYPTO_THREAD_init_local(&rcu_thr_key, NULL); |
287 | 16 | } |
288 | | |
289 | | /* Read side acquisition of the current qp */ |
290 | | static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock) |
291 | 0 | { |
292 | 0 | uint64_t qp_idx; |
293 | | |
294 | | /* get the current qp index */ |
295 | 0 | for (;;) { |
296 | | /* |
297 | | * Notes on use of __ATOMIC_ACQUIRE |
298 | | * We need to ensure the following: |
299 | | * 1) That subsequent operations aren't optimized by hoisting them above |
300 | | * this operation. Specifically, we don't want the below re-load of |
301 | | * qp_idx to get optimized away |
302 | | * 2) We want to ensure that any updating of reader_idx on the write side |
303 | | * of the lock is flushed from a local cpu cache so that we see any |
304 | | * updates prior to the load. This is a non-issue on cache coherent |
305 | | * systems like x86, but is relevant on other arches |
306 | | * Note: This applies to the reload below as well |
307 | | */ |
308 | 0 | qp_idx = (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE); |
309 | | |
310 | | /* |
311 | | * Notes of use of __ATOMIC_RELEASE |
312 | | * This counter is only read by the write side of the lock, and so we |
313 | | * specify __ATOMIC_RELEASE here to ensure that the write side of the |
314 | | * lock see this during the spin loop read of users, as it waits for the |
315 | | * reader count to approach zero |
316 | | */ |
317 | 0 | ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER, |
318 | 0 | __ATOMIC_RELEASE); |
319 | | |
320 | | /* if the idx hasn't changed, we're good, else try again */ |
321 | 0 | if (qp_idx == (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE)) |
322 | 0 | break; |
323 | | |
324 | | /* |
325 | | * Notes on use of __ATOMIC_RELEASE |
326 | | * As with the add above, we want to ensure that this decrement is |
327 | | * seen by the write side of the lock as soon as it happens to prevent |
328 | | * undue spinning waiting for write side completion |
329 | | */ |
330 | 0 | ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER, |
331 | 0 | __ATOMIC_RELEASE); |
332 | 0 | } |
333 | |
|
334 | 0 | return &lock->qp_group[qp_idx]; |
335 | 0 | } |
336 | | |
337 | | void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock) |
338 | 0 | { |
339 | 0 | struct rcu_thr_data *data; |
340 | 0 | int i, available_qp = -1; |
341 | | |
342 | | /* |
343 | | * we're going to access current_qp here so ask the |
344 | | * processor to fetch it |
345 | | */ |
346 | 0 | data = CRYPTO_THREAD_get_local(&rcu_thr_key); |
347 | |
|
348 | 0 | if (data == NULL) { |
349 | 0 | data = OPENSSL_zalloc(sizeof(*data)); |
350 | 0 | OPENSSL_assert(data != NULL); |
351 | 0 | CRYPTO_THREAD_set_local(&rcu_thr_key, data); |
352 | 0 | ossl_init_thread_start(NULL, NULL, free_rcu_thr_data); |
353 | 0 | } |
354 | |
|
355 | 0 | for (i = 0; i < MAX_QPS; i++) { |
356 | 0 | if (data->thread_qps[i].qp == NULL && available_qp == -1) |
357 | 0 | available_qp = i; |
358 | | /* If we have a hold on this lock already, we're good */ |
359 | 0 | if (data->thread_qps[i].lock == lock) { |
360 | 0 | data->thread_qps[i].depth++; |
361 | 0 | return; |
362 | 0 | } |
363 | 0 | } |
364 | | |
365 | | /* |
366 | | * if we get here, then we don't have a hold on this lock yet |
367 | | */ |
368 | 0 | assert(available_qp != -1); |
369 | |
|
370 | 0 | data->thread_qps[available_qp].qp = get_hold_current_qp(lock); |
371 | 0 | data->thread_qps[available_qp].depth = 1; |
372 | 0 | data->thread_qps[available_qp].lock = lock; |
373 | 0 | } |
374 | | |
375 | | void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock) |
376 | 0 | { |
377 | 0 | int i; |
378 | 0 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local(&rcu_thr_key); |
379 | 0 | uint64_t ret; |
380 | |
|
381 | 0 | assert(data != NULL); |
382 | |
|
383 | 0 | for (i = 0; i < MAX_QPS; i++) { |
384 | 0 | if (data->thread_qps[i].lock == lock) { |
385 | | /* |
386 | | * As with read side acquisition, we use __ATOMIC_RELEASE here |
