Coverage Report

Created: 2025-07-11 06:57

/src/openssl/crypto/rsa/rsa_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/crypto.h>
17
#include <openssl/core_names.h>
18
#ifndef FIPS_MODULE
19
# include <openssl/engine.h>
20
#endif
21
#include <openssl/evp.h>
22
#include <openssl/param_build.h>
23
#include "internal/cryptlib.h"
24
#include "internal/refcount.h"
25
#include "crypto/bn.h"
26
#include "crypto/evp.h"
27
#include "crypto/rsa.h"
28
#include "crypto/sparse_array.h"
29
#include "crypto/security_bits.h"
30
#include "rsa_local.h"
31
32
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
33
34
#ifndef FIPS_MODULE
35
RSA *RSA_new(void)
36
56.0k
{
37
56.0k
    return rsa_new_intern(NULL, NULL);
38
56.0k
}
39
40
const RSA_METHOD *RSA_get_method(const RSA *rsa)
41
0
{
42
0
    return rsa->meth;
43
0
}
44
45
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
46
0
{
47
    /*
48
     * NB: The caller is specifically setting a method, so it's not up to us
49
     * to deal with which ENGINE it comes from.
50
     */
51
0
    const RSA_METHOD *mtmp;
52
0
    mtmp = rsa->meth;
53
0
    if (mtmp->finish)
54
0
        mtmp->finish(rsa);
55
0
#ifndef OPENSSL_NO_ENGINE
56
0
    ENGINE_finish(rsa->engine);
57
0
    rsa->engine = NULL;
58
0
#endif
59
0
    rsa->meth = meth;
60
0
    if (meth->init)
61
0
        meth->init(rsa);
62
0
    return 1;
63
0
}
64
65
RSA *RSA_new_method(ENGINE *engine)
66
0
{
67
0
    return rsa_new_intern(engine, NULL);
68
0
}
69
#endif
70
71
RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
72
0
{
73
0
    return rsa_new_intern(NULL, libctx);
74
0
}
75
76
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
77
56.0k
{
78
56.0k
    RSA *ret = OPENSSL_zalloc(sizeof(*ret));
79
80
56.0k
    if (ret == NULL)
81
0
        return NULL;
82
83
56.0k
    ret->lock = CRYPTO_THREAD_lock_new();
84
56.0k
    if (ret->lock == NULL) {
85
0
        ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
86
0
        OPENSSL_free(ret);
87
0
        return NULL;
88
0
    }
89
90
56.0k
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
91
0
        CRYPTO_THREAD_lock_free(ret->lock);
92
0
        OPENSSL_free(ret);
93
0
        return NULL;
94
0
    }
95
96
56.0k
    ret->blindings_sa = ossl_rsa_alloc_blinding();
97
56.0k
    if (ret->blindings_sa == NULL)
98
0
        goto err;
99
100
56.0k
    ret->libctx = libctx;
101
56.0k
    ret->meth = RSA_get_default_method();
102
56.0k
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
103
56.0k
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
104
56.0k
    if (engine) {
105
0
        if (!ENGINE_init(engine)) {
106
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
107
0
            goto err;
108
0
        }
109
0
        ret->engine = engine;
110
56.0k
    } else {
111
56.0k
        ret->engine = ENGINE_get_default_RSA();
112
56.0k
    }
113
56.0k
    if (ret->engine) {
114
0
        ret->meth = ENGINE_get_RSA(ret->engine);
115
0
        if (ret->meth == NULL) {
116
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
117
0
            goto err;
118
0
        }
119
0
    }
120
56.0k
#endif
121
122
56.0k
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
123
56.0k
#ifndef FIPS_MODULE
124
56.0k
    if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
125
0
        goto err;
126
0
    }
127
56.0k
#endif
128
129
56.0k
    if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
130
0
        ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
131
0
        goto err;
132
0
    }
133
134
56.0k
    return ret;
135
136
0
 err:
137
0
    RSA_free(ret);
138
0
    return NULL;
139
56.0k
}
140
141
void RSA_free(RSA *r)
142
56.0k
{
143
56.0k
    int i;
144
145
56.0k
    if (r == NULL)
146
0
        return;
147
148
56.0k
    CRYPTO_DOWN_REF(&r->references, &i);
149
56.0k
    REF_PRINT_COUNT("RSA", i, r);
150
56.0k
    if (i > 0)
151
0
        return;
152
56.0k
    REF_ASSERT_ISNT(i < 0);
153
154
56.0k
    if (r->meth != NULL && r->meth->finish != NULL)
155
56.0k
        r->meth->finish(r);
156
56.0k
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
157
56.0k
    ENGINE_finish(r->engine);
158
56.0k
#endif
159
160
56.0k
#ifndef FIPS_MODULE
161
56.0k
    CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
162
56.0k
#endif
163
164
56.0k
    CRYPTO_THREAD_lock_free(r->lock);
165
56.0k
    CRYPTO_FREE_REF(&r->references);
166
167
#ifdef OPENSSL_PEDANTIC_ZEROIZATION
168
    BN_clear_free(r->n);
