Coverage Report

Created: 2025-07-11 06:57

/src/openssl/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
0
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
0
    return ossl_seconds2time(60 * 60 * 2);
103
0
}
104
105
int tls1_new(SSL *s)
106
0
{
107
0
    if (!ssl3_new(s))
108
0
        return 0;
109
0
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
0
    return 1;
113
0
}
114
115
void tls1_free(SSL *s)
116
0
{
117
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
0
    if (sc == NULL)
120
0
        return;
121
122
0
    OPENSSL_free(sc->ext.session_ticket);
123
0
    ssl3_free(s);
124
0
}
125
126
int tls1_clear(SSL *s)
127
0
{
128
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
0
    if (sc == NULL)
131
0
        return 0;
132
133
0
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
0
    if (s->method->version == TLS_ANY_VERSION)
137
0
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
0
    return 1;
142
0
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed
198
};
199
200
static const unsigned char ecformats_all[] = {
201
    TLSEXT_ECPOINTFORMAT_uncompressed,
202
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
203
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
204
};
205
206
/* Group list string of the built-in pseudo group DEFAULT */
207
#define DEFAULT_GROUP_NAME "DEFAULT"
208
#define TLS_DEFAULT_GROUP_LIST \
209
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
210
211
static const uint16_t suiteb_curves[] = {
212
    OSSL_TLS_GROUP_ID_secp256r1,
213
    OSSL_TLS_GROUP_ID_secp384r1,
214
};
215
216
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
217
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
218
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
219
220
struct provider_ctx_data_st {
221
    SSL_CTX *ctx;
222
    OSSL_PROVIDER *provider;
223
};
224
225
0
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226
static OSSL_CALLBACK add_provider_groups;
227
static int add_provider_groups(const OSSL_PARAM params[], void *data)
228
0
{
229
0
    struct provider_ctx_data_st *pgd = data;
230
0
    SSL_CTX *ctx = pgd->ctx;
231
0
    const OSSL_PARAM *p;
232
0
    TLS_GROUP_INFO *ginf = NULL;
233
0
    EVP_KEYMGMT *keymgmt;
234
0
    unsigned int gid;
235
0
    unsigned int is_kem = 0;
236
0
    int ret = 0;
237
238
0
    if (ctx->group_list_max_len == ctx->group_list_len) {
239
0
        TLS_GROUP_INFO *tmp = NULL;
240
241
0
        if (ctx->group_list_max_len == 0)
242
0
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
243
0
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
244
0
        else
245
0
            tmp = OPENSSL_realloc(ctx->group_list,
246
0
                                  (ctx->group_list_max_len
247
0
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
248
0
                                  * sizeof(TLS_GROUP_INFO));
249
0
        if (tmp == NULL)
250
0
            return 0;
251
0
        ctx->group_list = tmp;
252
0
        memset(tmp + ctx->group_list_max_len,
253
0
               0,
254
0
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255
0
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
256
0
    }
257
258
0
    ginf = &ctx->group_list[ctx->group_list_len];
259
260
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
261
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
262
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
263
0
        goto err;
264
0
    }
265
0
    ginf->tlsname = OPENSSL_strdup(p->data);
266
0
    if (ginf->tlsname == NULL)
267
0
        goto err;
268
269
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
270
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
272
0
        goto err;
273
0
    }
274
0
    ginf->realname = OPENSSL_strdup(p->data);
275
0
    if (ginf->realname == NULL)
276
0
        goto err;
277
278
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
279
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
280
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281
0
        goto err;
282
0
    }
283
0
    ginf->group_id = (uint16_t)gid;
284
285
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
286
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
0
    ginf->algorithm = OPENSSL_strdup(p->data);
291
0
    if (ginf->algorithm == NULL)
292
0
        goto err;
293
294
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
295
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
296
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
297
0
        goto err;
298
0
    }
299
300
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
301
0
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
302
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
303
0
        goto err;
304
0
    }
305
0
    ginf->is_kem = 1 & is_kem;
306
307
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
308
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
313
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
314
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
315
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316
0
        goto err;
317
0
    }
318
319
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
320
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
321
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322
0
        goto err;
323
0
    }
324
325
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
326
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
327
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
328
0
        goto err;
329
0
    }
330
    /*
331
     * Now check that the algorithm is actually usable for our property query
332
     * string. Regardless of the result we still return success because we have
333
     * successfully processed this group, even though we may decide not to use
334
     * it.