387 | | * to ensure that the decrement is published immediately |
388 | | * to any write side waiters |
389 | | */ |
390 | 0 | data->thread_qps[i].depth--; |
391 | 0 | if (data->thread_qps[i].depth == 0) { |
392 | 0 | ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER, |
393 | 0 | __ATOMIC_RELEASE); |
394 | 0 | OPENSSL_assert(ret != UINT64_MAX); |
395 | 0 | data->thread_qps[i].qp = NULL; |
396 | 0 | data->thread_qps[i].lock = NULL; |
397 | 0 | } |
398 | 0 | return; |
399 | 0 | } |
400 | 0 | } |
401 | | /* |
402 | | * If we get here, we're trying to unlock a lock that we never acquired - |
403 | | * that's fatal. |
404 | | */ |
405 | 0 | assert(0); |
406 | 0 | } |
407 | | |
408 | | /* |
409 | | * Write side allocation routine to get the current qp |
410 | | * and replace it with a new one |
411 | | */ |
412 | | static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock) |
413 | 48 | { |
414 | 48 | uint64_t new_id; |
415 | 48 | uint64_t current_idx; |
416 | | |
417 | 48 | pthread_mutex_lock(&lock->alloc_lock); |
418 | | |
419 | | /* |
420 | | * we need at least one qp to be available with one |
421 | | * left over, so that readers can start working on |
422 | | * one that isn't yet being waited on |
423 | | */ |
424 | 48 | while (lock->group_count - lock->writers_alloced < 2) |
425 | | /* we have to wait for one to be free */ |
426 | 0 | pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock); |
427 | | |
428 | 48 | current_idx = lock->current_alloc_idx; |
429 | | |
430 | | /* Allocate the qp */ |
431 | 48 | lock->writers_alloced++; |
432 | | |
433 | | /* increment the allocation index */ |
434 | 48 | lock->current_alloc_idx = |
435 | 48 | (lock->current_alloc_idx + 1) % lock->group_count; |
436 | | |
437 | | /* get and insert a new id */ |
438 | 48 | new_id = lock->id_ctr; |
439 | 48 | lock->id_ctr++; |
440 | | |
441 | 48 | new_id = VAL_ID(new_id); |
442 | | /* |
443 | | * Even though we are under a write side lock here |
444 | | * We need to use atomic instructions to ensure that the results |
445 | | * of this update are published to the read side prior to updating the |
446 | | * reader idx below |
447 | | */ |
448 | 48 | ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK, |
449 | 48 | __ATOMIC_RELEASE); |
450 | 48 | ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id, |
451 | 48 | __ATOMIC_RELEASE); |
452 | | |
453 | | /* |
454 | | * Update the reader index to be the prior qp. |
455 | | * Note the use of __ATOMIC_RELEASE here is based on the corresponding use |
456 | | * of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication |
457 | | * of this value to be seen on the read side immediately after it happens |
458 | | */ |
459 | 48 | ATOMIC_STORE_N(&lock->reader_idx, lock->current_alloc_idx, |
460 | 48 | __ATOMIC_RELEASE); |
461 | | |
462 | | /* wake up any waiters */ |
463 | 48 | pthread_cond_signal(&lock->alloc_signal); |
464 | 48 | pthread_mutex_unlock(&lock->alloc_lock); |
465 | 48 | return &lock->qp_group[current_idx]; |
466 | 48 | } |
467 | | |
468 | | static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp) |
469 | 48 | { |
470 | 48 | pthread_mutex_lock(&lock->alloc_lock); |
471 | 48 | lock->writers_alloced--; |
472 | 48 | pthread_cond_signal(&lock->alloc_signal); |
473 | 48 | pthread_mutex_unlock(&lock->alloc_lock); |
474 | 48 | } |
475 | | |
476 | | static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock, |
477 | | int count) |
478 | 16 | { |
479 | 16 | struct rcu_qp *new = |
480 | 16 | OPENSSL_zalloc(sizeof(*new) * count); |
481 | | |
482 | 16 | lock->group_count = count; |
483 | 16 | return new; |
484 | 16 | } |
485 | | |
486 | | void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock) |
487 | 32 | { |
488 | 32 | pthread_mutex_lock(&lock->write_lock); |
489 | 32 | } |
490 | | |
491 | | void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock) |
492 | 32 | { |
493 | 32 | pthread_mutex_unlock(&lock->write_lock); |
494 | 32 | } |
495 | | |
496 | | void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock) |
497 | 48 | { |