169
    BN_clear_free(r->e);
170
#else
171
56.0k
    BN_free(r->n);
172
56.0k
    BN_free(r->e);
173
56.0k
#endif
174
56.0k
    BN_clear_free(r->d);
175
56.0k
    BN_clear_free(r->p);
176
56.0k
    BN_clear_free(r->q);
177
56.0k
    BN_clear_free(r->dmp1);
178
56.0k
    BN_clear_free(r->dmq1);
179
56.0k
    BN_clear_free(r->iqmp);
180
181
#if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
182
    ossl_rsa_acvp_test_free(r->acvp_test);
183
#endif
184
185
56.0k
#ifndef FIPS_MODULE
186
56.0k
    RSA_PSS_PARAMS_free(r->pss);
187
56.0k
    sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
188
56.0k
#endif
189
56.0k
    ossl_rsa_free_blinding(r);
190
56.0k
    OPENSSL_free(r);
191
56.0k
}
192
193
int RSA_up_ref(RSA *r)
194
0
{
195
0
    int i;
196
197
0
    if (CRYPTO_UP_REF(&r->references, &i) <= 0)
198
0
        return 0;
199
200
0
    REF_PRINT_COUNT("RSA", i, r);
201
0
    REF_ASSERT_ISNT(i < 2);
202
0
    return i > 1 ? 1 : 0;
203
0
}
204
205
OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
206
0
{
207
0
    return r->libctx;
208
0
}
209
210
void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
211
0
{
212
0
    r->libctx = libctx;
213
0
}
214
215
#ifndef FIPS_MODULE
216
int RSA_set_ex_data(RSA *r, int idx, void *arg)
217
0
{
218
0
    return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
219
0
}
220
221
void *RSA_get_ex_data(const RSA *r, int idx)
222
0
{
223
0
    return CRYPTO_get_ex_data(&r->ex_data, idx);
224
0
}
225
#endif
226
227
/*
228
 * Define a scaling constant for our fixed point arithmetic.
229
 * This value must be a power of two because the base two logarithm code
230
 * makes this assumption.  The exponent must also be a multiple of three so
231
 * that the scale factor has an exact cube root.  Finally, the scale factor
232
 * should not be so large that a multiplication of two scaled numbers
233
 * overflows a 64 bit unsigned integer.
234
 */
235
static const unsigned int scale = 1 << 18;
236
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
237
238
/* Define some constants, none exceed 32 bits */
239
static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
240
static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
241
static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
242
static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
243
244
/*
245
 * Multiply two scaled integers together and rescale the result.
246
 */
247
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
248
0
{
249
0
    return a * b / scale;
250
0
}
251
252
/*
253
 * Calculate the cube root of a 64 bit scaled integer.
254
 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
255
 * integer, this is not guaranteed after scaling, so this function has a
256
 * 64 bit return.  This uses the shifting nth root algorithm with some
257
 * algebraic simplifications.
258
 */
259
static uint64_t icbrt64(uint64_t x)
260
0
{
261
0
    uint64_t r = 0;
262
0
    uint64_t b;
263
0
    int s;
264
265
0
    for (s = 63; s >= 0; s -= 3) {
266
0
        r <<= 1;
267
0
        b = 3 * r * (r + 1) + 1;
268
0
        if ((x >> s) >= b) {
269
0
            x -= b << s;
270
0
            r++;
271
0
        }
272
0
    }
273
0
    return r * cbrt_scale;
274
0
}
275
276
/*
277
 * Calculate the natural logarithm of a 64 bit scaled integer.
278
 * This is done by calculating a base two logarithm and scaling.
279
 * The maximum logarithm (base 2) is 64 and this reduces base e, so
280
 * a 32 bit result should not overflow.  The argument passed must be
281
 * greater than unity so we don't need to handle negative results.
282
 */
283
static uint32_t ilog_e(uint64_t v)
284
0
{
285
0
    uint32_t i, r = 0;
286
287
    /*
288
     * Scale down the value into the range 1 .. 2.
289
     *
290
     * If fractional numbers need to be processed, another loop needs
291
     * to go here that checks v < scale and if so multiplies it by 2 and
292
     * reduces r by scale.  This also means making r signed.
293
     */
294
0
    while (v >= 2 * scale) {
295
0
        v >>= 1;
296
0
        r += scale;
297
0
    }
298
0
    for (i = scale / 2; i != 0; i /= 2) {
299
0
        v = mul2(v, v);
300
0
        if (v >= 2 * scale) {
301
0
            v >>= 1;
302
0
            r += i;
303
0
        }
304
0
    }
305
0
    r = (r * (uint64_t)scale) / log_e;
306
0
    return r;
307
0
}
308
309
/*
310
 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
311
 * Modulus Lengths.