335
     */
336
0
    ret = 1;
337
0
    ERR_set_mark();
338
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
339
0
    if (keymgmt != NULL) {
340
        /* We have successfully fetched the algorithm, we can use the group. */
341
0
        ctx->group_list_len++;
342
0
        ginf = NULL;
343
0
        EVP_KEYMGMT_free(keymgmt);
344
0
    }
345
0
    ERR_pop_to_mark();
346
0
 err:
347
0
    if (ginf != NULL) {
348
0
        OPENSSL_free(ginf->tlsname);
349
0
        OPENSSL_free(ginf->realname);
350
0
        OPENSSL_free(ginf->algorithm);
351
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
352
0
    }
353
0
    return ret;
354
0
}
355
356
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
357
0
{
358
0
    struct provider_ctx_data_st pgd;
359
360
0
    pgd.ctx = vctx;
361
0
    pgd.provider = provider;
362
0
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
363
0
                                          add_provider_groups, &pgd);
364
0
}
365
366
int ssl_load_groups(SSL_CTX *ctx)
367
0
{
368
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
369
0
        return 0;
370
371
0
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
372
0
}
373
374
0
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
375
static OSSL_CALLBACK add_provider_sigalgs;
376
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
377
0
{
378
0
    struct provider_ctx_data_st *pgd = data;
379
0
    SSL_CTX *ctx = pgd->ctx;
380
0
    OSSL_PROVIDER *provider = pgd->provider;
381
0
    const OSSL_PARAM *p;
382
0
    TLS_SIGALG_INFO *sinf = NULL;
383
0
    EVP_KEYMGMT *keymgmt;
384
0
    const char *keytype;
385
0
    unsigned int code_point = 0;
386
0
    int ret = 0;
387
388
0
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
389
0
        TLS_SIGALG_INFO *tmp = NULL;
390
391
0
        if (ctx->sigalg_list_max_len == 0)
392
0
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
393
0
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
394
0
        else
395
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
396
0
                                  (ctx->sigalg_list_max_len
397
0
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
398
0
                                  * sizeof(TLS_SIGALG_INFO));
399
0
        if (tmp == NULL)
400
0
            return 0;
401
0
        ctx->sigalg_list = tmp;
402
0
        memset(tmp + ctx->sigalg_list_max_len, 0,
403
0
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
404
0
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
405
0
    }
406
407
0
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
408
409
    /* First, mandatory parameters */
410
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
411
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
412
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
413
0
        goto err;
414
0
    }
415
0
    OPENSSL_free(sinf->sigalg_name);
416
0
    sinf->sigalg_name = OPENSSL_strdup(p->data);
417
0
    if (sinf->sigalg_name == NULL)
418
0
        goto err;
419
420
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
421
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
422
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
423
0
        goto err;
424
0
    }
425
0
    OPENSSL_free(sinf->name);
426
0
    sinf->name = OPENSSL_strdup(p->data);
427
0
    if (sinf->name == NULL)
428
0
        goto err;
429
430
0
    p = OSSL_PARAM_locate_const(params,
431
0
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
432
0
    if (p == NULL
433
0
        || !OSSL_PARAM_get_uint(p, &code_point)
434
0
        || code_point > UINT16_MAX) {
435
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
436
0
        goto err;
437
0
    }
438
0
    sinf->code_point = (uint16_t)code_point;
439
440
0
    p = OSSL_PARAM_locate_const(params,
441
0
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
442
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
443
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
444
0
        goto err;
445
0
    }
446
447
    /* Now, optional parameters */
448
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
449
0
    if (p == NULL) {
450
0
        sinf->sigalg_oid = NULL;
451
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
452
0
        goto err;
453
0
    } else {
454
0
        OPENSSL_free(sinf->sigalg_oid);
455
0
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
456
0
        if (sinf->sigalg_oid == NULL)
457
0
            goto err;
458
0
    }
459
460
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
461
0
    if (p == NULL) {
462
0
        sinf->sig_name = NULL;
463
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