498 | 48 | struct rcu_qp *qp; |
499 | 48 | uint64_t count; |
500 | 48 | struct rcu_cb_item *cb_items, *tmpcb; |
501 | | |
502 | | /* |
503 | | * __ATOMIC_ACQ_REL is used here to ensure that we get any prior published |
504 | | * writes before we read, and publish our write immediately |
505 | | */ |
506 | 48 | cb_items = ATOMIC_EXCHANGE_N(&lock->cb_items, NULL, __ATOMIC_ACQ_REL); |
507 | | |
508 | 48 | qp = update_qp(lock); |
509 | | |
510 | | /* |
511 | | * wait for the reader count to reach zero |
512 | | * Note the use of __ATOMIC_ACQUIRE here to ensure that any |
513 | | * prior __ATOMIC_RELEASE write operation in get_hold_current_qp |
514 | | * is visible prior to our read |
515 | | */ |
516 | 48 | do { |
517 | 48 | count = (uint64_t)ATOMIC_LOAD_N(&qp->users, __ATOMIC_ACQUIRE); |
518 | 48 | } while (READER_COUNT(count) != 0); |
519 | | |
520 | | /* retire in order */ |
521 | 48 | pthread_mutex_lock(&lock->prior_lock); |
522 | 48 | while (lock->next_to_retire != ID_VAL(count)) |
523 | 0 | pthread_cond_wait(&lock->prior_signal, &lock->prior_lock); |
524 | 48 | lock->next_to_retire++; |
525 | 48 | pthread_cond_broadcast(&lock->prior_signal); |
526 | 48 | pthread_mutex_unlock(&lock->prior_lock); |
527 | | |
528 | 48 | retire_qp(lock, qp); |
529 | | |
530 | | /* handle any callbacks that we have */ |
531 | 48 | while (cb_items != NULL) { |
532 | 0 | tmpcb = cb_items; |
533 | 0 | cb_items = cb_items->next; |
534 | 0 | tmpcb->fn(tmpcb->data); |
535 | 0 | OPENSSL_free(tmpcb); |
536 | 0 | } |
537 | 48 | } |
538 | | |
539 | | int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data) |
540 | 0 | { |
541 | 0 | struct rcu_cb_item *new = |
542 | 0 | OPENSSL_zalloc(sizeof(*new)); |
543 | |
|
544 | 0 | if (new == NULL) |
545 | 0 | return 0; |
546 | | |
547 | 0 | new->data = data; |
548 | 0 | new->fn = cb; |
549 | | /* |
550 | | * Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this |
551 | | * list are visible to us prior to reading, and publish the new value |
552 | | * immediately |
553 | | */ |
554 | 0 | new->next = ATOMIC_EXCHANGE_N(&lock->cb_items, new, __ATOMIC_ACQ_REL); |
555 | |
|
556 | 0 | return 1; |
557 | 0 | } |
558 | | |
559 | | void *ossl_rcu_uptr_deref(void **p) |
560 | 32 | { |
561 | 32 | return (void *)ATOMIC_LOAD_N(p, __ATOMIC_ACQUIRE); |
562 | 32 | } |
563 | | |
564 | | void ossl_rcu_assign_uptr(void **p, void **v) |
565 | 32 | { |
566 | 32 | ATOMIC_STORE(p, v, __ATOMIC_RELEASE); |
567 | 32 | } |
568 | | |
569 | | static CRYPTO_ONCE rcu_init_once = CRYPTO_ONCE_STATIC_INIT; |
570 | | |
571 | | CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers) |
572 | 16 | { |
573 | 16 | struct rcu_lock_st *new; |
574 | | |
575 | 16 | if (!CRYPTO_THREAD_run_once(&rcu_init_once, ossl_rcu_init)) |
576 | 0 | return NULL; |
577 | | |
578 | 16 | if (num_writers < 1) |
579 | 0 | num_writers = 1; |
580 | | |
581 | 16 | new = OPENSSL_zalloc(sizeof(*new)); |
582 | 16 | if (new == NULL) |
583 | 0 | return NULL; |
584 | | |
585 | 16 | pthread_mutex_init(&new->write_lock, NULL); |
586 | 16 | pthread_mutex_init(&new->prior_lock, NULL); |
587 | 16 | pthread_mutex_init(&new->alloc_lock, NULL); |
588 | 16 | pthread_cond_init(&new->prior_signal, NULL); |
589 | 16 | pthread_cond_init(&new->alloc_signal, NULL); |
590 | 16 | new->qp_group = allocate_new_qp_group(new, num_writers + 1); |
591 | 16 | if (new->qp_group == NULL) { |
592 | 0 | OPENSSL_free(new); |
593 | 0 | new = NULL; |
594 | 0 | } |
595 | 16 | return new; |
596 | 16 | } |
597 | | |
598 | | void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock) |
599 | 16 | { |
600 | 16 | struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock; |
601 | | |
602 | 16 | if (lock == NULL) |
603 | 0 | return; |
604 | | |
605 | | /* make sure we're synchronized */ |
606 | 16 | ossl_synchronize_rcu(rlock); |
607 | | |
608 | 16 | OPENSSL_free(rlock->qp_group); |
609 | | /* There should only be a single qp left now */ |
610 | 16 | OPENSSL_free(rlock); |
611 | 16 | } |
612 | | |
613 | | CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) |