312
 *
313
 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
314
 * for FFC safe prime groups for modp and ffdhe.
315
 * After Table 25 and Table 26 it refers to
316
 * "The maximum security strength estimates were calculated using the formula in
317
 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
318
 * bits".
319
 *
320
 * The formula is:
321
 *
322
 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
323
 *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
324
 * The two cube roots are merged together here.
325
 */
326
uint16_t ossl_ifc_ffc_compute_security_bits(int n)
327
0
{
328
0
    uint64_t x;
329
0
    uint32_t lx;
330
0
    uint16_t y, cap;
331
332
    /*
333
     * Look for common values as listed in standards.
334
     * These values are not exactly equal to the results from the formulae in
335
     * the standards but are defined to be canonical.
336
     */
337
0
    switch (n) {
338
0
    case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
339
0
        return 112;
340
0
    case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
341
0
        return 128;
342
0
    case 4096:      /* SP 800-56B rev 2 Appendix D */
343
0
        return 152;
344
0
    case 6144:      /* SP 800-56B rev 2 Appendix D */
345
0
        return 176;
346
0
    case 7680:      /* FIPS 140-2 IG 7.5 */
347
0
        return 192;
348
0
    case 8192:      /* SP 800-56B rev 2 Appendix D */
349
0
        return 200;
350
0
    case 15360:     /* FIPS 140-2 IG 7.5 */
351
0
        return 256;
352
0
    }
353
354
    /*
355
     * The first incorrect result (i.e. not accurate or off by one low) occurs
356
     * for n = 699668.  The true value here is 1200.  Instead of using this n
357
     * as the check threshold, the smallest n such that the correct result is
358
     * 1200 is used instead.
359
     */
360
0
    if (n >= 687737)
361
0
        return 1200;
362
0
    if (n < 8)
363
0
        return 0;
364
365
    /*
366
     * To ensure that the output is non-decreasing with respect to n,
367
     * a cap needs to be applied to the two values where the function over
368
     * estimates the strength (according to the above fast path).
369
     */
370
0
    if (n <= 7680)
371
0
        cap = 192;
372
0
    else if (n <= 15360)
373
0
        cap = 256;
374
0
    else
375
0
        cap = 1200;
376
377
0
    x = n * (uint64_t)log_2;
378
0
    lx = ilog_e(x);
379
0
    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
380
0
                   / log_2);
381
0
    y = (y + 4) & ~7;
382
0
    if (y > cap)
383
0
        y = cap;
384
0
    return y;
385
0
}
386
387
388
389
int RSA_security_bits(const RSA *rsa)
390
0
{
391
0
    int bits = BN_num_bits(rsa->n);
392
393
0
#ifndef FIPS_MODULE
394
0
    if (rsa->version == RSA_ASN1_VERSION_MULTI) {
395
        /* This ought to mean that we have private key at hand. */
396
0
        int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
397
398
0
        if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
399
0
            return 0;
400
0
    }
401
0
#endif
402
0
    return ossl_ifc_ffc_compute_security_bits(bits);
403
0
}
404
405
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
406
0
{
407
    /* If the fields n and e in r are NULL, the corresponding input
408
     * parameters MUST be non-NULL for n and e.  d may be
409
     * left NULL (in case only the public key is used).
410
     */
411
0
    if ((r->n == NULL && n == NULL)
412
0
        || (r->e == NULL && e == NULL))
413
0
        return 0;
414
415
0
    if (n != NULL) {
416
0
        BN_free(r->n);
417
0
        r->n = n;
418
0
    }
419
0
    if (e != NULL) {
420
0
        BN_free(r->e);
421
0
        r->e = e;
422
0
    }
423
0
    if (d != NULL) {
424
0
        BN_clear_free(r->d);
425
0
        r->d = d;
426
0
        BN_set_flags(r->d, BN_FLG_CONSTTIME);
427
0
    }
428
0
    r->dirty_cnt++;
429
430
0
    return 1;
431
0
}
432
433
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
434
0
{
435
    /* If the fields p and q in r are NULL, the corresponding input
436
     * parameters MUST be non-NULL.
437
     */
438
0
    if ((r->p == NULL && p == NULL)
439
0
        || (r->q == NULL && q == NULL))
440
0
        return 0;
441
442
0
    if (p != NULL) {
443
0
        BN_clear_free(r->p);
444
0
        r->p = p;
445
0
        BN_set_flags(r->p, BN_FLG_CONSTTIME);
446
0
    }
447
0
    if (q != NULL) {
448
0
        BN_clear_free(r->q);
449
0
        r->q = q;
450
0
        BN_set_flags(r->q, BN_FLG_CONSTTIME);
451
0
    }
452
0
    r->dirty_cnt++;
453
454
0
    return 1;
455
0
}
456
457
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
458
0
{
459
    /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
460
     * parameters MUST be non-NULL.
