Coverage Report

Created: 2024-02-25 06:25

/src/openssl/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
0
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
0
    return ossl_seconds2time(60 * 60 * 2);
101
0
}
102
103
int tls1_new(SSL *s)
104
0
{
105
0
    if (!ssl3_new(s))
106
0
        return 0;
107
0
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
0
    return 1;
111
0
}
112
113
void tls1_free(SSL *s)
114
0
{
115
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
0
    if (sc == NULL)
118
0
        return;
119
120
0
    OPENSSL_free(sc->ext.session_ticket);
121
0
    ssl3_free(s);
122
0
}
123
124
int tls1_clear(SSL *s)
125
0
{
126
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
0
    if (sc == NULL)
129
0
        return 0;
130
131
0
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
0
    if (s->method->version == TLS_ANY_VERSION)
135
0
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
0
    return 1;
140
0
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
0
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
0
{
235
0
    struct provider_ctx_data_st *pgd = data;
236
0
    SSL_CTX *ctx = pgd->ctx;
237
0
    OSSL_PROVIDER *provider = pgd->provider;
238
0
    const OSSL_PARAM *p;
239
0
    TLS_GROUP_INFO *ginf = NULL;
240
0
    EVP_KEYMGMT *keymgmt;
241
0
    unsigned int gid;
242
0
    unsigned int is_kem = 0;
243
0
    int ret = 0;
244
245
0
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
0
        TLS_GROUP_INFO *tmp = NULL;
247
248
0
        if (ctx->group_list_max_len == 0)
249
0
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
0
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
0
        else
252
0
            tmp = OPENSSL_realloc(ctx->group_list,
253
0
                                  (ctx->group_list_max_len
254
0
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
0
                                  * sizeof(TLS_GROUP_INFO));
256
0
        if (tmp == NULL)
257
0
            return 0;
258
0
        ctx->group_list = tmp;
259
0
        memset(tmp + ctx->group_list_max_len,
260
0
               0,
261
0
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
0
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
0
    }
264
265
0
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
0
    ginf->tlsname = OPENSSL_strdup(p->data);
273
0
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
0
    ginf->realname = OPENSSL_strdup(p->data);
282
0
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
0
    ginf->group_id = (uint16_t)gid;
291
292
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
0
    ginf->algorithm = OPENSSL_strdup(p->data);
298
0
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
0
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
0
    ginf->is_kem = 1 & is_kem;
313
314
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
0
    ret = 1;
344
0
    ERR_set_mark();
345
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
0
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
0
            ctx->group_list_len++;
362
0
            ginf = NULL;
363
0
        }
364
0
        EVP_KEYMGMT_free(keymgmt);
365
0
    }
366
0
    ERR_pop_to_mark();
367
0
 err:
368
0
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
0
    return ret;
375
0
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
0
{
379
0
    struct provider_ctx_data_st pgd;
380
381
0
    pgd.ctx = vctx;
382
0
    pgd.provider = provider;
383
0
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
0
                                          add_provider_groups, &pgd);
385
0
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
0
{
389
0
    size_t i, j, num_deflt_grps = 0;
390
0
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
0
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
0
        for (j = 0; j < ctx->group_list_len; j++) {
397
0
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
0
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
0
                break;
400
0
            }
401
0
        }
402
0
    }
403
404
0
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
0
    ctx->ext.supported_groups_default
408
0
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
0
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
0
    memcpy(ctx->ext.supported_groups_default,
414
0
           tmp_supp_groups,
415
0
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
0
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
0
    return 1;
419
0
}
420
421
0
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
422
static OSSL_CALLBACK add_provider_sigalgs;
423
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424
0
{
425
0
    struct provider_ctx_data_st *pgd = data;
426
0
    SSL_CTX *ctx = pgd->ctx;
427
0
    OSSL_PROVIDER *provider = pgd->provider;
428
0
    const OSSL_PARAM *p;
429
0
    TLS_SIGALG_INFO *sinf = NULL;
430
0
    EVP_KEYMGMT *keymgmt;
431
0
    const char *keytype;
432
0
    unsigned int code_point = 0;
433
0
    int ret = 0;
434
435
0
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436
0
        TLS_SIGALG_INFO *tmp = NULL;
437
438
0
        if (ctx->sigalg_list_max_len == 0)
439
0
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440
0
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441
0
        else
442
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
443
0
                                  (ctx->sigalg_list_max_len
444
0
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445
0
                                  * sizeof(TLS_SIGALG_INFO));
446
0
        if (tmp == NULL)
447
0
            return 0;
448
0
        ctx->sigalg_list = tmp;
449
0
        memset(tmp + ctx->sigalg_list_max_len, 0,
450
0
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451
0
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452
0
    }
453
454
0
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456
    /* First, mandatory parameters */
457
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460
0
        goto err;
461
0
    }
462
0
    OPENSSL_free(sinf->sigalg_name);
463
0
    sinf->sigalg_name = OPENSSL_strdup(p->data);
464
0
    if (sinf->sigalg_name == NULL)
465
0
        goto err;
466
467
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470
0
        goto err;
471
0
    }
472
0
    OPENSSL_free(sinf->name);
473
0
    sinf->name = OPENSSL_strdup(p->data);
474
0
    if (sinf->name == NULL)
475
0
        goto err;
476
477
0
    p = OSSL_PARAM_locate_const(params,
478
0
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479
0
    if (p == NULL
480
0
        || !OSSL_PARAM_get_uint(p, &code_point)
481
0
        || code_point > UINT16_MAX) {
482
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483
0
        goto err;
484
0
    }
485
0
    sinf->code_point = (uint16_t)code_point;
486
487
0
    p = OSSL_PARAM_locate_const(params,
488
0
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491
0
        goto err;
492
0
    }
493
494
    /* Now, optional parameters */
495
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496
0
    if (p == NULL) {
497
0
        sinf->sigalg_oid = NULL;
498
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499
0
        goto err;
500
0
    } else {
501
0
        OPENSSL_free(sinf->sigalg_oid);
502
0
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
503
0
        if (sinf->sigalg_oid == NULL)
504
0
            goto err;
505
0
    }
506
507
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508
0
    if (p == NULL) {
509
0
        sinf->sig_name = NULL;
510
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511
0
        goto err;
512
0
    } else {
513
0
        OPENSSL_free(sinf->sig_name);
514
0
        sinf->sig_name = OPENSSL_strdup(p->data);
515
0
        if (sinf->sig_name == NULL)
516
0
            goto err;
517
0
    }
518
519
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520
0
    if (p == NULL) {
521
0
        sinf->sig_oid = NULL;
522
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523
0
        goto err;
524
0
    } else {
525
0
        OPENSSL_free(sinf->sig_oid);
526
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
527
0
        if (sinf->sig_oid == NULL)
528
0
            goto err;
529
0
    }
530
531
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532
0
    if (p == NULL) {
533
0
        sinf->hash_name = NULL;
534
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535
0
        goto err;
536
0
    } else {
537
0
        OPENSSL_free(sinf->hash_name);
538
0
        sinf->hash_name = OPENSSL_strdup(p->data);
539
0
        if (sinf->hash_name == NULL)
540
0
            goto err;
541
0
    }
542
543
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544
0
    if (p == NULL) {
545
0
        sinf->hash_oid = NULL;
546
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547
0
        goto err;
548
0
    } else {
549
0
        OPENSSL_free(sinf->hash_oid);
550
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
551
0
        if (sinf->hash_oid == NULL)
552
0
            goto err;
553
0
    }
554
555
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556
0
    if (p == NULL) {
557
0
        sinf->keytype = NULL;
558
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559
0
        goto err;
560
0
    } else {
561
0
        OPENSSL_free(sinf->keytype);
562
0
        sinf->keytype = OPENSSL_strdup(p->data);
563
0
        if (sinf->keytype == NULL)
564
0
            goto err;
565
0
    }
566
567
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568
0
    if (p == NULL) {
569
0
        sinf->keytype_oid = NULL;
570
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571
0
        goto err;
572
0
    } else {
573
0
        OPENSSL_free(sinf->keytype_oid);
574
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
575
0
        if (sinf->keytype_oid == NULL)
576
0
            goto err;
577
0
    }
578
579
    /* The remaining parameters below are mandatory again */
580
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583
0
        goto err;
584
0
    }
585
0
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586
0
        ((sinf->mintls < TLS1_3_VERSION))) {
587
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588
0
        ret = 1;
589
0
        goto err;
590
0
    }
591
592
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595
0
        goto err;
596
0
    }
597
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598
0
        ((sinf->maxtls < sinf->mintls))) {
599
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600
0
        goto err;
601
0
    }
602
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603
0
        ((sinf->maxtls < TLS1_3_VERSION))) {
604
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605
0
        ret = 1;
606
0
        goto err;
607
0
    }
608
609
    /*
610
     * Now check that the algorithm is actually usable for our property query
611
     * string. Regardless of the result we still return success because we have
612
     * successfully processed this signature, even though we may decide not to
613
     * use it.
614
     */
615
0
    ret = 1;
616
0
    ERR_set_mark();
617
0
    keytype = (sinf->keytype != NULL
618
0
               ? sinf->keytype
619
0
               : (sinf->sig_name != NULL
620
0
                  ? sinf->sig_name
621
0
                  : sinf->sigalg_name));
622
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623
0
    if (keymgmt != NULL) {
624
        /*
625
         * We have successfully fetched the algorithm - however if the provider
626
         * doesn't match this one then we ignore it.
627
         *
628
         * Note: We're cheating a little here. Technically if the same algorithm
629
         * is available from more than one provider then it is undefined which
630
         * implementation you will get back. Theoretically this could be
631
         * different every time...we assume here that you'll always get the
632
         * same one back if you repeat the exact same fetch. Is this a reasonable
633
         * assumption to make (in which case perhaps we should document this
634
         * behaviour)?
635
         */
636
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637
            /*
638
             * We have a match - so we could use this signature;
639
             * Check proper object registration first, though. 
640
             * Don't care about return value as this may have been
641
             * done within providers or previous calls to
642
             * add_provider_sigalgs.
643
             */
644
0
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645
            /* sanity check: Without successful registration don't use alg */
646
0
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647
0
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649
0
                    goto err;
650
0
            }
651
0
            if (sinf->sig_name != NULL)
652
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653
0
            if (sinf->keytype != NULL)
654
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655
0
            if (sinf->hash_name != NULL)
656
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657
0
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658
0
                          (sinf->hash_name != NULL
659
0
                           ? OBJ_txt2nid(sinf->hash_name)
660
0
                           : NID_undef),
661
0
                          OBJ_txt2nid(keytype));
662
0
            ctx->sigalg_list_len++;
663
0
            sinf = NULL;
664
0
        }
665
0
        EVP_KEYMGMT_free(keymgmt);
666
0
    }
667
0
    ERR_pop_to_mark();
668
0
 err:
669
0
    if (sinf != NULL) {
670
0
        OPENSSL_free(sinf->name);
671
0
        sinf->name = NULL;
672
0
        OPENSSL_free(sinf->sigalg_name);
673
0
        sinf->sigalg_name = NULL;
674
0
        OPENSSL_free(sinf->sigalg_oid);
675
0
        sinf->sigalg_oid = NULL;
676
0
        OPENSSL_free(sinf->sig_name);
677
0
        sinf->sig_name = NULL;
678
0
        OPENSSL_free(sinf->sig_oid);
679
0
        sinf->sig_oid = NULL;
680
0
        OPENSSL_free(sinf->hash_name);
681
0
        sinf->hash_name = NULL;
682
0
        OPENSSL_free(sinf->hash_oid);
683
0
        sinf->hash_oid = NULL;
684
0
        OPENSSL_free(sinf->keytype);
685
0
        sinf->keytype = NULL;
686
0
        OPENSSL_free(sinf->keytype_oid);
687
0
        sinf->keytype_oid = NULL;
688
0
    }
689
0
    return ret;
690
0
}
691
692
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693
0
{
694
0
    struct provider_ctx_data_st pgd;
695
696
0
    pgd.ctx = vctx;
697
0
    pgd.provider = provider;
698
0
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699
0
                                   add_provider_sigalgs, &pgd);
700
    /*
701
     * Always OK, even if provider doesn't support the capability:
702
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
703
     */
704
0
    return 1;
705
0
}
706
707
int ssl_load_sigalgs(SSL_CTX *ctx)
708
0
{
709
0
    size_t i;
710
0
    SSL_CERT_LOOKUP lu;
711
712
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713
0
        return 0;
714
715
    /* now populate ctx->ssl_cert_info */
716
0
    if (ctx->sigalg_list_len > 0) {
717
0
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
718
0
        if (ctx->ssl_cert_info == NULL)
719
0
            return 0;
720
0
        for(i = 0; i < ctx->sigalg_list_len; i++) {
721
0
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
722
0
            ctx->ssl_cert_info[i].amask = SSL_aANY;
723
0
        }
724
0
    }
725
726
    /* 
727
     * For now, leave it at this: legacy sigalgs stay in their own
728
     * data structures until "legacy cleanup" occurs.
729
     */
730
731
0
    return 1;
732
0
}
733
734
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
735
0
{
736
0
    size_t i;
737
738
0
    for (i = 0; i < ctx->group_list_len; i++) {
739
0
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
740
0
                || strcmp(ctx->group_list[i].realname, name) == 0)
741
0
            return ctx->group_list[i].group_id;
742
0
    }
743
744
0
    return 0;
745
0
}
746
747
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
748
0
{
749
0
    size_t i;
750
751
0
    for (i = 0; i < ctx->group_list_len; i++) {
752
0
        if (ctx->group_list[i].group_id == group_id)
753
0
            return &ctx->group_list[i];
754
0
    }
755
756
0
    return NULL;
757
0
}
758
759
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
760
0
{
761
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
762
763
0
    if (tls_group_info == NULL)
764
0
        return NULL;
765
766
0
    return tls_group_info->tlsname;
767
0
}
768
769
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
770
0
{
771
0
    size_t i;
772
773
0
    if (group_id == 0)
774
0
        return NID_undef;
775
776
    /*
777
     * Return well known Group NIDs - for backwards compatibility. This won't
778
     * work for groups we don't know about.