614 | 97.6k | { |
615 | 97.6k | # ifdef USE_RWLOCK |
616 | 97.6k | CRYPTO_RWLOCK *lock; |
617 | | |
618 | 97.6k | if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) |
619 | | /* Don't set error, to avoid recursion blowup. */ |
620 | 0 | return NULL; |
621 | | |
622 | 97.6k | if (pthread_rwlock_init(lock, NULL) != 0) { |
623 | 0 | OPENSSL_free(lock); |
624 | 0 | return NULL; |
625 | 0 | } |
626 | | # else |
627 | | pthread_mutexattr_t attr; |
628 | | CRYPTO_RWLOCK *lock; |
629 | | |
630 | | if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) |
631 | | /* Don't set error, to avoid recursion blowup. */ |
632 | | return NULL; |
633 | | |
634 | | /* |
635 | | * We don't use recursive mutexes, but try to catch errors if we do. |
636 | | */ |
637 | | pthread_mutexattr_init(&attr); |
638 | | # if !defined (__TANDEM) && !defined (_SPT_MODEL_) |
639 | | # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK) |
640 | | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); |
641 | | # endif |
642 | | # else |
643 | | /* The SPT Thread Library does not define MUTEX attributes. */ |
644 | | # endif |
645 | | |
646 | | if (pthread_mutex_init(lock, &attr) != 0) { |
647 | | pthread_mutexattr_destroy(&attr); |
648 | | OPENSSL_free(lock); |
649 | | return NULL; |
650 | | } |
651 | | |
652 | | pthread_mutexattr_destroy(&attr); |
653 | | # endif |
654 | | |
655 | 97.6k | return lock; |
656 | 97.6k | } |
657 | | |
658 | | __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) |
659 | 481k | { |
660 | 481k | # ifdef USE_RWLOCK |
661 | 481k | if (pthread_rwlock_rdlock(lock) != 0) |
662 | 0 | return 0; |
663 | | # else |
664 | | if (pthread_mutex_lock(lock) != 0) { |
665 | | assert(errno != EDEADLK && errno != EBUSY); |
666 | | return 0; |
667 | | } |
668 | | # endif |
669 | | |
670 | 481k | return 1; |
671 | 481k | } |
672 | | |
673 | | __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) |
674 | 28.6k | { |
675 | 28.6k | # ifdef USE_RWLOCK |
676 | 28.6k | if (pthread_rwlock_wrlock(lock) != 0) |
677 | 0 | return 0; |
678 | | # else |
679 | | if (pthread_mutex_lock(lock) != 0) { |
680 | | assert(errno != EDEADLK && errno != EBUSY); |
681 | | return 0; |
682 | | } |
683 | | # endif |
684 | | |
685 | 28.6k | return 1; |
686 | 28.6k | } |
687 | | |
688 | | int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) |
689 | 510k | { |
690 | 510k | # ifdef USE_RWLOCK |
691 | 510k | if (pthread_rwlock_unlock(lock) != 0) |
692 | 0 | return 0; |
693 | | # else |
694 | | if (pthread_mutex_unlock(lock) != 0) { |
695 | | assert(errno != EPERM); |
696 | | return 0; |
697 | | } |
698 | | # endif |
699 | | |
700 | 510k | return 1; |
701 | 510k | } |
702 | | |
703 | | void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) |
704 | 97.8k | { |
705 | 97.8k | if (lock == NULL) |
706 | 128 | return; |
707 | | |
708 | 97.6k | # ifdef USE_RWLOCK |
709 | 97.6k | pthread_rwlock_destroy(lock); |
710 | | # else |
711 | | pthread_mutex_destroy(lock); |
712 | | # endif |
713 | 97.6k | OPENSSL_free(lock); |
714 | | |
715 | 97.6k | return; |
716 | 97.8k | } |
717 | | |
718 | | int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) |
719 | 931k | { |
720 | 931k | if (pthread_once(once, init) != 0) |
721 | 0 | return 0; |
722 | | |
723 | 931k | return 1; |
724 | 931k | } |
725 | | |
726 | | int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) |
727 | 112 | { |
728 | 112 | if (pthread_key_create(key, cleanup) != 0) |
729 | 0 | return 0; |
730 | | |
731 | 112 | return 1; |
732 | 112 | } |
733 | | |
734 | | void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) |
735 | 591k | { |
736 | 591k | return pthread_getspecific(*key); |
737 | 591k | } |
738 | | |
739 | | int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) |
740 | 176 | { |
741 | 176 | if (pthread_setspecific(*key, val) != 0) |
742 | 0 | return 0; |
743 | | |
744 | 176 | return 1; |
745 | 176 | } |
746 | | |
747 | | int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) |
748 | 96 | { |
749 | 96 | if (pthread_key_delete(*key) != 0) |