461
     */
462
0
    if ((r->dmp1 == NULL && dmp1 == NULL)
463
0
        || (r->dmq1 == NULL && dmq1 == NULL)
464
0
        || (r->iqmp == NULL && iqmp == NULL))
465
0
        return 0;
466
467
0
    if (dmp1 != NULL) {
468
0
        BN_clear_free(r->dmp1);
469
0
        r->dmp1 = dmp1;
470
0
        BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
471
0
    }
472
0
    if (dmq1 != NULL) {
473
0
        BN_clear_free(r->dmq1);
474
0
        r->dmq1 = dmq1;
475
0
        BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
476
0
    }
477
0
    if (iqmp != NULL) {
478
0
        BN_clear_free(r->iqmp);
479
0
        r->iqmp = iqmp;
480
0
        BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
481
0
    }
482
0
    r->dirty_cnt++;
483
484
0
    return 1;
485
0
}
486
487
#ifndef FIPS_MODULE
488
/*
489
 * Is it better to export RSA_PRIME_INFO structure
490
 * and related functions to let user pass a triplet?
491
 */
492
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
493
                                BIGNUM *coeffs[], int pnum)
494
0
{
495
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
496
0
    RSA_PRIME_INFO *pinfo;
497
0
    int i;
498
499
0
    if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
500
0
        return 0;
501
502
0
    prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
503
0
    if (prime_infos == NULL)
504
0
        return 0;
505
506
0
    if (r->prime_infos != NULL)
507
0
        old = r->prime_infos;
508
509
0
    for (i = 0; i < pnum; i++) {
510
0
        pinfo = ossl_rsa_multip_info_new();
511
0
        if (pinfo == NULL)
512
0
            goto err;
513
0
        if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
514
0
            BN_clear_free(pinfo->r);
515
0
            BN_clear_free(pinfo->d);
516
0
            BN_clear_free(pinfo->t);
517
0
            pinfo->r = primes[i];
518
0
            pinfo->d = exps[i];
519
0
            pinfo->t = coeffs[i];
520
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
521
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
522
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
523
0
        } else {
524
0
            ossl_rsa_multip_info_free(pinfo);
525
0
            goto err;
526
0
        }
527
0
        (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
528
0
    }
529
530
0
    r->prime_infos = prime_infos;
531
532
0
    if (!ossl_rsa_multip_calc_product(r)) {
533
0
        r->prime_infos = old;
534
0
        goto err;
535
0
    }
536
537
0
    if (old != NULL) {
538
        /*
539
         * This is hard to deal with, since the old infos could
540
         * also be set by this function and r, d, t should not
541
         * be freed in that case. So currently, stay consistent
542
         * with other *set0* functions: just free it...
543
         */
544
0
        sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
545
0
    }
546
547
0
    r->version = RSA_ASN1_VERSION_MULTI;
548
0
    r->dirty_cnt++;
549
550
0
    return 1;
551
0
 err:
552
    /* r, d, t should not be freed */
553
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
554
0
    return 0;
555
0
}
556
#endif
557
558
void RSA_get0_key(const RSA *r,
559
                  const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
560
11.0k
{
561
11.0k
    if (n != NULL)
562
11.0k
        *n = r->n;
563
11.0k
    if (e != NULL)
564
11.0k
        *e = r->e;
565
11.0k
    if (d != NULL)
566
11.0k
        *d = r->d;
567
11.0k
}
568
569
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
570
11.1k
{
571
11.1k
    if (p != NULL)
572
11.1k
        *p = r->p;
573
11.1k
    if (q != NULL)
574
11.1k
        *q = r->q;
575
11.1k
}
576
577
#ifndef FIPS_MODULE
578
int RSA_get_multi_prime_extra_count(const RSA *r)
579
0
{
580
0
    int pnum;
581
582
0
    pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
583
0
    if (pnum <= 0)
584
0
        pnum = 0;
585
0
    return pnum;
586
0
}
587
588
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
589
0
{