464
0
        goto err;
465
0
    } else {
466
0
        OPENSSL_free(sinf->sig_name);
467
0
        sinf->sig_name = OPENSSL_strdup(p->data);
468
0
        if (sinf->sig_name == NULL)
469
0
            goto err;
470
0
    }
471
472
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
473
0
    if (p == NULL) {
474
0
        sinf->sig_oid = NULL;
475
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
476
0
        goto err;
477
0
    } else {
478
0
        OPENSSL_free(sinf->sig_oid);
479
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
480
0
        if (sinf->sig_oid == NULL)
481
0
            goto err;
482
0
    }
483
484
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
485
0
    if (p == NULL) {
486
0
        sinf->hash_name = NULL;
487
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
488
0
        goto err;
489
0
    } else {
490
0
        OPENSSL_free(sinf->hash_name);
491
0
        sinf->hash_name = OPENSSL_strdup(p->data);
492
0
        if (sinf->hash_name == NULL)
493
0
            goto err;
494
0
    }
495
496
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
497
0
    if (p == NULL) {
498
0
        sinf->hash_oid = NULL;
499
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
500
0
        goto err;
501
0
    } else {
502
0
        OPENSSL_free(sinf->hash_oid);
503
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
504
0
        if (sinf->hash_oid == NULL)
505
0
            goto err;
506
0
    }
507
508
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
509
0
    if (p == NULL) {
510
0
        sinf->keytype = NULL;
511
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
512
0
        goto err;
513
0
    } else {
514
0
        OPENSSL_free(sinf->keytype);
515
0
        sinf->keytype = OPENSSL_strdup(p->data);
516
0
        if (sinf->keytype == NULL)
517
0
            goto err;
518
0
    }
519
520
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
521
0
    if (p == NULL) {
522
0
        sinf->keytype_oid = NULL;
523
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
524
0
        goto err;
525
0
    } else {
526
0
        OPENSSL_free(sinf->keytype_oid);
527
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
528
0
        if (sinf->keytype_oid == NULL)
529
0
            goto err;
530
0
    }
531
532
    /* Optional, not documented prior to 3.5 */
533
0
    sinf->mindtls = sinf->maxdtls = -1;
534
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
535
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
536
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
537
0
        goto err;
538
0
    }
539
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
540
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
541
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542
0
        goto err;
543
0
    }
544
    /* DTLS version numbers grow downward */
545
0
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
546
0
        ((sinf->maxdtls > sinf->mindtls))) {
547
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
548
0
        goto err;
549
0
    }
550
    /* No provider sigalgs are supported in DTLS, reset after checking. */
551
0
    sinf->mindtls = sinf->maxdtls = -1;
552
553
    /* The remaining parameters below are mandatory again */
554
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
555
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
556
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
557
0
        goto err;
558
0
    }
559
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
560
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
561
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
562
0
        goto err;
563
0
    }
564
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
565
0
        ((sinf->maxtls < sinf->mintls))) {
566
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
567
0
        goto err;
568
0
    }
569
0
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
570
0
        ((sinf->mintls > TLS1_3_VERSION)))
571
0
        sinf->mintls = sinf->maxtls = -1;
572
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
573
0
        ((sinf->maxtls < TLS1_3_VERSION)))
574
0
        sinf->mintls = sinf->maxtls = -1;
575
576
    /* Ignore unusable sigalgs */
577
0
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
578
0
        ret = 1;
579
0
        goto err;
580
0
    }
581
582
    /*
583
     * Now check that the algorithm is actually usable for our property query
584
     * string. Regardless of the result we still return success because we have
585
     * successfully processed this signature, even though we may decide not to
586
     * use it.