779
     */
780
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
781
0
    {
782
0
        if (nid_to_group[i].group_id == group_id)
783
0
            return nid_to_group[i].nid;
784
0
    }
785
0
    if (!include_unknown)
786
0
        return NID_undef;
787
0
    return TLSEXT_nid_unknown | (int)group_id;
788
0
}
789
790
uint16_t tls1_nid2group_id(int nid)
791
0
{
792
0
    size_t i;
793
794
    /*
795
     * Return well known Group ids - for backwards compatibility. This won't
796
     * work for groups we don't know about.
797
     */
798
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
799
0
    {
800
0
        if (nid_to_group[i].nid == nid)
801
0
            return nid_to_group[i].group_id;
802
0
    }
803
804
0
    return 0;
805
0
}
806
807
/*
808
 * Set *pgroups to the supported groups list and *pgroupslen to
809
 * the number of groups supported.
810
 */
811
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
812
                               size_t *pgroupslen)
813
0
{
814
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
815
816
    /* For Suite B mode only include P-256, P-384 */
817
0
    switch (tls1_suiteb(s)) {
818
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
819
0
        *pgroups = suiteb_curves;
820
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
821
0
        break;
822
823
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
824
0
        *pgroups = suiteb_curves;
825
0
        *pgroupslen = 1;
826
0
        break;
827
828
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
829
0
        *pgroups = suiteb_curves + 1;
830
0
        *pgroupslen = 1;
831
0
        break;
832
833
0
    default:
834
0
        if (s->ext.supportedgroups == NULL) {
835
0
            *pgroups = sctx->ext.supported_groups_default;
836
0
            *pgroupslen = sctx->ext.supported_groups_default_len;
837
0
        } else {
838
0
            *pgroups = s->ext.supportedgroups;
839
0
            *pgroupslen = s->ext.supportedgroups_len;
840
0
        }
841
0
        break;
842
0
    }
843
0
}
844
845
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
846
                    int minversion, int maxversion,
847
                    int isec, int *okfortls13)
848
0
{
849
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
850
0
                                                       group_id);
851
0
    int ret;
852
0
    int group_minversion, group_maxversion;
853
854
0
    if (okfortls13 != NULL)
855
0
        *okfortls13 = 0;
856
857
0
    if (ginfo == NULL)
858
0
        return 0;
859
860
0
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
861
0
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
862
863
0
    if (group_minversion < 0 || group_maxversion < 0)
864
0
        return 0;
865
0
    if (group_maxversion == 0)
866
0
        ret = 1;
867
0
    else
868
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
869
0
    if (group_minversion > 0)
870
0
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
871
872
0
    if (!SSL_CONNECTION_IS_DTLS(s)) {
873
0
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
874
0
            *okfortls13 = (group_maxversion == 0)
875
0
                          || (group_maxversion >= TLS1_3_VERSION);
876
0
    }
877
0
    ret &= !isec
878
0
           || strcmp(ginfo->algorithm, "EC") == 0
879
0
           || strcmp(ginfo->algorithm, "X25519") == 0
880
0
           || strcmp(ginfo->algorithm, "X448") == 0;
881
882
0
    return ret;
883
0
}
884
885
/* See if group is allowed by security callback */
886
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
887
0
{
888
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
889
0
                                                       group);
890
0
    unsigned char gtmp[2];
891
892
0
    if (ginfo == NULL)
893
0
        return 0;
894
895
0
    gtmp[0] = group >> 8;
896
0
    gtmp[1] = group & 0xff;
897
0
    return ssl_security(s, op, ginfo->secbits,
898
0
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
899
0
}
900
901
/* Return 1 if "id" is in "list" */
902
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
903
0
{
904
0
    size_t i;
905
0
    for (i = 0; i < listlen; i++)
906
0
        if (list[i] == id)
907
0
            return 1;
908
0
    return 0;
909
0
}
910
911
/*-
912
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
913
 * if there is no match.
914
 * For nmatch == -1, return number of matches
915
 * For nmatch == -2, return the id of the group to use for
916
 * a tmp key, or 0 if there is no match.
917
 */
918
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
919
0
{
920
0
    const uint16_t *pref, *supp;
921
0
    size_t num_pref, num_supp, i;
922
0
    int k;
923
0
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
924
925
    /* Can't do anything on client side */
926
0
    if (s->server == 0)
927
0
        return 0;
928
0
    if (nmatch == -2) {
929
0
        if (tls1_suiteb(s)) {
930
            /*
931
             * For Suite B ciphersuite determines curve: we already know
932
             * these are acceptable due to previous checks.
933
             */
934
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
935
936
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
937
0
                return OSSL_TLS_GROUP_ID_secp256r1;
938
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
939
0
                return OSSL_TLS_GROUP_ID_secp384r1;
940
            /* Should never happen */
941
0
            return 0;
942
0
        }
943
        /* If not Suite B just return first preference shared curve */
944
0
        nmatch = 0;
945
0
    }
946
    /*
947
     * If server preference set, our groups are the preference order
948
     * otherwise peer decides.
949
     */
950
0
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
951
0
        tls1_get_supported_groups(s, &pref, &num_pref);
952
0
        tls1_get_peer_groups(s, &supp, &num_supp);
953
0
    } else {
954
0
        tls1_get_peer_groups(s, &pref, &num_pref);
955
0
        tls1_get_supported_groups(s, &supp, &num_supp);
956
0
    }
957
958
0
    for (k = 0, i = 0; i < num_pref; i++) {
959
0
        uint16_t id = pref[i];
960
0
        const TLS_GROUP_INFO *inf;
961
0
        int minversion, maxversion;
962
963
0
        if (!tls1_in_list(id, supp, num_supp)
964
0
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
965
0
            continue;
966
0
        inf = tls1_group_id_lookup(ctx, id);
967
0
        if (!ossl_assert(inf != NULL))
968
0
            return 0;
969
970
0
        minversion = SSL_CONNECTION_IS_DTLS(s)
971
0
                         ? inf->mindtls : inf->mintls;
972
0
        maxversion = SSL_CONNECTION_IS_DTLS(s)
973
0
                         ? inf->maxdtls : inf->maxtls;
974
0
        if (maxversion == -1)
975
0
            continue;
976
0
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
977
0
            || (maxversion != 0
978
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
979
0
            continue;
980
981
0
        if (nmatch == k)
982
0
            return id;
983
0
         k++;
984
0
    }
985
0
    if (nmatch == -1)
986
0
        return k;
987
    /* Out of range (nmatch > k). */
988
0
    return 0;
989
0
}
990
991
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
992
                    int *groups, size_t ngroups)
993
0
{
994
0
    uint16_t *glist;
995
0
    size_t i;
996
    /*
997
     * Bitmap of groups included to detect duplicates: two variables are added
998
     * to detect duplicates as some values are more than 32.
999
     */
1000
0
    unsigned long *dup_list = NULL;
1001
0
    unsigned long dup_list_egrp = 0;
1002
0
    unsigned long dup_list_dhgrp = 0;
1003
1004
0
    if (ngroups == 0) {
1005
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1006
0
        return 0;
1007
0
    }
1008
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1009
0
        return 0;
1010
0
    for (i = 0; i < ngroups; i++) {
1011
0
        unsigned long idmask;
1012
0
        uint16_t id;
1013
0
        id = tls1_nid2group_id(groups[i]);
1014
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1015
0
            goto err;
1016
0
        idmask = 1L << (id & 0x00FF);
1017
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1018
0
        if (!id || ((*dup_list) & idmask))
1019
0
            goto err;
1020
0
        *dup_list |= idmask;
1021
0
        glist[i] = id;
1022
0
    }
1023
0
    OPENSSL_free(*pext);
1024
0
    *pext = glist;
1025
0
    *pextlen = ngroups;
1026
0
    return 1;
1027
0
err:
1028
0
    OPENSSL_free(glist);
1029
0
    return 0;
1030
0
}
1031
1032
0
# define GROUPLIST_INCREMENT   40
1033
# define GROUP_NAME_BUFFER_LENGTH 64
1034
typedef struct {
1035
    SSL_CTX *ctx;
1036
    size_t gidcnt;
1037
    size_t gidmax;
1038
    uint16_t *gid_arr;
1039
} gid_cb_st;
1040
1041
static int gid_cb(const char *elem, int len, void *arg)
1042
0
{
1043
0
    gid_cb_st *garg = arg;
1044
0
    size_t i;
1045
0
    uint16_t gid = 0;
1046
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1047
1048
0
    if (elem == NULL)
1049
0
        return 0;
1050
0
    if (garg->gidcnt == garg->gidmax) {
1051
0
        uint16_t *tmp =
1052
0
            OPENSSL_realloc(garg->gid_arr,
1053
0
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1054
0
        if (tmp == NULL)
1055
0
            return 0;
1056
0
        garg->gidmax += GROUPLIST_INCREMENT;
1057
0
        garg->gid_arr = tmp;
1058
0
    }
1059
0
    if (len > (int)(sizeof(etmp) - 1))
1060
0
        return 0;
1061
0
    memcpy(etmp, elem, len);
1062
0
    etmp[len] = 0;
1063
1064
0
    gid = tls1_group_name2id(garg->ctx, etmp);
1065
0
    if (gid == 0) {
1066
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1067
0
                       "group '%s' cannot be set", etmp);
1068
0
        return 0;
1069
0
    }
1070
0
    for (i = 0; i < garg->gidcnt; i++)
1071
0
        if (garg->gid_arr[i] == gid)
1072
0
            return 0;
1073
0
    garg->gid_arr[garg->gidcnt++] = gid;
1074
0
    return 1;
1075
0
}
1076
1077
/* Set groups based on a colon separated list */
1078
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1079
                         const char *str)
1080
0
{
1081
0
    gid_cb_st gcb;
1082
0
    uint16_t *tmparr;
1083
0
    int ret = 0;
1084
1085
0
    gcb.gidcnt = 0;
1086
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1087
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1088
0
    if (gcb.gid_arr == NULL)
1089
0
        return 0;
1090
0
    gcb.ctx = ctx;
1091
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1092
0
        goto end;
1093
0
    if (pext == NULL) {
1094
0
        ret = 1;
1095
0
        goto end;
1096
0
    }
1097
1098
    /*
1099
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1100
     * the result
1101
     */
1102
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1103
0
    if (tmparr == NULL)
1104
0
        goto end;
1105
0
    OPENSSL_free(*pext);
1106
0
    *pext = tmparr;
1107
0
    *pextlen = gcb.gidcnt;
1108
0
    ret = 1;
1109
0
 end:
1110
0
    OPENSSL_free(gcb.gid_arr);
1111
0
    return ret;
1112
0
}
1113
1114
/* Check a group id matches preferences */
1115
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1116
                        int check_own_groups)
1117
0
    {
1118
0
    const uint16_t *groups;
1119
0
    size_t groups_len;
1120
1121
0
    if (group_id == 0)
1122
0
        return 0;
1123
1124
    /* Check for Suite B compliance */
1125
0
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1126
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1127
1128
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1129
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1130
0
                return 0;
1131
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1132
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1133
0
                return 0;
1134
0
        } else {
1135
            /* Should never happen */
1136
0
            return 0;
1137
0
        }
1138
0
    }
1139
1140
0
    if (check_own_groups) {
1141
        /* Check group is one of our preferences */
1142
0
        tls1_get_supported_groups(s, &groups, &groups_len);
1143
0
        if (!tls1_in_list(group_id, groups, groups_len))
1144
0
            return 0;
1145
0
    }
1146
1147
0
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1148
0
        return 0;
1149
1150
    /* For clients, nothing more to check */
1151
0
    if (!s->server)
1152
0
        return 1;
1153
1154
    /* Check group is one of peers preferences */
1155
0
    tls1_get_peer_groups(s, &groups, &groups_len);
1156
1157
    /*
1158
     * RFC 4492 does not require the supported elliptic curves extension
1159
     * so if it is not sent we can just choose any curve.
1160
     * It is invalid to send an empty list in the supported groups
1161
     * extension, so groups_len == 0 always means no extension.
1162
     */
1163
0
    if (groups_len == 0)
1164
0
            return 1;
1165
0
    return tls1_in_list(group_id, groups, groups_len);
1166
0
}
1167
1168
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1169
                         size_t *num_formats)
1170
0
{
1171
    /*
1172
     * If we have a custom point format list use it otherwise use default
1173
     */
1174
0
    if (s->ext.ecpointformats) {
1175
0
        *pformats = s->ext.ecpointformats;
1176
0
        *num_formats = s->ext.ecpointformats_len;
1177
0
    } else {
1178
0
        *pformats = ecformats_default;
1179
        /* For Suite B we don't support char2 fields */
1180
0
        if (tls1_suiteb(s))
1181
0
            *num_formats = sizeof(ecformats_default) - 1;
1182
0
        else
1183
0
            *num_formats = sizeof(ecformats_default);
1184
0
    }
1185
0
}
1186
1187
/* Check a key is compatible with compression extension */
1188
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1189
0
{
1190
0
    unsigned char comp_id;
1191
0
    size_t i;
1192
0
    int point_conv;
1193
1194
    /* If not an EC key nothing to check */
1195
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1196
0
        return 1;
1197
1198
1199
    /* Get required compression id */
1200
0
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1201
0
    if (point_conv == 0)
1202
0
        return 0;
1203
0
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1204
0
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1205
0
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1206
        /*
1207
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1208
         * this check.
1209
         */
1210
0
        return 1;
1211
0
    } else {
1212
0
        int field_type = EVP_PKEY_get_field_type(pkey);
1213
1214
0
        if (field_type == NID_X9_62_prime_field)
1215
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1216
0
        else if (field_type == NID_X9_62_characteristic_two_field)
1217
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1218
0
        else
1219
0
            return 0;
1220
0
    }
1221
    /*
1222
     * If point formats extension present check it, otherwise everything is
1223
     * supported (see RFC4492).