590
0
    int pnum, i;
591
0
    RSA_PRIME_INFO *pinfo;
592
593
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
594
0
        return 0;
595
596
    /*
597
     * return other primes
598
     * it's caller's responsibility to allocate oth_primes[pnum]
599
     */
600
0
    for (i = 0; i < pnum; i++) {
601
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
602
0
        primes[i] = pinfo->r;
603
0
    }
604
605
0
    return 1;
606
0
}
607
#endif
608
609
void RSA_get0_crt_params(const RSA *r,
610
                         const BIGNUM **dmp1, const BIGNUM **dmq1,
611
                         const BIGNUM **iqmp)
612
0
{
613
0
    if (dmp1 != NULL)
614
0
        *dmp1 = r->dmp1;
615
0
    if (dmq1 != NULL)
616
0
        *dmq1 = r->dmq1;
617
0
    if (iqmp != NULL)
618
0
        *iqmp = r->iqmp;
619
0
}
620
621
#ifndef FIPS_MODULE
622
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
623
                                    const BIGNUM *coeffs[])
624
0
{
625
0
    int pnum;
626
627
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
628
0
        return 0;
629
630
    /* return other primes */
631
0
    if (exps != NULL || coeffs != NULL) {
632
0
        RSA_PRIME_INFO *pinfo;
633
0
        int i;
634
635
        /* it's the user's job to guarantee the buffer length */
636
0
        for (i = 0; i < pnum; i++) {
637
0
            pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
638
0
            if (exps != NULL)
639
0
                exps[i] = pinfo->d;
640
0
            if (coeffs != NULL)
641
0
                coeffs[i] = pinfo->t;
642
0
        }
643
0
    }
644
645
0
    return 1;
646
0
}
647
#endif
648
649
const BIGNUM *RSA_get0_n(const RSA *r)
650
0
{
651
0
    return r->n;
652
0
}
653
654
const BIGNUM *RSA_get0_e(const RSA *r)
655
0
{
656
0
    return r->e;
657
0
}
658
659
const BIGNUM *RSA_get0_d(const RSA *r)
660
0
{
661
0
    return r->d;
662
0
}
663
664
const BIGNUM *RSA_get0_p(const RSA *r)
665
0
{
666
0
    return r->p;
667
0
}
668
669
const BIGNUM *RSA_get0_q(const RSA *r)
670
0
{
671
0
    return r->q;
672
0
}
673
674
const BIGNUM *RSA_get0_dmp1(const RSA *r)
675
0
{
676
0
    return r->dmp1;
677
0
}
678
679
const BIGNUM *RSA_get0_dmq1(const RSA *r)
680
0
{
681
0
    return r->dmq1;
682
0
}
683
684
const BIGNUM *RSA_get0_iqmp(const RSA *r)
685
0
{
686
0
    return r->iqmp;
687
0
}
688
689
const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
690
0
{
691
#ifdef FIPS_MODULE
692
    return NULL;
693
#else
694
0
    return r->pss;
695
0
#endif
696
0
}
697
698
/* Internal */
699
int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
700
0
{
701
#ifdef FIPS_MODULE
702
    return 0;
703
#else
704
0
    RSA_PSS_PARAMS_free(r->pss);
705
0
    r->pss = pss;
706
0
    return 1;
707
0
#endif
708
0
}
709
710
/* Internal */
711
RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
712
0
{
713
0
    return &r->pss_params;
714
0
}
715
716
void RSA_clear_flags(RSA *r, int flags)
717
0
{
718
0
    r->flags &= ~flags;
719
0
}
720
721
int RSA_test_flags(const RSA *r, int flags)
722
0
{
723
0
    return r->flags & flags;
724
0
}
725
726
void RSA_set_flags(RSA *r, int flags)
727
0
{
728
0
    r->flags |= flags;
729
0
}
730
731
int RSA_get_version(RSA *r)
732
0
{
733
    /* { two-prime(0), multi(1) } */
734
0
    return r->version;
735
0
}
736
737
#ifndef FIPS_MODULE
738
ENGINE *RSA_get0_engine(const RSA *r)
739
0
{
740
0
    return r->engine;
741
0
}
742
743
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
744
0
{
745
    /* If key type not RSA or RSA-PSS return error */
746
0
    if (ctx != NULL && ctx->pmeth != NULL
747
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA
748
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
749
0
        return -1;
750
0
     return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
751
0
}
752
#endif
753
754
DEFINE_STACK_OF(BIGNUM)
755
756
/*
757
 * Note: This function deletes values from the parameter
758
 * stack values as they are consumed and set in the RSA key.