587
     */
588
0
    ret = 1;
589
0
    ERR_set_mark();
590
0
    keytype = (sinf->keytype != NULL
591
0
               ? sinf->keytype
592
0
               : (sinf->sig_name != NULL
593
0
                  ? sinf->sig_name
594
0
                  : sinf->sigalg_name));
595
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
596
0
    if (keymgmt != NULL) {
597
        /*
598
         * We have successfully fetched the algorithm - however if the provider
599
         * doesn't match this one then we ignore it.
600
         *
601
         * Note: We're cheating a little here. Technically if the same algorithm
602
         * is available from more than one provider then it is undefined which
603
         * implementation you will get back. Theoretically this could be
604
         * different every time...we assume here that you'll always get the
605
         * same one back if you repeat the exact same fetch. Is this a reasonable
606
         * assumption to make (in which case perhaps we should document this
607
         * behaviour)?
608
         */
609
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
610
            /*
611
             * We have a match - so we could use this signature;
612
             * Check proper object registration first, though.
613
             * Don't care about return value as this may have been
614
             * done within providers or previous calls to
615
             * add_provider_sigalgs.
616
             */
617
0
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
618
            /* sanity check: Without successful registration don't use alg */
619
0
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
620
0
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
621
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
622
0
                    goto err;
623
0
            }
624
0
            if (sinf->sig_name != NULL)
625
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
626
0
            if (sinf->keytype != NULL)
627
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
628
0
            if (sinf->hash_name != NULL)
629
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
630
0
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
631
0
                          (sinf->hash_name != NULL
632
0
                           ? OBJ_txt2nid(sinf->hash_name)
633
0
                           : NID_undef),
634
0
                          OBJ_txt2nid(keytype));
635
0
            ctx->sigalg_list_len++;
636
0
            sinf = NULL;
637
0
        }
638
0
        EVP_KEYMGMT_free(keymgmt);
639
0
    }
640
0
    ERR_pop_to_mark();
641
0
 err:
642
0
    if (sinf != NULL) {
643
0
        OPENSSL_free(sinf->name);
644
0
        sinf->name = NULL;
645
0
        OPENSSL_free(sinf->sigalg_name);
646
0
        sinf->sigalg_name = NULL;
647
0
        OPENSSL_free(sinf->sigalg_oid);
648
0
        sinf->sigalg_oid = NULL;
649
0
        OPENSSL_free(sinf->sig_name);
650
0
        sinf->sig_name = NULL;
651
0
        OPENSSL_free(sinf->sig_oid);
652
0
        sinf->sig_oid = NULL;
653
0
        OPENSSL_free(sinf->hash_name);
654
0
        sinf->hash_name = NULL;
655
0
        OPENSSL_free(sinf->hash_oid);
656
0
        sinf->hash_oid = NULL;
657
0
        OPENSSL_free(sinf->keytype);
658
0
        sinf->keytype = NULL;
659
0
        OPENSSL_free(sinf->keytype_oid);
660
0
        sinf->keytype_oid = NULL;
661
0
    }
662
0
    return ret;
663
0
}
664
665
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
666
0
{
667
0
    struct provider_ctx_data_st pgd;
668
669
0
    pgd.ctx = vctx;
670
0
    pgd.provider = provider;
671
0
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
672
0
                                   add_provider_sigalgs, &pgd);
673
    /*
674
     * Always OK, even if provider doesn't support the capability:
675
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
676
     */
677
0
    return 1;
678
0
}
679
680
int ssl_load_sigalgs(SSL_CTX *ctx)
681
0
{
682
0
    size_t i;
683
0
    SSL_CERT_LOOKUP lu;
684
685
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
686
0
        return 0;
687
688
    /* now populate ctx->ssl_cert_info */
689
0
    if (ctx->sigalg_list_len > 0) {
690
0
        OPENSSL_free(ctx->ssl_cert_info);
691
0
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
692
0
        if (ctx->ssl_cert_info == NULL)
693
0
            return 0;
694
0
        for(i = 0; i < ctx->sigalg_list_len; i++) {
695
0
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
696
0
            ctx->ssl_cert_info[i].amask = SSL_aANY;
697
0
        }
698
0
    }
699
700
    /*
701
     * For now, leave it at this: legacy sigalgs stay in their own
702
     * data structures until "legacy cleanup" occurs.