1224
     */
1225
0
    if (s->ext.peer_ecpointformats == NULL)
1226
0
        return 1;
1227
1228
0
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1229
0
        if (s->ext.peer_ecpointformats[i] == comp_id)
1230
0
            return 1;
1231
0
    }
1232
0
    return 0;
1233
0
}
1234
1235
/* Return group id of a key */
1236
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1237
0
{
1238
0
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1239
1240
0
    if (curve_nid == NID_undef)
1241
0
        return 0;
1242
0
    return tls1_nid2group_id(curve_nid);
1243
0
}
1244
1245
/*
1246
 * Check cert parameters compatible with extensions: currently just checks EC
1247
 * certificates have compatible curves and compression.
1248
 */
1249
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1250
0
{
1251
0
    uint16_t group_id;
1252
0
    EVP_PKEY *pkey;
1253
0
    pkey = X509_get0_pubkey(x);
1254
0
    if (pkey == NULL)
1255
0
        return 0;
1256
    /* If not EC nothing to do */
1257
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1258
0
        return 1;
1259
    /* Check compression */
1260
0
    if (!tls1_check_pkey_comp(s, pkey))
1261
0
        return 0;
1262
0
    group_id = tls1_get_group_id(pkey);
1263
    /*
1264
     * For a server we allow the certificate to not be in our list of supported
1265
     * groups.
1266
     */
1267
0
    if (!tls1_check_group_id(s, group_id, !s->server))
1268
0
        return 0;
1269
    /*
1270
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1271
     * SHA384+P-384.
1272
     */
1273
0
    if (check_ee_md && tls1_suiteb(s)) {
1274
0
        int check_md;
1275
0
        size_t i;
1276
1277
        /* Check to see we have necessary signing algorithm */
1278
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1279
0
            check_md = NID_ecdsa_with_SHA256;
1280
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1281
0
            check_md = NID_ecdsa_with_SHA384;
1282
0
        else
1283
0
            return 0;           /* Should never happen */
1284
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1285
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1286
0
                return 1;
1287
0
        }
1288
0
        return 0;
1289
0
    }
1290
0
    return 1;
1291
0
}
1292
1293
/*
1294
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1295
 * @s: SSL connection
1296
 * @cid: Cipher ID we're considering using
1297
 *
1298
 * Checks that the kECDHE cipher suite we're considering using
1299
 * is compatible with the client extensions.
1300
 *
1301
 * Returns 0 when the cipher can't be used or 1 when it can.
1302
 */
1303
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1304
0
{
1305
    /* If not Suite B just need a shared group */
1306
0
    if (!tls1_suiteb(s))
1307
0
        return tls1_shared_group(s, 0) != 0;
1308
    /*
1309
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1310
     * curves permitted.
1311
     */
1312
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1313
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1314
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1315
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1316
1317
0
    return 0;
1318
0
}
1319
1320
/* Default sigalg schemes */
1321
static const uint16_t tls12_sigalgs[] = {
1322
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1323
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1324
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1325
    TLSEXT_SIGALG_ed25519,
1326
    TLSEXT_SIGALG_ed448,
1327
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1328
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1329
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1330
1331
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1332
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1333
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1334
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1335
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1336
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1337
1338
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1339
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1340
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1341
1342
    TLSEXT_SIGALG_ecdsa_sha224,
1343
    TLSEXT_SIGALG_ecdsa_sha1,
1344
1345
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1346
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1347
1348
    TLSEXT_SIGALG_dsa_sha224,
1349
    TLSEXT_SIGALG_dsa_sha1,
1350
1351
    TLSEXT_SIGALG_dsa_sha256,
1352
    TLSEXT_SIGALG_dsa_sha384,
1353
    TLSEXT_SIGALG_dsa_sha512,
1354
1355
#ifndef OPENSSL_NO_GOST
1356
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1357
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1358
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1359
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1360
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1361
#endif
1362
};
1363
1364
1365
static const uint16_t suiteb_sigalgs[] = {
1366
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1367
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1368
};
1369
1370
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1371
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1372
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1373
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1374
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1375
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1376
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1377
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1378
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1379
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1380
    {"ed25519", TLSEXT_SIGALG_ed25519,
1381
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1382
     NID_undef, NID_undef, 1},
1383
    {"ed448", TLSEXT_SIGALG_ed448,
1384
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1385
     NID_undef, NID_undef, 1},
1386
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1387
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1388
     NID_ecdsa_with_SHA224, NID_undef, 1},
1389
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1390
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1391
     NID_ecdsa_with_SHA1, NID_undef, 1},
1392
    {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1393
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1394
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1395
    {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1396
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1397
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1398
    {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1399
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1400
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1401
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1402
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1403
     NID_undef, NID_undef, 1},
1404
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1405
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1406
     NID_undef, NID_undef, 1},
1407
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1408
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1409
     NID_undef, NID_undef, 1},
1410
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1411
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1412
     NID_undef, NID_undef, 1},
1413
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1414
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1415
     NID_undef, NID_undef, 1},
1416
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1417
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1418
     NID_undef, NID_undef, 1},
1419
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1420
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1421
     NID_sha256WithRSAEncryption, NID_undef, 1},
1422
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1423
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1424
     NID_sha384WithRSAEncryption, NID_undef, 1},
1425
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1426
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1427
     NID_sha512WithRSAEncryption, NID_undef, 1},
1428
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1429
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1430
     NID_sha224WithRSAEncryption, NID_undef, 1},
1431
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1432
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1433
     NID_sha1WithRSAEncryption, NID_undef, 1},
1434
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1435
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1436
     NID_dsa_with_SHA256, NID_undef, 1},
1437
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1438
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1439
     NID_undef, NID_undef, 1},
1440
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1441
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1442
     NID_undef, NID_undef, 1},
1443
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1444
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1445
     NID_undef, NID_undef, 1},
1446
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1447
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1448
     NID_dsaWithSHA1, NID_undef, 1},
1449
#ifndef OPENSSL_NO_GOST
1450
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1451
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1452
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1453
     NID_undef, NID_undef, 1},
1454
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1455
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1456
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1457
     NID_undef, NID_undef, 1},
1458
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1459
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1460
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1461
     NID_undef, NID_undef, 1},
1462
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1463
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1464
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1465
     NID_undef, NID_undef, 1},
1466
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1467
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1468
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1469
     NID_undef, NID_undef, 1}
1470
#endif
1471
};
1472
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1473
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1474
    "rsa_pkcs1_md5_sha1", 0,
1475
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1476
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1477
     NID_undef, NID_undef, 1
1478
};
1479
1480
/*
1481
 * Default signature algorithm values used if signature algorithms not present.
1482
 * From RFC5246. Note: order must match certificate index order.
1483
 */
1484
static const uint16_t tls_default_sigalg[] = {
1485
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1486
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1487
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1488
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1489
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1490
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1491
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1492
    0, /* SSL_PKEY_ED25519 */
1493
    0, /* SSL_PKEY_ED448 */
1494
};
1495
1496
int ssl_setup_sigalgs(SSL_CTX *ctx)
1497
0
{
1498
0
    size_t i, cache_idx, sigalgs_len;
1499
0
    const SIGALG_LOOKUP *lu;
1500
0
    SIGALG_LOOKUP *cache = NULL;
1501
0
    uint16_t *tls12_sigalgs_list = NULL;
1502
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1503
0
    int ret = 0;
1504
1505
0
    if (ctx == NULL)
1506
0
        goto err;
1507
1508
0
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1509
1510
0
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1511
0
    if (cache == NULL || tmpkey == NULL)
1512
0
        goto err;
1513
1514
0
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1515
0
    if (tls12_sigalgs_list == NULL)
1516
0
        goto err;
1517
1518
0
    ERR_set_mark();
1519
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1520
0
    for (i = 0, lu = sigalg_lookup_tbl;
1521
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1522
0
        EVP_PKEY_CTX *pctx;
1523
1524
0
        cache[i] = *lu;
1525
0
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1526
1527
        /*
1528
         * Check hash is available.
1529
         * This test is not perfect. A provider could have support
1530
         * for a signature scheme, but not a particular hash. However the hash
1531
         * could be available from some other loaded provider. In that case it
1532
         * could be that the signature is available, and the hash is available
1533
         * independently - but not as a combination. We ignore this for now.
1534
         */
1535
0
        if (lu->hash != NID_undef
1536
0
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1537
0
            cache[i].enabled = 0;
1538
0
            continue;
1539
0
        }
1540
1541
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1542
0
            cache[i].enabled = 0;
1543
0
            continue;
1544
0
        }
1545
0
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1546
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1547
0
        if (pctx == NULL)
1548
0
            cache[i].enabled = 0;
1549
0
        EVP_PKEY_CTX_free(pctx);
1550
0
    }
1551
1552
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1553
0
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1554
0
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1555
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1556
0
        cache[cache_idx].name = si.name;
1557
0
        cache[cache_idx].sigalg = si.code_point;
1558
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1559
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1560
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1561
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1562
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1563
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1564
0
        cache[cache_idx].curve = NID_undef;
1565
        /* all provided sigalgs are enabled by load */
1566
0
        cache[cache_idx].enabled = 1;
1567
0
        cache_idx++;
1568
0
    }
1569
0
    ERR_pop_to_mark();
1570
0
    ctx->sigalg_lookup_cache = cache;
1571
0
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1572
0
    ctx->tls12_sigalgs_len = sigalgs_len;
1573
0
    cache = NULL;
1574
0
    tls12_sigalgs_list = NULL;
1575
1576
0
    ret = 1;
1577
0
 err:
1578
0
    OPENSSL_free(cache);
1579
0
    OPENSSL_free(tls12_sigalgs_list);
1580
0
    EVP_PKEY_free(tmpkey);
1581
0
    return ret;
1582
0
}
1583
1584
/* Lookup TLS signature algorithm */
1585
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1586
                                               uint16_t sigalg)
1587
0
{
1588
0
    size_t i;
1589
0
    const SIGALG_LOOKUP *lu;
1590
1591
0
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1592
0
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1593
0
         lu++, i++) {
1594
0
        if (lu->sigalg == sigalg) {
1595
0
            if (!lu->enabled)
1596
0
                return NULL;
1597
0
            return lu;
1598
0
        }
1599
0
    }
1600
0
    return NULL;
1601
0
}
1602
/* Lookup hash: return 0 if invalid or not enabled */
1603
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1604
0
{
1605
0
    const EVP_MD *md;
1606
1607
0
    if (lu == NULL)
1608
0
        return 0;
1609
    /* lu->hash == NID_undef means no associated digest */
1610
0
    if (lu->hash == NID_undef) {
1611
0
        md = NULL;
1612
0
    } else {
1613
0
        md = ssl_md(ctx, lu->hash_idx);
1614
0
        if (md == NULL)
1615
0
            return 0;
1616
0
    }
1617
0
    if (pmd)
1618
0
        *pmd = md;
1619
0
    return 1;
1620
0
}
1621
1622
/*
1623
 * Check if key is large enough to generate RSA-PSS signature.
1624
 *
1625
 * The key must greater than or equal to 2 * hash length + 2.
1626
 * SHA512 has a hash length of 64 bytes, which is incompatible
1627
 * with a 128 byte (1024 bit) key.
1628
 */
1629
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1630
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1631
                                      const SIGALG_LOOKUP *lu)
1632
0
{
1633
0
    const EVP_MD *md;
1634
1635
0
    if (pkey == NULL)
1636
0
        return 0;
1637
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1638
0
        return 0;
1639
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1640
0
        return 0;
1641
0
    return 1;
1642
0
}
1643
1644
/*
1645
 * Returns a signature algorithm when the peer did not send a list of supported
1646
 * signature algorithms. The signature algorithm is fixed for the certificate
1647
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1648
 * certificate type from |s| will be used.
1649
 * Returns the signature algorithm to use, or NULL on error.
1650
 */
1651
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1652
                                                   int idx)
1653
0
{
1654
0
    if (idx == -1) {
1655
0
        if (s->server) {
1656
0
            size_t i;
1657
1658
            /* Work out index corresponding to ciphersuite */
1659
0
            for (i = 0; i < s->ssl_pkey_num; i++) {
1660
0
                const SSL_CERT_LOOKUP *clu
1661
0
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1662
1663
0
                if (clu == NULL)
1664
0
                    continue;
1665
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1666
0
                    idx = i;
1667
0
                    break;
1668
0
                }
1669
0
            }
1670
1671
            /*
1672
             * Some GOST ciphersuites allow more than one signature algorithms
1673
             * */
1674
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1675
0
                int real_idx;
1676
1677
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1678
0
                     real_idx--) {
1679
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1680
0
                        idx = real_idx;
1681
0
                        break;
1682
0
                    }
1683
0
                }
1684
0
            }
1685
            /*
1686
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1687
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1688
             */
1689
0
            else if (idx == SSL_PKEY_GOST12_256) {
1690
0
                int real_idx;
1691
1692
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1693
0
                     real_idx--) {
1694
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1695
0
                         idx = real_idx;
1696
0
                         break;
1697
0
                     }
1698
0
                }
1699
0
            }
1700
0
        } else {
1701
0
            idx = s->cert->key - s->cert->pkeys;
1702
0
        }
1703
0
    }
1704
0
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1705
0
        return NULL;
1706
1707
0
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1708
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1709
1710
0
        if (lu == NULL)
1711
0
            return NULL;
1712
0
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1713
0
            return NULL;
1714
0
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1715
0
            return NULL;
1716
0
        return lu;
1717
0
    }
1718
0
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1719
0
        return NULL;
1720
0
    return &legacy_rsa_sigalg;
1721
0
}
1722
/* Set peer sigalg based key type */
1723
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1724
0
{
1725
0
    size_t idx;
1726
0
    const SIGALG_LOOKUP *lu;
1727
1728
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1729
0
        return 0;
1730
0
    lu = tls1_get_legacy_sigalg(s, idx);
1731
0
    if (lu == NULL)
1732
0
        return 0;
1733
0
    s->s3.tmp.peer_sigalg = lu;
1734
0
    return 1;
1735
0
}
1736
1737
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1738
0
{
1739
    /*
1740
     * If Suite B mode use Suite B sigalgs only, ignore any other
1741
     * preferences.