759
 */
760
int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
761
                             STACK_OF(BIGNUM) *exps,
762
                             STACK_OF(BIGNUM) *coeffs)
763
0
{
764
0
#ifndef FIPS_MODULE
765
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
766
0
#endif
767
0
    int pnum;
768
769
0
    if (primes == NULL || exps == NULL || coeffs == NULL)
770
0
        return 0;
771
772
0
    pnum = sk_BIGNUM_num(primes);
773
774
    /* we need at least 2 primes */
775
0
    if (pnum < 2)
776
0
        return 0;
777
778
0
    if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
779
0
                          sk_BIGNUM_value(primes, 1)))
780
0
        return 0;
781
782
    /*
783
     * if we managed to set everything above, remove those elements from the
784
     * stack
785
     * Note, we do this after the above all to ensure that we have taken
786
     * ownership of all the elements in the RSA key to avoid memory leaks
787
     * we also use delete 0 here as we are grabbing items from the end of the
788
     * stack rather than the start, otherwise we could use pop
789
     */
790
0
    sk_BIGNUM_delete(primes, 0);
791
0
    sk_BIGNUM_delete(primes, 0);
792
793
0
    if (pnum == sk_BIGNUM_num(exps)
794
0
        && pnum == sk_BIGNUM_num(coeffs) + 1) {
795
796
0
        if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
797
0
                                 sk_BIGNUM_value(exps, 1),
798
0
                                 sk_BIGNUM_value(coeffs, 0)))
799
0
        return 0;
800
801
        /* as above, once we consume the above params, delete them from the list */
802
0
        sk_BIGNUM_delete(exps, 0);
803
0
        sk_BIGNUM_delete(exps, 0);
804
0
        sk_BIGNUM_delete(coeffs, 0);
805
0
    }
806
807
0
#ifndef FIPS_MODULE
808
0
    old_infos = r->prime_infos;
809
0
#endif
810
811
0
    if (pnum > 2) {
812
0
#ifndef FIPS_MODULE
813
0
        int i;
814
815
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
816
0
        if (prime_infos == NULL)
817
0
            return 0;
818
819
0
        for (i = 2; i < pnum; i++) {
820
0
            BIGNUM *prime = sk_BIGNUM_pop(primes);
821
0
            BIGNUM *exp = sk_BIGNUM_pop(exps);
822
0
            BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
823
0
            RSA_PRIME_INFO *pinfo = NULL;
824
825
0
            if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
826
0
                goto err;
827
828
            /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
829
0
            if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
830
0
                goto err;
831
832
0
            pinfo->r = prime;
833
0
            pinfo->d = exp;
834
0
            pinfo->t = coeff;
835
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
836
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
837
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
838
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
839
0
        }
840
841
0
        r->prime_infos = prime_infos;
842
843
0
        if (!ossl_rsa_multip_calc_product(r)) {
844
0
            r->prime_infos = old_infos;
845
0
            goto err;
846
0
        }
847
#else
848
        return 0;
849
#endif
850
0
    }
851
852
0
#ifndef FIPS_MODULE
853
0
    if (old_infos != NULL) {
854
        /*
855
         * This is hard to deal with, since the old infos could
856
         * also be set by this function and r, d, t should not
857
         * be freed in that case. So currently, stay consistent
858
         * with other *set0* functions: just free it...
859
         */
860
0
        sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
861
0
    }
862
0
#endif
863
864
0
    r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
865
0
    r->dirty_cnt++;
866
867
0
    return 1;
868
0
#ifndef FIPS_MODULE
869
0
 err:
870
    /* r, d, t should not be freed */
871
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
872
0
    return 0;
873
0
#endif
874
0
}
875
876
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
877
878
int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
879
                             STACK_OF(BIGNUM_const) *exps,
880
                             STACK_OF(BIGNUM_const) *coeffs)
881
0
{
882
0
#ifndef FIPS_MODULE
883
0
    RSA_PRIME_INFO *pinfo;
884
0
    int i, pnum;
885
0
#endif
886
887
0
    if (r == NULL)
888
0
        return 0;
889
890
    /* If |p| is NULL, there are no CRT parameters */
891
0
    if (RSA_get0_p(r) == NULL)
892
0
        return 1;
893
894
0
    sk_BIGNUM_const_push(primes, RSA_get0_p(r));
895
0
    sk_BIGNUM_const_push(primes, RSA_get0_q(r));
896
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
897
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
898
0
    sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
899
900
0
#ifndef FIPS_MODULE
901
0
    pnum = RSA_get_multi_prime_extra_count(r);
902
0
    for (i = 0; i < pnum; i++) {
903
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
904
0
        sk_BIGNUM_const_push(primes, pinfo->r);
905
0
        sk_BIGNUM_const_push(exps, pinfo->d);
906
0
        sk_BIGNUM_const_push(coeffs, pinfo->t);
907
0
    }
908
0
#endif
909
910
0
    return 1;
911
0
}
912
913
0
#define safe_BN_num_bits(_k_)  (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))
914
int ossl_rsa_check_factors(RSA *r)
915
0
{
916
0
    int valid = 0;
917
0
    int n, i, bits;
918
0
    STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
919
0
    STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
920
0
    STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
921
922
0
    if (factors == NULL || exps == NULL || coeffs == NULL)
923
0
        goto done;
924
925
    /*
926
     * Simple sanity check for RSA key. All RSA key parameters
927
     * must be less-than/equal-to RSA parameter n.