703
     */
704
705
0
    return 1;
706
0
}
707
708
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
709
0
{
710
0
    size_t i;
711
712
0
    for (i = 0; i < ctx->group_list_len; i++) {
713
0
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
714
0
                || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
715
0
            return ctx->group_list[i].group_id;
716
0
    }
717
718
0
    return 0;
719
0
}
720
721
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
722
0
{
723
0
    size_t i;
724
725
0
    for (i = 0; i < ctx->group_list_len; i++) {
726
0
        if (ctx->group_list[i].group_id == group_id)
727
0
            return &ctx->group_list[i];
728
0
    }
729
730
0
    return NULL;
731
0
}
732
733
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
734
0
{
735
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
736
737
0
    if (tls_group_info == NULL)
738
0
        return NULL;
739
740
0
    return tls_group_info->tlsname;
741
0
}
742
743
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
744
0
{
745
0
    size_t i;
746
747
0
    if (group_id == 0)
748
0
        return NID_undef;
749
750
    /*
751
     * Return well known Group NIDs - for backwards compatibility. This won't
752
     * work for groups we don't know about.
753
     */
754
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
755
0
    {
756
0
        if (nid_to_group[i].group_id == group_id)
757
0
            return nid_to_group[i].nid;
758
0
    }
759
0
    if (!include_unknown)
760
0
        return NID_undef;
761
0
    return TLSEXT_nid_unknown | (int)group_id;
762
0
}
763
764
uint16_t tls1_nid2group_id(int nid)
765
0
{
766
0
    size_t i;
767
768
    /*
769
     * Return well known Group ids - for backwards compatibility. This won't
770
     * work for groups we don't know about.
771
     */
772
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
773
0
    {
774
0
        if (nid_to_group[i].nid == nid)
775
0
            return nid_to_group[i].group_id;
776
0
    }
777
778
0
    return 0;
779
0
}
780
781
/*
782
 * Set *pgroups to the supported groups list and *pgroupslen to
783
 * the number of groups supported.
784
 */
785
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
786
                               size_t *pgroupslen)
787
0
{
788
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
789
790
    /* For Suite B mode only include P-256, P-384 */
791
0
    switch (tls1_suiteb(s)) {
792
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
793
0
        *pgroups = suiteb_curves;
794
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
795
0
        break;
796
797
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
798
0
        *pgroups = suiteb_curves;
799
0
        *pgroupslen = 1;
800
0
        break;
801
802
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
803
0
        *pgroups = suiteb_curves + 1;
804
0
        *pgroupslen = 1;
805
0
        break;
806
807
0
    default:
808
0
        if (s->ext.supportedgroups == NULL) {
809
0
            *pgroups = sctx->ext.supportedgroups;
810
0
            *pgroupslen = sctx->ext.supportedgroups_len;
811
0
        } else {
812
0
            *pgroups = s->ext.supportedgroups;
813
0
            *pgroupslen = s->ext.supportedgroups_len;
814
0
        }
815
0
        break;
816
0
    }
817
0
}
818
819
/*
820
 * Some comments for the function below:
821
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
822
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
823
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
824
 * groups in this case.
825
 *
826
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
827
 * but the groupID to 0.
828
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
829
 * the "list of requested key share groups" is used, or the "list of supported groups" in
830
 * combination with setting add_only_one = 1 is applied.