1742
     */
1743
0
    switch (tls1_suiteb(s)) {
1744
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1745
0
        *psigs = suiteb_sigalgs;
1746
0
        return OSSL_NELEM(suiteb_sigalgs);
1747
1748
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1749
0
        *psigs = suiteb_sigalgs;
1750
0
        return 1;
1751
1752
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1753
0
        *psigs = suiteb_sigalgs + 1;
1754
0
        return 1;
1755
0
    }
1756
    /*
1757
     *  We use client_sigalgs (if not NULL) if we're a server
1758
     *  and sending a certificate request or if we're a client and
1759
     *  determining which shared algorithm to use.
1760
     */
1761
0
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1762
0
        *psigs = s->cert->client_sigalgs;
1763
0
        return s->cert->client_sigalgslen;
1764
0
    } else if (s->cert->conf_sigalgs) {
1765
0
        *psigs = s->cert->conf_sigalgs;
1766
0
        return s->cert->conf_sigalgslen;
1767
0
    } else {
1768
0
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1769
0
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1770
0
    }
1771
0
}
1772
1773
/*
1774
 * Called by servers only. Checks that we have a sig alg that supports the
1775
 * specified EC curve.
1776
 */
1777
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1778
0
{
1779
0
   const uint16_t *sigs;
1780
0
   size_t siglen, i;
1781
1782
0
    if (s->cert->conf_sigalgs) {
1783
0
        sigs = s->cert->conf_sigalgs;
1784
0
        siglen = s->cert->conf_sigalgslen;
1785
0
    } else {
1786
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1787
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1788
0
    }
1789
1790
0
    for (i = 0; i < siglen; i++) {
1791
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1792
1793
0
        if (lu == NULL)
1794
0
            continue;
1795
0
        if (lu->sig == EVP_PKEY_EC
1796
0
                && lu->curve != NID_undef
1797
0
                && curve == lu->curve)
1798
0
            return 1;
1799
0
    }
1800
1801
0
    return 0;
1802
0
}
1803
1804
/*
1805
 * Return the number of security bits for the signature algorithm, or 0 on
1806
 * error.
1807
 */
1808
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1809
0
{
1810
0
    const EVP_MD *md = NULL;
1811
0
    int secbits = 0;
1812
1813
0
    if (!tls1_lookup_md(ctx, lu, &md))
1814
0
        return 0;
1815
0
    if (md != NULL)
1816
0
    {
1817
0
        int md_type = EVP_MD_get_type(md);
1818
1819
        /* Security bits: half digest bits */
1820
0
        secbits = EVP_MD_get_size(md) * 4;
1821
        /*
1822
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1823
         * they're no longer accepted at security level 1. The real values don't
1824
         * really matter as long as they're lower than 80, which is our
1825
         * security level 1.
1826
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1827
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1828
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1829
         * puts a chosen-prefix attack for MD5 at 2^39.
1830
         */
1831
0
        if (md_type == NID_sha1)
1832
0
            secbits = 64;
1833
0
        else if (md_type == NID_md5_sha1)
1834
0
            secbits = 67;
1835
0
        else if (md_type == NID_md5)
1836
0
            secbits = 39;
1837
0
    } else {
1838
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1839
0
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1840
0
            secbits = 128;
1841
0
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1842
0
            secbits = 224;
1843
0
    }
1844
    /*
1845
     * For provider-based sigalgs we have secbits information available
1846
     * in the (provider-loaded) sigalg_list structure
1847
     */
1848
0
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1849
0
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1850
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1851
0
    }
1852
0
    return secbits;
1853
0
}
1854
1855
/*
1856
 * Check signature algorithm is consistent with sent supported signature
1857
 * algorithms and if so set relevant digest and signature scheme in
1858
 * s.
1859
 */
1860
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1861
0
{
1862
0
    const uint16_t *sent_sigs;
1863
0
    const EVP_MD *md = NULL;
1864
0
    char sigalgstr[2];
1865
0
    size_t sent_sigslen, i, cidx;
1866
0
    int pkeyid = -1;
1867
0
    const SIGALG_LOOKUP *lu;
1868
0
    int secbits = 0;
1869
1870
0
    pkeyid = EVP_PKEY_get_id(pkey);
1871
1872
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
1873
        /* Disallow DSA for TLS 1.3 */
1874
0
        if (pkeyid == EVP_PKEY_DSA) {
1875
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1876
0
            return 0;
1877
0
        }
1878
        /* Only allow PSS for TLS 1.3 */
1879
0
        if (pkeyid == EVP_PKEY_RSA)
1880
0
            pkeyid = EVP_PKEY_RSA_PSS;
1881
0
    }
1882
0
    lu = tls1_lookup_sigalg(s, sig);
1883
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1884
0
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1885
0
        pkeyid = lu->sig;
1886
1887
    /* Should never happen */
1888
0
    if (pkeyid == -1)
1889
0
        return -1;
1890
1891
    /*
1892
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1893
     * is consistent with signature: RSA keys can be used for RSA-PSS
1894
     */
1895
0
    if (lu == NULL
1896
0
        || (SSL_CONNECTION_IS_TLS13(s)
1897
0
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1898
0
        || (pkeyid != lu->sig
1899
0
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1900
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1901
0
        return 0;
1902
0
    }
1903
    /* Check the sigalg is consistent with the key OID */
1904
0
    if (!ssl_cert_lookup_by_nid(
1905
0
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1906
0
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1907
0
            || lu->sig_idx != (int)cidx) {
1908
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1909
0
        return 0;
1910
0
    }
1911
1912
0
    if (pkeyid == EVP_PKEY_EC) {
1913
1914
        /* Check point compression is permitted */
1915
0
        if (!tls1_check_pkey_comp(s, pkey)) {
1916
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1917
0
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1918
0
            return 0;
1919
0
        }
1920
1921
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1922
0
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1923
0
            int curve = ssl_get_EC_curve_nid(pkey);
1924
1925
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1926
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1927
0
                return 0;
1928
0
            }
1929
0
        }
1930
0
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1931
            /* Check curve matches extensions */
1932
0
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1933
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1934
0
                return 0;
1935
0
            }
1936
0
            if (tls1_suiteb(s)) {
1937
                /* Check sigalg matches a permissible Suite B value */
1938
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1939
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1940
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1941
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1942
0
                    return 0;
1943
0
                }
1944
0
            }
1945
0
        }
1946
0
    } else if (tls1_suiteb(s)) {
1947
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1948
0
        return 0;
1949
0
    }
1950
1951
    /* Check signature matches a type we sent */
1952
0
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1953
0
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1954
0
        if (sig == *sent_sigs)
1955
0
            break;
1956
0
    }
1957
    /* Allow fallback to SHA1 if not strict mode */
1958
0
    if (i == sent_sigslen && (lu->hash != NID_sha1
1959
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1960
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1961
0
        return 0;
1962
0
    }
1963
0
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1964
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1965
0
        return 0;
1966
0
    }
1967
    /*
1968
     * Make sure security callback allows algorithm. For historical
1969
     * reasons we have to pass the sigalg as a two byte char array.
1970
     */
1971
0
    sigalgstr[0] = (sig >> 8) & 0xff;
1972
0
    sigalgstr[1] = sig & 0xff;
1973
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1974
0
    if (secbits == 0 ||
1975
0
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1976
0
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1977
0
                      (void *)sigalgstr)) {
1978
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1979
0
        return 0;
1980
0
    }
1981
    /* Store the sigalg the peer uses */
1982
0
    s->s3.tmp.peer_sigalg = lu;
1983
0
    return 1;
1984
0
}
1985
1986
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1987
0
{
1988
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1989
1990
0
    if (sc == NULL)
1991
0
        return 0;
1992
1993
0
    if (sc->s3.tmp.peer_sigalg == NULL)
1994
0
        return 0;
1995
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
1996
0
    return 1;
1997
0
}
1998
1999
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2000
0
{
2001
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2002
2003
0
    if (sc == NULL)
2004
0
        return 0;
2005
2006
0
    if (sc->s3.tmp.sigalg == NULL)
2007
0
        return 0;
2008
0
    *pnid = sc->s3.tmp.sigalg->sig;
2009
0
    return 1;
2010
0
}
2011
2012
/*
2013
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2014
 * supported, doesn't appear in supported signature algorithms, isn't supported
2015
 * by the enabled protocol versions or by the security level.
2016
 *
2017
 * This function should only be used for checking which ciphers are supported
2018
 * by the client.
2019
 *
2020
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2021
 */
2022
int ssl_set_client_disabled(SSL_CONNECTION *s)
2023
0
{
2024
0
    s->s3.tmp.mask_a = 0;
2025
0
    s->s3.tmp.mask_k = 0;
2026
0
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2027
0
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2028
0
                                &s->s3.tmp.max_ver, NULL) != 0)
2029
0
        return 0;
2030
0
#ifndef OPENSSL_NO_PSK
2031
    /* with PSK there must be client callback set */
2032
0
    if (!s->psk_client_callback) {
2033
0
        s->s3.tmp.mask_a |= SSL_aPSK;
2034
0
        s->s3.tmp.mask_k |= SSL_PSK;
2035
0
    }
2036
0
#endif                          /* OPENSSL_NO_PSK */
2037
0
#ifndef OPENSSL_NO_SRP
2038
0
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2039
0
        s->s3.tmp.mask_a |= SSL_aSRP;
2040
0
        s->s3.tmp.mask_k |= SSL_kSRP;
2041
0
    }
2042
0
#endif
2043
0
    return 1;
2044
0
}
2045
2046
/*
2047
 * ssl_cipher_disabled - check that a cipher is disabled or not
2048
 * @s: SSL connection that you want to use the cipher on
2049
 * @c: cipher to check
2050
 * @op: Security check that you want to do
2051
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2052
 *
2053
 * Returns 1 when it's disabled, 0 when enabled.
2054
 */
2055
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2056
                        int op, int ecdhe)
2057
0
{
2058
0
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2059
0
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2060
2061
0
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2062
0
        || c->algorithm_auth & s->s3.tmp.mask_a)
2063
0
        return 1;
2064
0
    if (s->s3.tmp.max_ver == 0)
2065
0
        return 1;
2066
2067
0
    if (SSL_IS_QUIC_HANDSHAKE(s))
2068
        /* For QUIC, only allow these ciphersuites. */
2069
0
        switch (SSL_CIPHER_get_id(c)) {
2070
0
        case TLS1_3_CK_AES_128_GCM_SHA256:
2071
0
        case TLS1_3_CK_AES_256_GCM_SHA384:
2072
0
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2073
0
            break;
2074
0
        default:
2075
0
            return 1;
2076
0
        }
2077
2078
    /*
2079
     * For historical reasons we will allow ECHDE to be selected by a server
2080
     * in SSLv3 if we are a client
2081
     */
2082
0
    if (minversion == TLS1_VERSION
2083
0
            && ecdhe
2084
0
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2085
0
        minversion = SSL3_VERSION;
2086
2087
0
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2088
0
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2089
0
        return 1;
2090
2091
0
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2092
0
}
2093
2094
int tls_use_ticket(SSL_CONNECTION *s)
2095
0
{
2096
0
    if ((s->options & SSL_OP_NO_TICKET))
2097
0
        return 0;
2098
0
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2099
0
}
2100
2101
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2102
0
{
2103
0
    size_t i;
2104
2105
    /* Clear any shared signature algorithms */
2106
0
    OPENSSL_free(s->shared_sigalgs);
2107
0
    s->shared_sigalgs = NULL;
2108
0
    s->shared_sigalgslen = 0;
2109
2110
    /* Clear certificate validity flags */
2111
0
    if (s->s3.tmp.valid_flags)
2112
0
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2113
0
    else
2114
0
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2115
0
    if (s->s3.tmp.valid_flags == NULL)
2116
0
        return 0;
2117
    /*
2118
     * If peer sent no signature algorithms check to see if we support
2119
     * the default algorithm for each certificate type
2120
     */
2121
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2122
0
            && s->s3.tmp.peer_sigalgs == NULL) {
2123
0
        const uint16_t *sent_sigs;
2124
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2125
2126
0
        for (i = 0; i < s->ssl_pkey_num; i++) {
2127
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2128
0
            size_t j;
2129
2130
0
            if (lu == NULL)
2131
0
                continue;
2132
            /* Check default matches a type we sent */
2133
0
            for (j = 0; j < sent_sigslen; j++) {
2134
0
                if (lu->sigalg == sent_sigs[j]) {
2135
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2136
0
                        break;
2137
0
                }
2138
0
            }
2139
0
        }
2140
0
        return 1;
2141
0
    }
2142
2143
0
    if (!tls1_process_sigalgs(s)) {
2144
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2145
0
        return 0;
2146
0
    }
2147
0
    if (s->shared_sigalgs != NULL)
2148
0
        return 1;
2149
2150
    /* Fatal error if no shared signature algorithms */
2151
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2152
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2153
0
    return 0;
2154
0
}
2155
2156
/*-
2157
 * Gets the ticket information supplied by the client if any.
2158
 *
2159
 *   hello: The parsed ClientHello data
2160
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2161
 *       point to the resulting session.
2162
 */
2163
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2164
                                             CLIENTHELLO_MSG *hello,
2165
                                             SSL_SESSION **ret)
2166
0
{
2167
0
    size_t size;
2168
0
    RAW_EXTENSION *ticketext;
2169
2170
0
    *ret = NULL;
2171
0
    s->ext.ticket_expected = 0;
2172
2173
    /*
2174
     * If tickets disabled or not supported by the protocol version
2175
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2176
     * resumption.