928
     */
929
0
    ossl_rsa_get0_all_params(r, factors, exps, coeffs);
930
0
    n = safe_BN_num_bits(RSA_get0_n(r));
931
932
0
    if (safe_BN_num_bits(RSA_get0_d(r)) > n)
933
0
        goto done;
934
935
0
    for (i = 0; i < sk_BIGNUM_const_num(exps); i++) {
936
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));
937
0
        if (bits > n)
938
0
            goto done;
939
0
    }
940
941
0
    for (i = 0; i < sk_BIGNUM_const_num(factors); i++) {
942
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));
943
0
        if (bits > n)
944
0
            goto done;
945
0
    }
946
947
0
    for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) {
948
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));
949
0
        if (bits > n)
950
0
            goto done;
951
0
    }
952
953
0
    valid = 1;
954
955
0
done:
956
0
    sk_BIGNUM_const_free(factors);
957
0
    sk_BIGNUM_const_free(exps);
958
0
    sk_BIGNUM_const_free(coeffs);
959
960
0
    return valid;
961
0
}
962
963
#ifndef FIPS_MODULE
964
/* Helpers to set or get diverse hash algorithm names */
965
static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
966
                               /* For checks */
967
                               int keytype, int optype,
968
                               /* For EVP_PKEY_CTX_set_params() */
969
                               const char *mdkey, const char *mdname,
970
                               const char *propkey, const char *mdprops)
971
0
{
972
0
    OSSL_PARAM params[3], *p = params;
973
974
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
975
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
976
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
977
0
        return -2;
978
0
    }
979
980
    /* If key type not RSA return error */
981
0
    switch (keytype) {
982
0
    case -1:
983
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
984
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
985
0
            return -1;
986
0
        break;
987
0
    default:
988
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
989
0
            return -1;
990
0
        break;
991
0
    }
992
993
    /* Cast away the const. This is read only so should be safe */
994
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
995
0
    if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
996
        /* Cast away the const. This is read only so should be safe */
997
0
        *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
998
0
    }
999
0
    *p++ = OSSL_PARAM_construct_end();
1000
1001
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1002
0
}
1003
1004
/* Helpers to set or get diverse hash algorithm names */
1005
static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
1006
                               /* For checks */
1007
                               int keytype, int optype,
1008
                               /* For EVP_PKEY_CTX_get_params() */
1009
                               const char *mdkey,
1010
                               char *mdname, size_t mdnamesize)
1011
0
{
1012
0
    OSSL_PARAM params[2], *p = params;
1013
1014
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
1015
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1016
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1017
0
        return -2;
1018
0
    }
1019
1020
    /* If key type not RSA return error */
1021
0
    switch (keytype) {
1022
0
    case -1:
1023
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1024
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1025
0
            return -1;
1026
0
        break;
1027
0
    default:
1028
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
1029
0
            return -1;
1030
0
        break;
1031
0
    }
1032
1033
    /* Cast away the const. This is read only so should be safe */
1034
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
1035
0
    *p++ = OSSL_PARAM_construct_end();
1036
1037
0
    return evp_pkey_ctx_get_params_strict(ctx, params);
1038
0
}
1039
1040
/*
1041
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1042
 * simply because that's easier.
1043
 */
1044
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
1045
0
{
1046
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
1047
0
                             pad_mode, NULL);
1048
0
}
1049
1050
/*
1051
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1052
 * simply because that's easier.
1053
 */
1054
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
1055
0
{
1056
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
1057
0
                             0, pad_mode);
1058
0
}
1059
1060
/*
1061
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1062
 * simply because that's easier.
1063
 */
1064
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1065
0
{
1066
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1067
0
                             EVP_PKEY_CTRL_MD, 0, (void *)(md));
1068
0
}
1069
1070
int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
1071
                                            const char *mdname,
1072
                                            const char *mdprops)
1073
0
{
1074
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1075
0
                               OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
1076
0
                               OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
1077
0
}
1078
1079
/*
1080
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1081
 * simply because that's easier.
1082
 */
1083
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1084
0
{
1085
    /* If key type not RSA return error */
1086
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1087
0
        return -1;
1088
1089
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1090
0
                             EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1091
0
}
1092
1093
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1094
                                      const char *mdprops)
1095
0
{
1096
0
    return
1097
0
        int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1098
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1099
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1100
0
}
1101
1102
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1103
                                      size_t namesize)
1104
0
{
1105
0
    return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1106
0
                               OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1107
0
                               name, namesize);
1108
0
}
1109
1110
/*
1111
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1112
 * simply because that's easier.
1113
 */
1114
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1115
0
{
1116
    /* If key type not RSA return error */
1117
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1118
0
        return -1;
1119
1120
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1121
0
                             EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1122
0
}
1123
1124
/*
1125
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1126
 * simply because that's easier.
1127
 */
1128
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1129
0
{
1130
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1131
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1132
0
}
1133
1134
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1135
                                      const char *mdprops)
1136
0
{
1137
0
    return int_set_rsa_md_name(ctx, -1,
1138
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1139
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1140
0
                               OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1141
0
}
1142
1143
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1144
                                      size_t namesize)
1145
0
{
1146
0
    return int_get_rsa_md_name(ctx, -1,
1147
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1148
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1149
0
}
1150
1151
/*
1152
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1153
 * simply because that's easier.
1154
 */
1155
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1156
0
{
1157
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1158
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1159
0
}
1160
1161
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1162
                                                 const char *mdname)
1163
0
{
1164
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1165
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1166
0
                               NULL, NULL);
1167
0
}
1168
1169
/*
1170
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1171
 * simply because that's easier.
1172
 */
1173
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1174
0
{
1175
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1176
0
                             EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1177
0
}
1178
1179
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1180
0
{
1181
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1182
0
    const char *empty = "";
1183
    /*
1184
     * Needed as we swap label with empty if it is NULL, and label is
1185
     * freed at the end of this function.