831
 */
832
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
833
                                        size_t *pgroupslen)
834
0
{
835
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
836
837
0
    if (s->ext.supportedgroups == NULL) {
838
0
        *pgroups = sctx->ext.supportedgroups;
839
0
        *pgroupslen = sctx->ext.supportedgroups_len;
840
0
    } else {
841
0
        *pgroups = s->ext.keyshares;
842
0
        *pgroupslen = s->ext.keyshares_len;
843
0
    }
844
0
}
845
846
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
847
                           size_t *ptupleslen)
848
0
{
849
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
850
851
0
    if (s->ext.supportedgroups == NULL) {
852
0
        *ptuples = sctx->ext.tuples;
853
0
        *ptupleslen = sctx->ext.tuples_len;
854
0
    } else {
855
0
        *ptuples = s->ext.tuples;
856
0
        *ptupleslen = s->ext.tuples_len;
857
0
    }
858
0
}
859
860
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
861
                    int minversion, int maxversion,
862
                    int isec, int *okfortls13)
863
0
{
864
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
865
0
                                                       group_id);
866
0
    int ret;
867
0
    int group_minversion, group_maxversion;
868
869
0
    if (okfortls13 != NULL)
870
0
        *okfortls13 = 0;
871
872
0
    if (ginfo == NULL)
873
0
        return 0;
874
875
0
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
876
0
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
877
878
0
    if (group_minversion < 0 || group_maxversion < 0)
879
0
        return 0;
880
0
    if (group_maxversion == 0)
881
0
        ret = 1;
882
0
    else
883
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
884
0
    if (group_minversion > 0)
885
0
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
886
887
0
    if (!SSL_CONNECTION_IS_DTLS(s)) {
888
0
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
889
0
            *okfortls13 = (group_maxversion == 0)
890
0
                          || (group_maxversion >= TLS1_3_VERSION);
891
0
    }
892
0
    ret &= !isec
893
0
           || strcmp(ginfo->algorithm, "EC") == 0
894
0
           || strcmp(ginfo->algorithm, "X25519") == 0
895
0
           || strcmp(ginfo->algorithm, "X448") == 0;
896
897
0
    return ret;
898
0
}
899
900
/* See if group is allowed by security callback */
901
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
902
0
{
903
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
904
0
                                                       group);
905
0
    unsigned char gtmp[2];
906
907
0
    if (ginfo == NULL)
908
0
        return 0;
909
910
0
    gtmp[0] = group >> 8;
911
0
    gtmp[1] = group & 0xff;
912
0
    return ssl_security(s, op, ginfo->secbits,
913
0
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
914
0
}
915
916
/* Return 1 if "id" is in "list" */
917
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
918
0
{
919
0
    size_t i;
920
0
    for (i = 0; i < listlen; i++)
921
0
        if (list[i] == id)
922
0
            return 1;
923
0
    return 0;
924
0
}
925
926
typedef struct {
927
    TLS_GROUP_INFO *grp;
928
    size_t ix;
929
} TLS_GROUP_IX;
930
931
DEFINE_STACK_OF(TLS_GROUP_IX)
932
933
static void free_wrapper(TLS_GROUP_IX *a)
934
0
{
935
0
    OPENSSL_free(a);
936
0
}
937
938
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
939
                            const TLS_GROUP_IX *const *b)
940
0
{
941
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
942
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
943
0
    int ixcmpab = (*a)->ix < (*b)->ix;
944
0
    int ixcmpba = (*b)->ix < (*a)->ix;
945
946
    /* Ascending by group id */
947
0
    if (idcmpab != idcmpba)
948
0
        return (idcmpba - idcmpab);
949
    /* Ascending by original appearance index */
950
0
    return ixcmpba - ixcmpab;
951
0
}
952
953
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
954
                                 TLS_GROUP_INFO *grps, size_t num, long all,
955
                                 STACK_OF(OPENSSL_CSTRING) *out)
956
0
{
957
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
958
0
    TLS_GROUP_IX *gix;
959
0
    uint16_t id = 0;
960
0
    int ret = 0;
961
0
    int ix;
962
963
0
    if (grps == NULL || out == NULL || num > INT_MAX)
964
0
        return 0;
965
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
966
0
        return 0;
967
0
    for (ix = 0; ix < (int)num; ++ix, ++grps) {
968
0
        if (grps->mintls > 0 && max_proto_version > 0
969
0
             && grps->mintls > max_proto_version)
970
0
            continue;
971
0
        if (grps->maxtls > 0 && min_proto_version > 0
972
0
            && grps->maxtls < min_proto_version)
973
0
            continue;
974
975
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
976
0
            goto end;
977
0
        gix->grp = grps;
978
0
        gix->ix = ix;
979
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
980
0
            OPENSSL_free(gix);
981
0
            goto end;
982
0
        }
983
0
    }
984
985
0
    sk_TLS_GROUP_IX_sort(collect);
986
0
    num = sk_TLS_GROUP_IX_num(collect);
987
0
    for (ix = 0; ix < (int)num; ++ix) {
988
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
989
0
        if (!all && gix->grp->group_id == id)
990
0
            continue;
991
0
        id = gix->grp->group_id;
992
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
993
0
            goto end;
994
0
    }
995
0
    ret = 1;
996
997
0
 end:
998
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
999
0
    return ret;
1000
0
}
1001
1002
/*-
1003
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1004
 * if there is no match.