2177
     */
2178
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2179
0
        return SSL_TICKET_NONE;
2180
2181
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2182
0
    if (!ticketext->present)
2183
0
        return SSL_TICKET_NONE;
2184
2185
0
    size = PACKET_remaining(&ticketext->data);
2186
2187
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2188
0
                              hello->session_id, hello->session_id_len, ret);
2189
0
}
2190
2191
/*-
2192
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2193
 *
2194
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2195
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2196
 * session tickets and one will never be decrypted, nor will
2197
 * s->ext.ticket_expected be set to 1.
2198
 *
2199
 * Side effects:
2200
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2201
 *   a new session ticket to the client because the client indicated support
2202
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2203
 *   a session ticket or we couldn't use the one it gave us, or if
2204
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2205
 *   Otherwise, s->ext.ticket_expected is set to 0.
2206
 *
2207
 *   etick: points to the body of the session ticket extension.
2208
 *   eticklen: the length of the session tickets extension.
2209
 *   sess_id: points at the session ID.
2210
 *   sesslen: the length of the session ID.
2211
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2212
 *       point to the resulting session.
2213
 */
2214
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2215
                                     const unsigned char *etick,
2216
                                     size_t eticklen,
2217
                                     const unsigned char *sess_id,
2218
                                     size_t sesslen, SSL_SESSION **psess)
2219
0
{
2220
0
    SSL_SESSION *sess = NULL;
2221
0
    unsigned char *sdec;
2222
0
    const unsigned char *p;
2223
0
    int slen, ivlen, renew_ticket = 0, declen;
2224
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2225
0
    size_t mlen;
2226
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2227
0
    SSL_HMAC *hctx = NULL;
2228
0
    EVP_CIPHER_CTX *ctx = NULL;
2229
0
    SSL_CTX *tctx = s->session_ctx;
2230
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2231
2232
0
    if (eticklen == 0) {
2233
        /*
2234
         * The client will accept a ticket but doesn't currently have
2235
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2236
         */
2237
0
        ret = SSL_TICKET_EMPTY;
2238
0
        goto end;
2239
0
    }
2240
0
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2241
        /*
2242
         * Indicate that the ticket couldn't be decrypted rather than
2243
         * generating the session from ticket now, trigger
2244
         * abbreviated handshake based on external mechanism to
2245
         * calculate the master secret later.
2246
         */
2247
0
        ret = SSL_TICKET_NO_DECRYPT;
2248
0
        goto end;
2249
0
    }
2250
2251
    /* Need at least keyname + iv */
2252
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2253
0
        ret = SSL_TICKET_NO_DECRYPT;
2254
0
        goto end;
2255
0
    }
2256
2257
    /* Initialize session ticket encryption and HMAC contexts */
2258
0
    hctx = ssl_hmac_new(tctx);
2259
0
    if (hctx == NULL) {
2260
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2261
0
        goto end;
2262
0
    }
2263
0
    ctx = EVP_CIPHER_CTX_new();
2264
0
    if (ctx == NULL) {
2265
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2266
0
        goto end;
2267
0
    }
2268
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2269
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2270
#else
2271
    if (tctx->ext.ticket_key_evp_cb != NULL)
2272
#endif
2273
0
    {
2274
0
        unsigned char *nctick = (unsigned char *)etick;
2275
0
        int rv = 0;
2276
2277
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2278
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2279
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2280
0
                                             ctx,
2281
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2282
0
                                             0);
2283
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2284
0
        else if (tctx->ext.ticket_key_cb != NULL)
2285
            /* if 0 is returned, write an empty ticket */
2286
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2287
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2288
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2289
0
#endif
2290
0
        if (rv < 0) {
2291
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2292
0
            goto end;
2293
0
        }
2294
0
        if (rv == 0) {
2295
0
            ret = SSL_TICKET_NO_DECRYPT;
2296
0
            goto end;
2297
0
        }
2298
0
        if (rv == 2)
2299
0
            renew_ticket = 1;
2300
0
    } else {
2301
0
        EVP_CIPHER *aes256cbc = NULL;
2302
2303
        /* Check key name matches */
2304
0
        if (memcmp(etick, tctx->ext.tick_key_name,
2305
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2306
0
            ret = SSL_TICKET_NO_DECRYPT;
2307
0
            goto end;
2308
0
        }
2309
2310
0
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2311
0
                                     sctx->propq);
2312
0
        if (aes256cbc == NULL
2313
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2314
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
2315
0
                             "SHA256") <= 0
2316
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2317
0
                                  tctx->ext.secure->tick_aes_key,
2318
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2319
0
            EVP_CIPHER_free(aes256cbc);
2320
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2321
0
            goto end;
2322
0
        }
2323
0
        EVP_CIPHER_free(aes256cbc);
2324
0
        if (SSL_CONNECTION_IS_TLS13(s))
2325
0
            renew_ticket = 1;
2326
0
    }
2327
    /*
2328
     * Attempt to process session ticket, first conduct sanity and integrity
2329
     * checks on ticket.
2330
     */
2331
0
    mlen = ssl_hmac_size(hctx);
2332
0
    if (mlen == 0) {
2333
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2334
0
        goto end;
2335
0
    }
2336
2337
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2338
0
    if (ivlen < 0) {
2339
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2340
0
        goto end;
2341
0
    }
2342
2343
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2344
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2345
0
        ret = SSL_TICKET_NO_DECRYPT;
2346
0
        goto end;
2347
0
    }
2348
0
    eticklen -= mlen;
2349
    /* Check HMAC of encrypted ticket */
2350
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2351
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2352
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2353
0
        goto end;
2354
0
    }
2355
2356
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2357
0
        ret = SSL_TICKET_NO_DECRYPT;
2358
0
        goto end;
2359
0
    }
2360
    /* Attempt to decrypt session data */
2361
    /* Move p after IV to start of encrypted ticket, update length */
2362
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2363
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2364
0
    sdec = OPENSSL_malloc(eticklen);
2365
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2366
0
                                          (int)eticklen) <= 0) {
2367
0
        OPENSSL_free(sdec);
2368
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2369
0
        goto end;
2370
0
    }
2371
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2372
0
        OPENSSL_free(sdec);
2373
0
        ret = SSL_TICKET_NO_DECRYPT;
2374
0
        goto end;
2375
0
    }
2376
0
    slen += declen;
2377
0
    p = sdec;
2378
2379
0
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2380
0
    slen -= p - sdec;
2381
0
    OPENSSL_free(sdec);
2382
0
    if (sess) {
2383
        /* Some additional consistency checks */
2384
0
        if (slen != 0) {
2385
0
            SSL_SESSION_free(sess);
2386
0
            sess = NULL;
2387
0
            ret = SSL_TICKET_NO_DECRYPT;
2388
0
            goto end;
2389
0
        }
2390
        /*
2391
         * The session ID, if non-empty, is used by some clients to detect
2392
         * that the ticket has been accepted. So we copy it to the session
2393
         * structure. If it is empty set length to zero as required by
2394
         * standard.
2395
         */
2396
0
        if (sesslen) {
2397
0
            memcpy(sess->session_id, sess_id, sesslen);
2398
0
            sess->session_id_length = sesslen;
2399
0
        }
2400
0
        if (renew_ticket)
2401
0
            ret = SSL_TICKET_SUCCESS_RENEW;
2402
0
        else
2403
0
            ret = SSL_TICKET_SUCCESS;
2404
0
        goto end;
2405
0
    }
2406
0
    ERR_clear_error();
2407
    /*
2408
     * For session parse failure, indicate that we need to send a new ticket.
2409
     */
2410
0
    ret = SSL_TICKET_NO_DECRYPT;
2411
2412
0
 end:
2413
0
    EVP_CIPHER_CTX_free(ctx);
2414
0
    ssl_hmac_free(hctx);
2415
2416
    /*
2417
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2418
     * detected above. The callback is responsible for checking |ret| before it
2419
     * performs any action
2420
     */
2421
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
2422
0
            && (ret == SSL_TICKET_EMPTY
2423
0
                || ret == SSL_TICKET_NO_DECRYPT
2424
0
                || ret == SSL_TICKET_SUCCESS
2425
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2426
0
        size_t keyname_len = eticklen;
2427
0
        int retcb;
2428
2429
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2430
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2431
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2432
0
                                                  sess, etick, keyname_len,
2433
0
                                                  ret,
2434
0
                                                  s->session_ctx->ticket_cb_data);
2435
0
        switch (retcb) {
2436
0
        case SSL_TICKET_RETURN_ABORT:
2437
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2438
0
            break;
2439
2440
0
        case SSL_TICKET_RETURN_IGNORE:
2441
0
            ret = SSL_TICKET_NONE;
2442
0
            SSL_SESSION_free(sess);
2443
0
            sess = NULL;
2444
0
            break;
2445
2446
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2447
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2448
0
                ret = SSL_TICKET_NO_DECRYPT;
2449
            /* else the value of |ret| will already do the right thing */
2450
0
            SSL_SESSION_free(sess);
2451
0
            sess = NULL;
2452
0
            break;
2453
2454
0
        case SSL_TICKET_RETURN_USE:
2455
0
        case SSL_TICKET_RETURN_USE_RENEW:
2456
0
            if (ret != SSL_TICKET_SUCCESS
2457
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2458
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2459
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2460
0
                ret = SSL_TICKET_SUCCESS;
2461
0
            else
2462
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2463
0
            break;
2464
2465
0
        default:
2466
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2467
0
        }
2468
0
    }
2469
2470
0
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2471
0
        switch (ret) {
2472
0
        case SSL_TICKET_NO_DECRYPT:
2473
0
        case SSL_TICKET_SUCCESS_RENEW:
2474
0
        case SSL_TICKET_EMPTY:
2475
0
            s->ext.ticket_expected = 1;
2476
0
        }
2477
0
    }
2478
2479
0
    *psess = sess;
2480
2481
0
    return ret;
2482
0
}
2483
2484
/* Check to see if a signature algorithm is allowed */
2485
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2486
                                const SIGALG_LOOKUP *lu)
2487
0
{
2488
0
    unsigned char sigalgstr[2];
2489
0
    int secbits;
2490
2491
0
    if (lu == NULL || !lu->enabled)
2492
0
        return 0;
2493
    /* DSA is not allowed in TLS 1.3 */
2494
0
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2495
0
        return 0;
2496
    /*
2497
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2498
     * spec
2499
     */
2500
0
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2501
0
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2502
0
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2503
0
            || lu->hash_idx == SSL_MD_MD5_IDX
2504
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2505
0
        return 0;
2506
2507
    /* See if public key algorithm allowed */
2508
0
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2509
0
        return 0;
2510
2511
0
    if (lu->sig == NID_id_GostR3410_2012_256
2512
0
            || lu->sig == NID_id_GostR3410_2012_512
2513
0
            || lu->sig == NID_id_GostR3410_2001) {
2514
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2515
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2516
0
            return 0;
2517
0
        if (!s->server
2518
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2519
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2520
0
            int i, num;
2521
0
            STACK_OF(SSL_CIPHER) *sk;
2522
2523
            /*
2524
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2525
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2526
             * ciphersuites enabled.
2527
             */
2528
2529
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2530
0
                return 0;
2531
2532
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2533
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2534
0
            for (i = 0; i < num; i++) {
2535
0
                const SSL_CIPHER *c;
2536
2537
0
                c = sk_SSL_CIPHER_value(sk, i);
2538
                /* Skip disabled ciphers */
2539
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2540
0
                    continue;
2541
2542
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2543
0
                    break;
2544
0
            }
2545
0
            if (i == num)
2546
0
                return 0;
2547
0
        }
2548
0
    }
2549
2550
    /* Finally see if security callback allows it */
2551
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2552
0
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2553
0
    sigalgstr[1] = lu->sigalg & 0xff;
2554
0
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2555
0
}
2556
2557
/*
2558
 * Get a mask of disabled public key algorithms based on supported signature
2559
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2560
 * disabled.
2561
 */
2562
2563
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2564
0
{
2565
0
    const uint16_t *sigalgs;
2566
0
    size_t i, sigalgslen;
2567
0
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2568
    /*
2569
     * Go through all signature algorithms seeing if we support any
2570
     * in disabled_mask.