750 | 0 | return 0; |
751 | | |
752 | 96 | return 1; |
753 | 96 | } |
754 | | |
755 | | CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) |
756 | 0 | { |
757 | 0 | return pthread_self(); |
758 | 0 | } |
759 | | |
760 | | int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) |
761 | 0 | { |
762 | 0 | return pthread_equal(a, b); |
763 | 0 | } |
764 | | |
765 | | int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) |
766 | 202 | { |
767 | 202 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
768 | 202 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
769 | 202 | *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL); |
770 | 202 | return 1; |
771 | 202 | } |
772 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
773 | | /* This will work for all future Solaris versions. */ |
774 | | if (ret != NULL) { |
775 | | *ret = atomic_add_int_nv((volatile unsigned int *)val, amount); |
776 | | return 1; |
777 | | } |
778 | | # endif |
779 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
780 | 0 | return 0; |
781 | | |
782 | 0 | *val += amount; |
783 | 0 | *ret = *val; |
784 | |
|
785 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
786 | 0 | return 0; |
787 | | |
788 | 0 | return 1; |
789 | 0 | } |
790 | | |
791 | | int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, |
792 | | CRYPTO_RWLOCK *lock) |
793 | 32 | { |
794 | 32 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
795 | 32 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
796 | 32 | *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL); |
797 | 32 | return 1; |
798 | 32 | } |
799 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
800 | | /* This will work for all future Solaris versions. */ |
801 | | if (ret != NULL) { |
802 | | *ret = atomic_or_64_nv(val, op); |
803 | | return 1; |
804 | | } |
805 | | # endif |
806 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
807 | 0 | return 0; |
808 | 0 | *val |= op; |
809 | 0 | *ret = *val; |
810 | |
|
811 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
812 | 0 | return 0; |
813 | | |
814 | 0 | return 1; |
815 | 0 | } |
816 | | |
817 | | int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) |
818 | 410k | { |
819 | 410k | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) |
820 | 410k | if (__atomic_is_lock_free(sizeof(*val), val)) { |
821 | 410k | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
822 | 410k | return 1; |
823 | 410k | } |
824 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
825 | | /* This will work for all future Solaris versions. */ |
826 | | if (ret != NULL) { |
827 | | *ret = atomic_or_64_nv(val, 0); |
828 | | return 1; |
829 | | } |
830 | | # endif |
831 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
832 | 0 | return 0; |
833 | 0 | *ret = *val; |
834 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
835 | 0 | return 0; |
836 | | |
837 | 0 | return 1; |
838 | 0 | } |
839 | | |
840 | | int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock) |
841 | 0 | { |
842 | 0 | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) |
843 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
844 | 0 | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
845 | 0 | return 1; |
846 | 0 | } |
847 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
848 | | /* This will work for all future Solaris versions. */ |
849 | | if (ret != NULL) { |
850 | | *ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0); |
851 | | return 1; |
852 | | } |
853 | | # endif |
854 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
855 | 0 | return 0; |
856 | 0 | *ret = *val; |
857 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
858 | 0 | return 0; |
859 | | |
860 | 0 | return 1; |
861 | 0 | } |
862 | | |
863 | | # ifndef FIPS_MODULE |
864 | | int openssl_init_fork_handlers(void) |
865 | 0 | { |
866 | 0 | return 1; |
867 | 0 | } |
868 | | # endif /* FIPS_MODULE */ |
869 | | |
870 | | int openssl_get_fork_id(void) |
871 | 96 | { |
872 | 96 | return getpid(); |
873 | 96 | } |
874 | | #endif |