1005
 * For nmatch == -1, return number of matches
1006
 * For nmatch == -2, return the id of the group to use for
1007
 * a tmp key, or 0 if there is no match.
1008
 */
1009
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1010
0
{
1011
0
    const uint16_t *pref, *supp;
1012
0
    size_t num_pref, num_supp, i;
1013
0
    int k;
1014
0
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1015
1016
    /* Can't do anything on client side */
1017
0
    if (s->server == 0)
1018
0
        return 0;
1019
0
    if (nmatch == -2) {
1020
0
        if (tls1_suiteb(s)) {
1021
            /*
1022
             * For Suite B ciphersuite determines curve: we already know
1023
             * these are acceptable due to previous checks.
1024
             */
1025
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1026
1027
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1028
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1029
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1030
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1031
            /* Should never happen */
1032
0
            return 0;
1033
0
        }
1034
        /* If not Suite B just return first preference shared curve */
1035
0
        nmatch = 0;
1036
0
    }
1037
    /*
1038
     * If server preference set, our groups are the preference order
1039
     * otherwise peer decides.
1040
     */
1041
0
    if (s->options & SSL_OP_SERVER_PREFERENCE) {
1042
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1043
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1044
0
    } else {
1045
0
        tls1_get_peer_groups(s, &pref, &num_pref);
1046
0
        tls1_get_supported_groups(s, &supp, &num_supp);
1047
0
    }
1048
1049
0
    for (k = 0, i = 0; i < num_pref; i++) {
1050
0
        uint16_t id = pref[i];
1051
0
        const TLS_GROUP_INFO *inf;
1052
0
        int minversion, maxversion;
1053
1054
0
        if (!tls1_in_list(id, supp, num_supp)
1055
0
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1056
0
            continue;
1057
0
        inf = tls1_group_id_lookup(ctx, id);
1058
0
        if (!ossl_assert(inf != NULL))
1059
0
            return 0;
1060
1061
0
        minversion = SSL_CONNECTION_IS_DTLS(s)
1062
0
                         ? inf->mindtls : inf->mintls;
1063
0
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1064
0
                         ? inf->maxdtls : inf->maxtls;
1065
0
        if (maxversion == -1)
1066
0
            continue;
1067
0
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1068
0
            || (maxversion != 0
1069
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1070
0
            continue;
1071
1072
0
        if (nmatch == k)
1073
0
            return id;
1074
0
         k++;
1075
0
    }
1076
0
    if (nmatch == -1)
1077
0
        return k;
1078
    /* Out of range (nmatch > k). */
1079
0
    return 0;
1080
0
}
1081
1082
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1083
                    uint16_t **ksext, size_t *ksextlen,
1084
                    size_t **tplext, size_t *tplextlen,
1085
                    int *groups, size_t ngroups)
1086
0
{
1087
0
    uint16_t *glist = NULL, *kslist = NULL;
1088
0
    size_t *tpllist = NULL;
1089
0
    size_t i;
1090
    /*
1091
     * Bitmap of groups included to detect duplicates: two variables are added
1092
     * to detect duplicates as some values are more than 32.