2571
     */
2572
0
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2573
0
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2574
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2575
0
        const SSL_CERT_LOOKUP *clu;
2576
2577
0
        if (lu == NULL)
2578
0
            continue;
2579
2580
0
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2581
0
                                     SSL_CONNECTION_GET_CTX(s));
2582
0
        if (clu == NULL)
2583
0
                continue;
2584
2585
        /* If algorithm is disabled see if we can enable it */
2586
0
        if ((clu->amask & disabled_mask) != 0
2587
0
                && tls12_sigalg_allowed(s, op, lu))
2588
0
            disabled_mask &= ~clu->amask;
2589
0
    }
2590
0
    *pmask_a |= disabled_mask;
2591
0
}
2592
2593
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2594
                       const uint16_t *psig, size_t psiglen)
2595
0
{
2596
0
    size_t i;
2597
0
    int rv = 0;
2598
2599
0
    for (i = 0; i < psiglen; i++, psig++) {
2600
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2601
2602
0
        if (lu == NULL
2603
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2604
0
            continue;
2605
0
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2606
0
            return 0;
2607
        /*
2608
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2609
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2610
         */
2611
0
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2612
0
            || (lu->sig != EVP_PKEY_RSA
2613
0
                && lu->hash != NID_sha1
2614
0
                && lu->hash != NID_sha224)))
2615
0
            rv = 1;
2616
0
    }
2617
0
    if (rv == 0)
2618
0
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2619
0
    return rv;
2620
0
}
2621
2622
/* Given preference and allowed sigalgs set shared sigalgs */
2623
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2624
                                   const SIGALG_LOOKUP **shsig,
2625
                                   const uint16_t *pref, size_t preflen,
2626
                                   const uint16_t *allow, size_t allowlen)
2627
0
{
2628
0
    const uint16_t *ptmp, *atmp;
2629
0
    size_t i, j, nmatch = 0;
2630
0
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2631
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2632
2633
        /* Skip disabled hashes or signature algorithms */
2634
0
        if (lu == NULL
2635
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2636
0
            continue;
2637
0
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2638
0
            if (*ptmp == *atmp) {
2639
0
                nmatch++;
2640
0
                if (shsig)
2641
0
                    *shsig++ = lu;
2642
0
                break;
2643
0
            }
2644
0
        }
2645
0
    }
2646
0
    return nmatch;
2647
0
}
2648
2649
/* Set shared signature algorithms for SSL structures */
2650
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2651
0
{
2652
0
    const uint16_t *pref, *allow, *conf;
2653
0
    size_t preflen, allowlen, conflen;
2654
0
    size_t nmatch;
2655
0
    const SIGALG_LOOKUP **salgs = NULL;
2656
0
    CERT *c = s->cert;
2657
0
    unsigned int is_suiteb = tls1_suiteb(s);
2658
2659
0
    OPENSSL_free(s->shared_sigalgs);
2660
0
    s->shared_sigalgs = NULL;
2661
0
    s->shared_sigalgslen = 0;
2662
    /* If client use client signature algorithms if not NULL */
2663
0
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2664
0
        conf = c->client_sigalgs;
2665
0
        conflen = c->client_sigalgslen;
2666
0
    } else if (c->conf_sigalgs && !is_suiteb) {
2667
0
        conf = c->conf_sigalgs;
2668
0
        conflen = c->conf_sigalgslen;
2669
0
    } else
2670
0
        conflen = tls12_get_psigalgs(s, 0, &conf);
2671
0
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2672
0
        pref = conf;
2673
0
        preflen = conflen;
2674
0
        allow = s->s3.tmp.peer_sigalgs;
2675
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2676
0
    } else {
2677
0
        allow = conf;
2678
0
        allowlen = conflen;
2679
0
        pref = s->s3.tmp.peer_sigalgs;
2680
0
        preflen = s->s3.tmp.peer_sigalgslen;
2681
0
    }
2682
0
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2683
0
    if (nmatch) {
2684
0
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2685
0
            return 0;
2686
0
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2687
0
    } else {
2688
0
        salgs = NULL;
2689
0
    }
2690
0
    s->shared_sigalgs = salgs;
2691
0
    s->shared_sigalgslen = nmatch;
2692
0
    return 1;
2693
0
}
2694
2695
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2696
0
{
2697
0
    unsigned int stmp;
2698
0
    size_t size, i;
2699
0
    uint16_t *buf;
2700
2701
0
    size = PACKET_remaining(pkt);
2702
2703
    /* Invalid data length */
2704
0
    if (size == 0 || (size & 1) != 0)
2705
0
        return 0;
2706
2707
0
    size >>= 1;
2708
2709
0
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2710
0
        return 0;
2711
0
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2712
0
        buf[i] = stmp;
2713
2714
0
    if (i != size) {
2715
0
        OPENSSL_free(buf);
2716
0
        return 0;
2717
0
    }
2718
2719
0
    OPENSSL_free(*pdest);
2720
0
    *pdest = buf;
2721
0
    *pdestlen = size;
2722
2723
0
    return 1;
2724
0
}
2725
2726
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2727
0
{
2728
    /* Extension ignored for inappropriate versions */
2729
0
    if (!SSL_USE_SIGALGS(s))
2730
0
        return 1;
2731
    /* Should never happen */
2732
0
    if (s->cert == NULL)
2733
0
        return 0;
2734
2735
0
    if (cert)
2736
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2737
0
                             &s->s3.tmp.peer_cert_sigalgslen);
2738
0
    else
2739
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2740
0
                             &s->s3.tmp.peer_sigalgslen);
2741
2742
0
}
2743
2744
/* Set preferred digest for each key type */
2745
2746
int tls1_process_sigalgs(SSL_CONNECTION *s)
2747
0
{
2748
0
    size_t i;
2749
0
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2750
2751
0
    if (!tls1_set_shared_sigalgs(s))
2752
0
        return 0;
2753
2754
0
    for (i = 0; i < s->ssl_pkey_num; i++)
2755
0
        pvalid[i] = 0;
2756
2757
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
2758
0
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2759
0
        int idx = sigptr->sig_idx;
2760
2761
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2762
0
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2763
0
            continue;
2764
        /* If not disabled indicate we can explicitly sign */
2765
0
        if (pvalid[idx] == 0
2766
0
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2767
0
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2768
0
    }
2769
0
    return 1;
2770
0
}
2771
2772
int SSL_get_sigalgs(SSL *s, int idx,
2773
                    int *psign, int *phash, int *psignhash,
2774
                    unsigned char *rsig, unsigned char *rhash)
2775
0
{
2776
0
    uint16_t *psig;
2777
0
    size_t numsigalgs;
2778
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2779
2780
0
    if (sc == NULL)
2781
0
        return 0;
2782
2783
0
    psig = sc->s3.tmp.peer_sigalgs;
2784
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2785
2786
0
    if (psig == NULL || numsigalgs > INT_MAX)
2787
0
        return 0;
2788
0
    if (idx >= 0) {
2789
0
        const SIGALG_LOOKUP *lu;
2790
2791
0
        if (idx >= (int)numsigalgs)
2792
0
            return 0;
2793
0
        psig += idx;
2794
0
        if (rhash != NULL)
2795
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2796
0
        if (rsig != NULL)
2797
0
            *rsig = (unsigned char)(*psig & 0xff);
2798
0
        lu = tls1_lookup_sigalg(sc, *psig);
2799
0
        if (psign != NULL)
2800
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2801
0
        if (phash != NULL)
2802
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2803
0
        if (psignhash != NULL)
2804
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2805
0
    }
2806
0
    return (int)numsigalgs;
2807
0
}
2808
2809
int SSL_get_shared_sigalgs(SSL *s, int idx,
2810
                           int *psign, int *phash, int *psignhash,
2811
                           unsigned char *rsig, unsigned char *rhash)
2812
0
{
2813
0
    const SIGALG_LOOKUP *shsigalgs;
2814
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2815
2816
0
    if (sc == NULL)
2817
0
        return 0;
2818
2819
0
    if (sc->shared_sigalgs == NULL
2820
0
        || idx < 0
2821
0
        || idx >= (int)sc->shared_sigalgslen
2822
0
        || sc->shared_sigalgslen > INT_MAX)
2823
0
        return 0;
2824
0
    shsigalgs = sc->shared_sigalgs[idx];
2825
0
    if (phash != NULL)
2826
0
        *phash = shsigalgs->hash;
2827
0
    if (psign != NULL)
2828
0
        *psign = shsigalgs->sig;
2829
0
    if (psignhash != NULL)
2830
0
        *psignhash = shsigalgs->sigandhash;
2831
0
    if (rsig != NULL)
2832
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2833
0
    if (rhash != NULL)
2834
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2835
0
    return (int)sc->shared_sigalgslen;
2836
0
}
2837
2838
/* Maximum possible number of unique entries in sigalgs array */
2839
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2840
2841
typedef struct {
2842
    size_t sigalgcnt;
2843
    /* TLSEXT_SIGALG_XXX values */
2844
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2845
} sig_cb_st;
2846
2847
static void get_sigorhash(int *psig, int *phash, const char *str)
2848
0
{
2849
0
    if (strcmp(str, "RSA") == 0) {
2850
0
        *psig = EVP_PKEY_RSA;
2851
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2852
0
        *psig = EVP_PKEY_RSA_PSS;
2853
0
    } else if (strcmp(str, "DSA") == 0) {
2854
0
        *psig = EVP_PKEY_DSA;
2855
0
    } else if (strcmp(str, "ECDSA") == 0) {
2856
0
        *psig = EVP_PKEY_EC;
2857
0
    } else {
2858
0
        *phash = OBJ_sn2nid(str);
2859
0
        if (*phash == NID_undef)
2860
0
            *phash = OBJ_ln2nid(str);
2861
0
    }
2862
0
}
2863
/* Maximum length of a signature algorithm string component */
2864
#define TLS_MAX_SIGSTRING_LEN   40
2865
2866
static int sig_cb(const char *elem, int len, void *arg)
2867
0
{
2868
0
    sig_cb_st *sarg = arg;
2869
0
    size_t i;
2870
0
    const SIGALG_LOOKUP *s;
2871
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2872
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2873
0
    if (elem == NULL)
2874
0
        return 0;
2875
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2876
0
        return 0;
2877
0
    if (len > (int)(sizeof(etmp) - 1))
2878
0
        return 0;
2879
0
    memcpy(etmp, elem, len);
2880
0
    etmp[len] = 0;
2881
0
    p = strchr(etmp, '+');
2882
    /*
2883
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2884
     * if there's no '+' in the provided name, look for the new-style combined
2885
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2886
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2887
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2888
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2889
     * in the table.
2890
     */
2891
0
    if (p == NULL) {
2892
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2893
0
             i++, s++) {
2894
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2895
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2896
0
                break;
2897
0
            }
2898
0
        }
2899
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2900
0
            return 0;
2901
0
    } else {
2902
0
        *p = 0;
2903
0
        p++;
2904
0
        if (*p == 0)
2905
0
            return 0;
2906
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2907
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2908
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2909
0
            return 0;
2910
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2911
0
             i++, s++) {
2912
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2913
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2914
0
                break;
2915
0
            }
2916
0
        }
2917
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2918
0
            return 0;
2919
0
    }
2920
2921
    /* Reject duplicates */
2922
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2923
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2924
0
            sarg->sigalgcnt--;
2925
0
            return 0;
2926
0
        }
2927
0
    }
2928
0
    return 1;
2929
0
}
2930
2931
/*
2932
 * Set supported signature algorithms based on a colon separated list of the
2933
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2934
 */
2935
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2936
0
{
2937
0
    sig_cb_st sig;
2938
0
    sig.sigalgcnt = 0;
2939
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2940
0
        return 0;
2941
0
    if (c == NULL)
2942
0
        return 1;
2943
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2944
0
}
2945
2946
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2947
                     int client)
2948
0
{
2949
0
    uint16_t *sigalgs;
2950
2951
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
2952
0
        return 0;
2953
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2954
2955
0
    if (client) {
2956
0
        OPENSSL_free(c->client_sigalgs);
2957
0
        c->client_sigalgs = sigalgs;
2958
0
        c->client_sigalgslen = salglen;
2959
0
    } else {
2960
0
        OPENSSL_free(c->conf_sigalgs);
2961
0
        c->conf_sigalgs = sigalgs;
2962
0
        c->conf_sigalgslen = salglen;
2963
0
    }
2964
2965
0
    return 1;
2966
0
}
2967
2968
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2969
0
{
2970
0
    uint16_t *sigalgs, *sptr;
2971
0
    size_t i;
2972
2973
0
    if (salglen & 1)
2974
0
        return 0;
2975
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
2976
0
        return 0;
2977
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2978
0
        size_t j;
2979
0
        const SIGALG_LOOKUP *curr;
2980
0
        int md_id = *psig_nids++;
2981
0
        int sig_id = *psig_nids++;
2982
2983
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2984
0
             j++, curr++) {
2985
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2986
0
                *sptr++ = curr->sigalg;
2987
0
                break;
2988
0
            }
2989
0
        }
2990
2991
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
2992
0
            goto err;
2993
0
    }
2994
2995
0
    if (client) {
2996
0
        OPENSSL_free(c->client_sigalgs);
2997
0
        c->client_sigalgs = sigalgs;
2998
0
        c->client_sigalgslen = salglen / 2;
2999
0
    } else {
3000
0
        OPENSSL_free(c->conf_sigalgs);
3001
0
        c->conf_sigalgs = sigalgs;
3002
0
        c->conf_sigalgslen = salglen / 2;
3003
0
    }
3004
3005
0
    return 1;
3006
3007
0
 err:
3008
0
    OPENSSL_free(sigalgs);
3009
0
    return 0;
3010
0
}
3011
3012
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3013
0
{
3014
0
    int sig_nid, use_pc_sigalgs = 0;
3015
0
    size_t i;
3016
0
    const SIGALG_LOOKUP *sigalg;
3017
0
    size_t sigalgslen;
3018
3019
0
    if (default_nid == -1)
3020
0
        return 1;
3021
0
    sig_nid = X509_get_signature_nid(x);
3022
0
    if (default_nid)
3023
0
        return sig_nid == default_nid ? 1 : 0;
3024
3025
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3026
        /*
3027
         * If we're in TLSv1.3 then we only get here if we're checking the
3028
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3029
         * otherwise we default to normal sigalgs.
3030
         */
3031
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3032
0
        use_pc_sigalgs = 1;
3033
0
    } else {
3034
0
        sigalgslen = s->shared_sigalgslen;
3035
0
    }
3036
0
    for (i = 0; i < sigalgslen; i++) {
3037
0
        sigalg = use_pc_sigalgs
3038
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3039
0
                 : s->shared_sigalgs[i];
3040
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3041
0
            return 1;
3042
0
    }
3043
0
    return 0;
3044
0
}
3045
3046
/* Check to see if a certificate issuer name matches list of CA names */
3047
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3048
0
{
3049
0
    const X509_NAME *nm;
3050
0
    int i;
3051
0
    nm = X509_get_issuer_name(x);
3052
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3053
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3054
0
            return 1;
3055
0
    }
3056
0
    return 0;
3057
0
}
3058
3059
/*
3060
 * Check certificate chain is consistent with TLS extensions and is usable by
3061
 * server. This servers two purposes: it allows users to check chains before
3062
 * passing them to the server and it allows the server to check chains before
3063
 * attempting to use them.