1186
     */
1187
0
    void *plabel = label;
1188
0
    int ret;
1189
1190
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1191
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1192
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1193
0
        return -2;
1194
0
    }
1195
1196
    /* If key type not RSA return error */
1197
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1198
0
        return -1;
1199
1200
    /* Accept NULL for backward compatibility */
1201
0
    if (label == NULL && llen == 0)
1202
0
        plabel = (void *)empty;
1203
1204
    /* Cast away the const. This is read only so should be safe */
1205
0
    *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1206
0
                                             (void *)plabel, (size_t)llen);
1207
0
    *p++ = OSSL_PARAM_construct_end();
1208
1209
0
    ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1210
0
    if (ret <= 0)
1211
0
        return ret;
1212
1213
    /* Ownership is supposed to be transferred to the callee. */
1214
0
    OPENSSL_free(label);
1215
0
    return 1;
1216
0
}
1217
1218
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1219
0
{
1220
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1221
0
    size_t labellen;
1222
1223
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1224
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1225
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1226
0
        return -2;
1227
0
    }
1228
1229
    /* If key type not RSA return error */
1230
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1231
0
        return -1;
1232
1233
0
    *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1234
0
                                          (void **)label, 0);
1235
0
    *p++ = OSSL_PARAM_construct_end();
1236
1237
0
    if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1238
0
        return -1;
1239
1240
0
    labellen = rsa_params[0].return_size;
1241
0
    if (labellen > INT_MAX)
1242
0
        return -1;
1243
1244
0
    return (int)labellen;
1245
0
}
1246
1247
/*
1248
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1249
 * simply because that's easier.
1250
 */
1251
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1252
0
{
1253
    /*
1254
     * For some reason, the optype was set to this:
1255
     *
1256
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1257
     *
1258
     * However, we do use RSA-PSS with the whole gamut of diverse signature
1259
     * and verification operations, so the optype gets upgraded to this:
1260
     *
1261
     * EVP_PKEY_OP_TYPE_SIG
1262
     */
1263
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1264
0
                             EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1265
0
}
1266
1267
/*
1268
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1269
 * simply because that's easier.
1270
 */
1271
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1272
0
{
1273
    /*
1274
     * Because of circumstances, the optype is updated from:
1275
     *
1276
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1277
     *
1278
     * to:
1279
     *
1280
     * EVP_PKEY_OP_TYPE_SIG
1281
     */
1282
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1283
0
                             EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1284
0
}
1285
1286
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1287
0
{
1288
0
    OSSL_PARAM pad_params[2], *p = pad_params;
1289
1290
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1291
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1292
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1293
0
        return -2;
1294
0
    }
1295
1296
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1297
0
        return -1;
1298
1299
0
    *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1300
0
                                    &saltlen);
1301
0
    *p++ = OSSL_PARAM_construct_end();
1302
1303
0
    return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1304
0
}
1305
1306
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1307
0
{
1308
0
    OSSL_PARAM params[2], *p = params;
1309
0
    size_t bits2 = bits;
1310
1311
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1312
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1313
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1314
0
        return -2;
1315
0
    }
1316
1317
    /* If key type not RSA return error */
1318
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1319
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1320
0
        return -1;
1321
1322
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1323
0
    *p++ = OSSL_PARAM_construct_end();
1324
1325
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1326
0
}
1327
1328
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1329
0
{
1330
0
    int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1331
0
                                EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1332
1333
    /*
1334
     * Satisfy memory semantics for pre-3.0 callers of
1335
     * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1336
     * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1337
     */
1338
0
    if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1339
0
        BN_free(ctx->rsa_pubexp);
1340
0
        ctx->rsa_pubexp = pubexp;
1341
0
    }
1342
1343
0
    return ret;
1344
0
}
1345
1346
int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1347
0
{
1348
0
    int ret = 0;
1349
1350
    /*
1351
     * When we're dealing with a provider, there's no need to duplicate
1352
     * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1353
     */
1354
0
    if (evp_pkey_ctx_is_legacy(ctx)) {
1355
0
        pubexp = BN_dup(pubexp);
1356
0
        if (pubexp == NULL)
1357
0
            return 0;
1358
0
    }
1359
0
    ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1360
0
                            EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1361
0
    if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1362
0
        BN_free(pubexp);
1363
0
    return ret;
1364
0
}
1365
1366
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1367
0
{
1368
0
    OSSL_PARAM params[2], *p = params;
1369
0
    size_t primes2 = primes;
1370
1371
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1372
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1373
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1374
0
        return -2;
1375
0
    }
1376
1377
    /* If key type not RSA return error */
1378
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1379
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1380
0
        return -1;
1381
1382
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1383
0
    *p++ = OSSL_PARAM_construct_end();
1384
1385
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1386
0
}
1387
1388
#endif