3064
 */
3065
3066
/* Flags which need to be set for a certificate when strict mode not set */
3067
3068
#define CERT_PKEY_VALID_FLAGS \
3069
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3070
/* Strict mode flags */
3071
#define CERT_PKEY_STRICT_FLAGS \
3072
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3073
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3074
3075
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3076
                     STACK_OF(X509) *chain, int idx)
3077
0
{
3078
0
    int i;
3079
0
    int rv = 0;
3080
0
    int check_flags = 0, strict_mode;
3081
0
    CERT_PKEY *cpk = NULL;
3082
0
    CERT *c = s->cert;
3083
0
    uint32_t *pvalid;
3084
0
    unsigned int suiteb_flags = tls1_suiteb(s);
3085
3086
    /*
3087
     * Meaning of idx:
3088
     * idx == -1 means SSL_check_chain() invocation
3089
     * idx == -2 means checking client certificate chains
3090
     * idx >= 0 means checking SSL_PKEY index
3091
     *
3092
     * For RPK, where there may be no cert, we ignore -1
3093
     */
3094
0
    if (idx != -1) {
3095
0
        if (idx == -2) {
3096
0
            cpk = c->key;
3097
0
            idx = (int)(cpk - c->pkeys);
3098
0
        } else
3099
0
            cpk = c->pkeys + idx;
3100
0
        pvalid = s->s3.tmp.valid_flags + idx;
3101
0
        x = cpk->x509;
3102
0
        pk = cpk->privatekey;
3103
0
        chain = cpk->chain;
3104
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3105
0
        if (tls12_rpk_and_privkey(s, idx)) {
3106
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3107
0
                return 0;
3108
0
            *pvalid = rv = CERT_PKEY_RPK;
3109
0
            return rv;
3110
0
        }
3111
        /* If no cert or key, forget it */
3112
0
        if (x == NULL || pk == NULL)
3113
0
            goto end;
3114
0
    } else {
3115
0
        size_t certidx;
3116
3117
0
        if (x == NULL || pk == NULL)
3118
0
            return 0;
3119
3120
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3121
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3122
0
            return 0;
3123
0
        idx = certidx;
3124
0
        pvalid = s->s3.tmp.valid_flags + idx;
3125
3126
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3127
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3128
0
        else
3129
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3130
0
        strict_mode = 1;
3131
0
    }
3132
3133
0
    if (suiteb_flags) {
3134
0
        int ok;
3135
0
        if (check_flags)
3136
0
            check_flags |= CERT_PKEY_SUITEB;
3137
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3138
0
        if (ok == X509_V_OK)
3139
0
            rv |= CERT_PKEY_SUITEB;
3140
0
        else if (!check_flags)
3141
0
            goto end;
3142
0
    }
3143
3144
    /*
3145
     * Check all signature algorithms are consistent with signature
3146
     * algorithms extension if TLS 1.2 or later and strict mode.
3147
     */
3148
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3149
0
        && strict_mode) {
3150
0
        int default_nid;
3151
0
        int rsign = 0;
3152
3153
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3154
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3155
0
            default_nid = 0;
3156
        /* If no sigalgs extension use defaults from RFC5246 */
3157
0
        } else {
3158
0
            switch (idx) {
3159
0
            case SSL_PKEY_RSA:
3160
0
                rsign = EVP_PKEY_RSA;
3161
0
                default_nid = NID_sha1WithRSAEncryption;
3162
0
                break;
3163
3164
0
            case SSL_PKEY_DSA_SIGN:
3165
0
                rsign = EVP_PKEY_DSA;
3166
0
                default_nid = NID_dsaWithSHA1;
3167
0
                break;
3168
3169
0
            case SSL_PKEY_ECC:
3170
0
                rsign = EVP_PKEY_EC;
3171
0
                default_nid = NID_ecdsa_with_SHA1;
3172
0
                break;
3173
3174
0
            case SSL_PKEY_GOST01:
3175
0
                rsign = NID_id_GostR3410_2001;
3176
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3177
0
                break;
3178
3179
0
            case SSL_PKEY_GOST12_256:
3180
0
                rsign = NID_id_GostR3410_2012_256;
3181
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3182
0
                break;
3183
3184
0
            case SSL_PKEY_GOST12_512:
3185
0
                rsign = NID_id_GostR3410_2012_512;
3186
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3187
0
                break;
3188
3189
0
            default:
3190
0
                default_nid = -1;
3191
0
                break;
3192
0
            }
3193
0
        }
3194
        /*
3195
         * If peer sent no signature algorithms extension and we have set
3196
         * preferred signature algorithms check we support sha1.
3197
         */
3198
0
        if (default_nid > 0 && c->conf_sigalgs) {
3199
0
            size_t j;
3200
0
            const uint16_t *p = c->conf_sigalgs;
3201
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3202
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3203
3204
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3205
0
                    break;
3206
0
            }
3207
0
            if (j == c->conf_sigalgslen) {
3208
0
                if (check_flags)
3209
0
                    goto skip_sigs;
3210
0
                else
3211
0
                    goto end;
3212
0
            }
3213
0
        }
3214
        /* Check signature algorithm of each cert in chain */
3215
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3216
            /*
3217
             * We only get here if the application has called SSL_check_chain(),
3218
             * so check_flags is always set.
3219
             */
3220
0
            if (find_sig_alg(s, x, pk) != NULL)
3221
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3222
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3223
0
            if (!check_flags)
3224
0
                goto end;
3225
0
        } else
3226
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3227
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3228
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3229
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3230
0
                if (check_flags) {
3231
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3232
0
                    break;
3233
0
                } else
3234
0
                    goto end;
3235
0
            }
3236
0
        }
3237
0
    }
3238
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3239
0
    else if (check_flags)
3240
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3241
0
 skip_sigs:
3242
    /* Check cert parameters are consistent */
3243
0
    if (tls1_check_cert_param(s, x, 1))
3244
0
        rv |= CERT_PKEY_EE_PARAM;
3245
0
    else if (!check_flags)
3246
0
        goto end;
3247
0
    if (!s->server)
3248
0
        rv |= CERT_PKEY_CA_PARAM;
3249
    /* In strict mode check rest of chain too */
3250
0
    else if (strict_mode) {
3251
0
        rv |= CERT_PKEY_CA_PARAM;
3252
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3253
0
            X509 *ca = sk_X509_value(chain, i);
3254
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3255
0
                if (check_flags) {
3256
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3257
0
                    break;
3258
0
                } else
3259
0
                    goto end;
3260
0
            }
3261
0
        }
3262
0
    }
3263
0
    if (!s->server && strict_mode) {
3264
0
        STACK_OF(X509_NAME) *ca_dn;
3265
0
        int check_type = 0;
3266
3267
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3268
0
            check_type = TLS_CT_RSA_SIGN;
3269
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3270
0
            check_type = TLS_CT_DSS_SIGN;
3271
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3272
0
            check_type = TLS_CT_ECDSA_SIGN;
3273
3274
0
        if (check_type) {
3275
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3276
0
            size_t j;
3277
3278
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3279
0
                if (*ctypes == check_type) {
3280
0
                    rv |= CERT_PKEY_CERT_TYPE;
3281
0
                    break;
3282
0
                }
3283
0
            }
3284
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3285
0
                goto end;
3286
0
        } else {
3287
0
            rv |= CERT_PKEY_CERT_TYPE;
3288
0
        }
3289
3290
0
        ca_dn = s->s3.tmp.peer_ca_names;
3291
3292
0
        if (ca_dn == NULL
3293
0
            || sk_X509_NAME_num(ca_dn) == 0
3294
0
            || ssl_check_ca_name(ca_dn, x))
3295
0
            rv |= CERT_PKEY_ISSUER_NAME;
3296
0
        else
3297
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3298
0
                X509 *xtmp = sk_X509_value(chain, i);
3299
3300
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3301
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3302
0
                    break;
3303
0
                }
3304
0
            }
3305
3306
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3307
0
            goto end;
3308
0
    } else
3309
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3310
3311
0
    if (!check_flags || (rv & check_flags) == check_flags)
3312
0
        rv |= CERT_PKEY_VALID;
3313
3314
0
 end:
3315
3316
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3317
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3318
0
    else
3319
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3320
3321
    /*
3322
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3323
     * chain is invalid.
3324
     */
3325
0
    if (!check_flags) {
3326
0
        if (rv & CERT_PKEY_VALID) {
3327
0
            *pvalid = rv;
3328
0
        } else {
3329
            /* Preserve sign and explicit sign flag, clear rest */
3330
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3331
0
            return 0;
3332
0
        }
3333
0
    }
3334
0
    return rv;
3335
0
}
3336
3337
/* Set validity of certificates in an SSL structure */
3338
void tls1_set_cert_validity(SSL_CONNECTION *s)
3339
0
{
3340
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3341
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3342
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3343
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3344
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3345
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3346
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3347
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3348
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3349
0
}
3350
3351
/* User level utility function to check a chain is suitable */
3352
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3353
0
{
3354
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3355
3356
0
    if (sc == NULL)
3357
0
        return 0;
3358
3359
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3360
0
}
3361
3362
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3363
0
{
3364
0
    EVP_PKEY *dhp = NULL;
3365
0
    BIGNUM *p;
3366
0
    int dh_secbits = 80, sec_level_bits;
3367
0
    EVP_PKEY_CTX *pctx = NULL;
3368
0
    OSSL_PARAM_BLD *tmpl = NULL;
3369
0
    OSSL_PARAM *params = NULL;
3370
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3371
3372
0
    if (s->cert->dh_tmp_auto != 2) {
3373
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3374
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3375
0
                dh_secbits = 128;
3376
0
            else
3377
0
                dh_secbits = 80;
3378
0
        } else {
3379
0
            if (s->s3.tmp.cert == NULL)
3380
0
                return NULL;
3381
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3382
0
        }
3383
0
    }
3384
3385
    /* Do not pick a prime that is too weak for the current security level */
3386
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3387
0
                                                 NULL, NULL);
3388
0
    if (dh_secbits < sec_level_bits)
3389
0
        dh_secbits = sec_level_bits;
3390
3391
0
    if (dh_secbits >= 192)
3392
0
        p = BN_get_rfc3526_prime_8192(NULL);
3393
0
    else if (dh_secbits >= 152)
3394
0
        p = BN_get_rfc3526_prime_4096(NULL);
3395
0
    else if (dh_secbits >= 128)
3396
0
        p = BN_get_rfc3526_prime_3072(NULL);
3397
0
    else if (dh_secbits >= 112)
3398
0
        p = BN_get_rfc3526_prime_2048(NULL);
3399
0
    else
3400
0
        p = BN_get_rfc2409_prime_1024(NULL);
3401
0
    if (p == NULL)
3402
0
        goto err;
3403
3404
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3405
0
    if (pctx == NULL
3406
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3407
0
        goto err;
3408
3409
0
    tmpl = OSSL_PARAM_BLD_new();
3410
0
    if (tmpl == NULL
3411
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3412
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3413
0
        goto err;
3414
3415
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3416
0
    if (params == NULL
3417
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3418
0
        goto err;
3419
3420
0
err:
3421
0
    OSSL_PARAM_free(params);
3422
0
    OSSL_PARAM_BLD_free(tmpl);
3423
0
    EVP_PKEY_CTX_free(pctx);
3424
0
    BN_free(p);
3425
0
    return dhp;
3426
0
}
3427
3428
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3429
                                 int op)
3430
0
{
3431
0
    int secbits = -1;
3432
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3433
3434
0
    if (pkey) {
3435
        /*
3436
         * If no parameters this will return -1 and fail using the default
3437
         * security callback for any non-zero security level. This will
3438
         * reject keys which omit parameters but this only affects DSA and
3439
         * omission of parameters is never (?) done in practice.
3440
         */
3441
0
        secbits = EVP_PKEY_get_security_bits(pkey);
3442
0
    }
3443
0
    if (s != NULL)
3444
0
        return ssl_security(s, op, secbits, 0, x);
3445
0
    else
3446
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3447
0
}
3448
3449
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3450
                                 int op)
3451
0
{
3452
    /* Lookup signature algorithm digest */
3453
0
    int secbits, nid, pknid;
3454
3455
    /* Don't check signature if self signed */
3456
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3457
0
        return 1;
3458
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3459
0
        secbits = -1;
3460
    /* If digest NID not defined use signature NID */
3461
0
    if (nid == NID_undef)
3462
0
        nid = pknid;
3463
0
    if (s != NULL)
3464
0
        return ssl_security(s, op, secbits, nid, x);
3465
0
    else
3466
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3467
0
}
3468
3469
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3470
                      int is_ee)
3471
0
{
3472
0
    if (vfy)
3473
0
        vfy = SSL_SECOP_PEER;
3474
0
    if (is_ee) {
3475
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3476
0
            return SSL_R_EE_KEY_TOO_SMALL;
3477
0
    } else {
3478
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3479
0
            return SSL_R_CA_KEY_TOO_SMALL;
3480
0
    }
3481
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3482
0
        return SSL_R_CA_MD_TOO_WEAK;
3483
0
    return 1;
3484
0
}
3485
3486
/*
3487
 * Check security of a chain, if |sk| includes the end entity certificate then
3488
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3489
 * one to the peer. Return values: 1 if ok otherwise error code to use
3490
 */
3491
3492
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3493
                            X509 *x, int vfy)
3494
0
{
3495
0
    int rv, start_idx, i;
3496
3497
0
    if (x == NULL) {
3498
0
        x = sk_X509_value(sk, 0);
3499
0
        if (x == NULL)
3500
0
            return ERR_R_INTERNAL_ERROR;
3501
0
        start_idx = 1;
3502
0
    } else
3503
0
        start_idx = 0;
3504
3505
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3506
0
    if (rv != 1)
3507
0
        return rv;
3508
3509
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3510
0
        x = sk_X509_value(sk, i);
3511
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3512
0
        if (rv != 1)
3513
0
            return rv;
3514
0
    }
3515
0
    return 1;
3516
0
}
3517
3518
/*
3519
 * For TLS 1.2 servers check if we have a certificate which can be used
3520
 * with the signature algorithm "lu" and return index of certificate.
3521
 */
3522
3523
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3524
                                     const SIGALG_LOOKUP *lu)
3525
0
{
3526
0
    int sig_idx = lu->sig_idx;
3527
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3528
0
                                                        SSL_CONNECTION_GET_CTX(s));
3529
3530
    /* If not recognised or not supported by cipher mask it is not suitable */
3531
0
    if (clu == NULL
3532
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3533
0
            || (clu->nid == EVP_PKEY_RSA_PSS
3534
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3535
0
        return -1;
3536
3537
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3538
0
    if (tls12_rpk_and_privkey(s, sig_idx))
3539
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3540
3541
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3542
0
}
3543
3544
/*
3545
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3546
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3547
 * the key.
3548
 * Returns true if the cert is usable and false otherwise.
3549
 */
3550
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3551
                             X509 *x, EVP_PKEY *pkey)
3552
0
{
3553
0
    const SIGALG_LOOKUP *lu;
3554
0
    int mdnid, pknid, supported;
3555
0
    size_t i;
3556
0
    const char *mdname = NULL;
3557
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3558
3559
    /*
3560
     * If the given EVP_PKEY cannot support signing with this digest,
3561
     * the answer is simply 'no'.
3562
     */
3563
0
    if (sig->hash != NID_undef)
3564
0
        mdname = OBJ_nid2sn(sig->hash);
3565
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3566
0
                                                    mdname,
3567
0
                                                    sctx->propq);
3568
0
    if (supported <= 0)
3569
0
        return 0;
3570
3571
    /*
3572
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3573
     * on the sigalg with which the certificate was signed (by its issuer).
3574
     */
3575
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3576
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3577
0
            return 0;
3578
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3579
0
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3580
0
            if (lu == NULL)
3581
0
                continue;
3582
3583
            /*
3584
             * This does not differentiate between the
3585
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3586
             * have a chain here that lets us look at the key OID in the
3587
             * signing certificate.
3588
             */
3589
0
            if (mdnid == lu->hash && pknid == lu->sig)
3590
0
                return 1;
3591
0
        }
3592
0
        return 0;
3593
0
    }
3594
3595
    /*
3596
     * Without signat_algorithms_cert, any certificate for which we have
3597
     * a viable public key is permitted.
3598
     */
3599
0
    return 1;
3600
0
}
3601
3602
/*
3603
 * Returns true if |s| has a usable certificate configured for use
3604
 * with signature scheme |sig|.
3605
 * "Usable" includes a check for presence as well as applying
3606
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3607
 * Returns false if no usable certificate is found.
3608
 */
3609
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3610
0
{
3611
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3612
0
    if (idx == -1)
3613
0
        idx = sig->sig_idx;
3614
0
    if (!ssl_has_cert(s, idx))
3615
0
        return 0;
3616
3617
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3618
0
                             s->cert->pkeys[idx].privatekey);
3619
0
}
3620
3621
/*
3622
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3623
 * specified signature scheme |sig|, or false otherwise.
3624
 */
3625
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3626
                          EVP_PKEY *pkey)
3627
0
{
3628
0
    size_t idx;
3629
3630
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3631
0
        return 0;
3632
3633
    /* Check the key is consistent with the sig alg */
3634
0
    if ((int)idx != sig->sig_idx)
3635
0
        return 0;
3636
3637
0
    return check_cert_usable(s, sig, x, pkey);
3638
0
}
3639
3640
/*
3641
 * Find a signature scheme that works with the supplied certificate |x| and key
3642
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3643
 * available certs/keys to find one that works.
3644
 */
3645
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3646
                                         EVP_PKEY *pkey)
3647
0
{
3648
0
    const SIGALG_LOOKUP *lu = NULL;
3649
0
    size_t i;
3650
0
    int curve = -1;
3651
0
    EVP_PKEY *tmppkey;
3652
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3653
3654
    /* Look for a shared sigalgs matching possible certificates */
3655
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3656
0
        lu = s->shared_sigalgs[i];
3657
3658
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3659
0
        if (lu->hash == NID_sha1
3660
0
            || lu->hash == NID_sha224
3661
0
            || lu->sig == EVP_PKEY_DSA
3662
0
            || lu->sig == EVP_PKEY_RSA)
3663
0
            continue;
3664
        /* Check that we have a cert, and signature_algorithms_cert */
3665
0
        if (!tls1_lookup_md(sctx, lu, NULL))
3666
0
            continue;
3667
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3668
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3669
0
            continue;
3670
3671
0
        tmppkey = (pkey != NULL) ? pkey
3672
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3673
3674
0
        if (lu->sig == EVP_PKEY_EC) {
3675
0
            if (curve == -1)
3676
0
                curve = ssl_get_EC_curve_nid(tmppkey);
3677
0
            if (lu->curve != NID_undef && curve != lu->curve)
3678
0
                continue;
3679
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3680
            /* validate that key is large enough for the signature algorithm */
3681
0
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3682
0
                continue;
3683
0
        }
3684
0
        break;
3685
0
    }
3686
3687
0
    if (i == s->shared_sigalgslen)
3688
0
        return NULL;
3689
3690
0
    return lu;
3691
0
}
3692
3693
/*
3694
 * Choose an appropriate signature algorithm based on available certificates
3695
 * Sets chosen certificate and signature algorithm.
3696
 *
3697
 * For servers if we fail to find a required certificate it is a fatal error,
3698
 * an appropriate error code is set and a TLS alert is sent.
3699
 *
3700
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3701
 * a fatal error: we will either try another certificate or not present one
3702
 * to the server. In this case no error is set.
3703
 */
3704
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3705
0
{
3706
0
    const SIGALG_LOOKUP *lu = NULL;
3707
0
    int sig_idx = -1;
3708
3709
0
    s->s3.tmp.cert = NULL;
3710
0
    s->s3.tmp.sigalg = NULL;
3711
3712
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
3713
0
        lu = find_sig_alg(s, NULL, NULL);
3714
0
        if (lu == NULL) {
3715
0
            if (!fatalerrs)
3716
0
                return 1;
3717
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3718
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3719
0
            return 0;
3720
0
        }
3721
0
    } else {
3722
        /* If ciphersuite doesn't require a cert nothing to do */
3723
0
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3724
0
            return 1;
3725
0
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3726
0
                return 1;
3727
3728
0
        if (SSL_USE_SIGALGS(s)) {
3729
0
            size_t i;
3730
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
3731
0
                int curve = -1;
3732
0
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3733
3734
                /* For Suite B need to match signature algorithm to curve */
3735
0
                if (tls1_suiteb(s))
3736
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3737
0
                                                 .privatekey);
3738
3739
                /*
3740
                 * Find highest preference signature algorithm matching
3741
                 * cert type
3742
                 */
3743
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
3744
0
                    lu = s->shared_sigalgs[i];
3745
3746
0
                    if (s->server) {
3747
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3748
0
                            continue;
3749
0
                    } else {
3750
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3751
3752
0
                        sig_idx = lu->sig_idx;
3753
0
                        if (cc_idx != sig_idx)
3754
0
                            continue;
3755
0
                    }
3756
                    /* Check that we have a cert, and sig_algs_cert */
3757
0
                    if (!has_usable_cert(s, lu, sig_idx))
3758
0
                        continue;
3759
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3760
                        /* validate that key is large enough for the signature algorithm */
3761
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3762
3763
0
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3764
0
                            continue;
3765
0
                    }
3766
0
                    if (curve == -1 || lu->curve == curve)
3767
0
                        break;
3768
0
                }
3769
0
#ifndef OPENSSL_NO_GOST
3770
                /*
3771
                 * Some Windows-based implementations do not send GOST algorithms indication
3772
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3773
                 * we have to assume GOST support.
3774
                 */
3775
0
                if (i == s->shared_sigalgslen
3776
0
                    && (s->s3.tmp.new_cipher->algorithm_auth
3777
0
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3778
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3779
0
                    if (!fatalerrs)
3780
0
                      return 1;
3781
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3782
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3783
0
                    return 0;
3784
0
                  } else {
3785
0
                    i = 0;
3786
0
                    sig_idx = lu->sig_idx;
3787
0
                  }
3788
0
                }
3789
0
#endif
3790
0
                if (i == s->shared_sigalgslen) {
3791
0
                    if (!fatalerrs)
3792
0
                        return 1;
3793
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3794
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3795
0
                    return 0;
3796
0
                }
3797
0
            } else {
3798
                /*
3799
                 * If we have no sigalg use defaults
3800
                 */
3801
0
                const uint16_t *sent_sigs;
3802
0
                size_t sent_sigslen;
3803
3804
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3805
0
                    if (!fatalerrs)
3806
0
                        return 1;
3807
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3808
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3809
0
                    return 0;
3810
0
                }
3811
3812
                /* Check signature matches a type we sent */
3813
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3814
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3815
0
                    if (lu->sigalg == *sent_sigs
3816
0
                            && has_usable_cert(s, lu, lu->sig_idx))
3817
0
                        break;
3818
0
                }
3819
0
                if (i == sent_sigslen) {
3820
0
                    if (!fatalerrs)
3821
0
                        return 1;
3822
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3823
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3824
0
                    return 0;
3825
0
                }
3826
0
            }
3827
0
        } else {
3828
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3829
0
                if (!fatalerrs)
3830
0
                    return 1;
3831
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3832
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3833
0
                return 0;
3834
0
            }
3835
0
        }
3836
0
    }
3837
0
    if (sig_idx == -1)
3838
0
        sig_idx = lu->sig_idx;
3839
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3840
0
    s->cert->key = s->s3.tmp.cert;
3841
0
    s->s3.tmp.sigalg = lu;
3842
0
    return 1;
3843
0
}
3844
3845
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3846
0
{
3847
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3848
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3849
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3850
0
        return 0;
3851
0
    }
3852
3853
0
    ctx->ext.max_fragment_len_mode = mode;
3854
0
    return 1;
3855
0
}
3856
3857
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3858
0
{
3859
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3860
3861
0
    if (sc == NULL
3862
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3863
0
        return 0;
3864
3865
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3866
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3867
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3868
0
        return 0;
3869
0
    }
3870
3871
0
    sc->ext.max_fragment_len_mode = mode;
3872
0
    return 1;
3873
0
}
3874
3875
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3876
0
{
3877
0
    return session->ext.max_fragment_len_mode;
3878
0
}
3879
3880
/*
3881
 * Helper functions for HMAC access with legacy support included.
3882
 */
3883
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3884
0
{
3885
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3886
0
    EVP_MAC *mac = NULL;
3887
3888
0
    if (ret == NULL)
3889
0
        return NULL;
3890
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3891
0
    if (ctx->ext.ticket_key_evp_cb == NULL
3892
0
            && ctx->ext.ticket_key_cb != NULL) {
3893
0
        if (!ssl_hmac_old_new(ret))
3894
0
            goto err;
3895
0
        return ret;
3896
0
    }
3897
0
#endif
3898
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3899
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3900
0
        goto err;
3901
0
    EVP_MAC_free(mac);
3902
0
    return ret;
3903
0
 err:
3904
0
    EVP_MAC_CTX_free(ret->ctx);
3905
0
    EVP_MAC_free(mac);
3906
0
    OPENSSL_free(ret);
3907
0
    return NULL;
3908
0
}
3909
3910
void ssl_hmac_free(SSL_HMAC *ctx)
3911
0
{
3912
0
    if (ctx != NULL) {
3913
0
        EVP_MAC_CTX_free(ctx->ctx);
3914
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3915
0
        ssl_hmac_old_free(ctx);
3916
0
#endif
3917
0
        OPENSSL_free(ctx);
3918
0
    }
3919
0
}
3920
3921
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3922
0
{
3923
0
    return ctx->ctx;
3924
0
}
3925
3926
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3927
0
{
3928
0
    OSSL_PARAM params[2], *p = params;
3929
3930
0
    if (ctx->ctx != NULL) {
3931
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3932
0
        *p = OSSL_PARAM_construct_end();
3933
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3934
0
            return 1;
3935
0
    }
3936
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3937
0
    if (ctx->old_ctx != NULL)
3938
0
        return ssl_hmac_old_init(ctx, key, len, md);
3939
0
#endif
3940
0
    return 0;
3941
0
}
3942
3943
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3944
0
{
3945
0
    if (ctx->ctx != NULL)
3946
0
        return EVP_MAC_update(ctx->ctx, data, len);
3947
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3948
0
    if (ctx->old_ctx != NULL)
3949
0
        return ssl_hmac_old_update(ctx, data, len);
3950
0
#endif
3951
0
    return 0;
3952
0
}
3953
3954
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3955
                   size_t max_size)
3956
0
{
3957
0
    if (ctx->ctx != NULL)
3958
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3959
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3960
0
    if (ctx->old_ctx != NULL)
3961
0
        return ssl_hmac_old_final(ctx, md, len);
3962
0
#endif
3963
0
    return 0;
3964
0
}
3965
3966
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3967
0
{
3968
0
    if (ctx->ctx != NULL)
3969
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3970
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3971
0
    if (ctx->old_ctx != NULL)
3972
0
        return ssl_hmac_old_size(ctx);
3973
0
#endif
3974
0
    return 0;
3975
0
}
3976
3977
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3978
0
{
3979
0
    char gname[OSSL_MAX_NAME_SIZE];
3980
3981
0
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3982
0
        return OBJ_txt2nid(gname);
3983
3984
0
    return NID_undef;
3985
0
}
3986
3987
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3988
                                     const unsigned char *enckey,
3989
                                     size_t enckeylen)
3990
0
{
3991
0
    if (EVP_PKEY_is_a(pkey, "DH")) {
3992
0
        int bits = EVP_PKEY_get_bits(pkey);
3993
3994
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
3995
            /* the encoded key must be padded to the length of the p */
3996
0
            return 0;
3997
0
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
3998
0
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3999
0
            || enckey[0] != 0x04)
4000
0
            return 0;
4001
0
    }
4002
4003
0
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4004
0
}