1093
     */
1094
0
    unsigned long *dup_list = NULL;
1095
0
    unsigned long dup_list_egrp = 0;
1096
0
    unsigned long dup_list_dhgrp = 0;
1097
1098
0
    if (ngroups == 0) {
1099
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1100
0
        return 0;
1101
0
    }
1102
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1103
0
        goto err;
1104
0
    if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1105
0
        goto err;
1106
0
    if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1107
0
        goto err;
1108
0
    for (i = 0; i < ngroups; i++) {
1109
0
        unsigned long idmask;
1110
0
        uint16_t id;
1111
0
        id = tls1_nid2group_id(groups[i]);
1112
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1113
0
            goto err;
1114
0
        idmask = 1L << (id & 0x00FF);
1115
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1116
0
        if (!id || ((*dup_list) & idmask))
1117
0
            goto err;
1118
0
        *dup_list |= idmask;
1119
0
        glist[i] = id;
1120
0
    }
1121
0
    OPENSSL_free(*grpext);
1122
0
    OPENSSL_free(*ksext);
1123
0
    OPENSSL_free(*tplext);
1124
0
    *grpext = glist;
1125
0
    *grpextlen = ngroups;
1126
0
    kslist[0] = glist[0];
1127
0
    *ksext = kslist;
1128
0
    *ksextlen = 1;
1129
0
    tpllist[0] = ngroups;
1130
0
    *tplext = tpllist;
1131
0
    *tplextlen = 1;
1132
0
    return 1;
1133
0
err:
1134
0
    OPENSSL_free(glist);
1135
0
    OPENSSL_free(kslist);
1136
0
    OPENSSL_free(tpllist);
1137
0
    return 0;
1138
0
}
1139
1140
/*
1141
 * Definition of DEFAULT[_XYZ] pseudo group names.
1142
 * A pseudo group name is actually a full list of groups, including prefixes
1143
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1144
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1145
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1146
 */
1147
typedef struct {
1148
    const char *list_name; /* The name of this pseudo group */
1149
    const char *group_string; /* The group string of this pseudo group */
1150
} default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1151
1152
/* Built-in pseudo group-names must start with a (D or d) */
1153
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1154
1155
/* The list of all built-in pseudo-group-name structures */
1156
static const default_group_string_st default_group_strings[] = {
1157
    {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1158
    {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1159
};
1160
1161
/*
1162
 * Some GOST names are not resolved by tls1_group_name2id,
1163
 * hence we'll check for those manually
1164
 */
1165
typedef struct {
1166
    const char *group_name;
1167
    uint16_t groupID;
1168
} name2id_st;
1169
static const name2id_st name2id_arr[] = {
1170
    {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1171
    {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1172
    {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1173
    {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1174
    {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1175
    {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1176
    {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1177
};
1178
1179
/*
1180
 * Group list management:
1181
 * We establish three lists along with their related size counters:
1182
 * 1) List of (unique) groups
1183
 * 2) List of number of groups per group-priority-tuple
1184
 * 3) List of (unique) key share groups
1185
 */
1186
0
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1187
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1188
1189
/*
1190
 * Preparation of the prefix used to indicate the desire to send a key share,
1191
 * the characters used as separators between groups or tuples of groups, the
1192
 * character to indicate that an unknown group should be ignored, and the
1193
 * character to indicate that a group should be deleted from a list
1194
 */
1195
#ifndef TUPLE_DELIMITER_CHARACTER
1196
/* The prefix characters to indicate group tuple boundaries */
1197
0
# define TUPLE_DELIMITER_CHARACTER '/'
1198
#endif
1199
#ifndef GROUP_DELIMITER_CHARACTER
1200
/* The prefix characters to indicate group tuple boundaries */
1201
0
# define GROUP_DELIMITER_CHARACTER ':'
1202
#endif
1203
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1204
/* The prefix character to ignore unknown groups */
1205
0
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1206
#endif
1207
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1208
/* The prefix character to trigger a key share addition */
1209
0
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1210
#endif
1211
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1212
/* The prefix character to trigger a key share removal */
1213
0
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1214
#endif
1215
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1216
                                GROUP_DELIMITER_CHARACTER,
1217
                                IGNORE_UNKNOWN_GROUP_CHARACTER,
1218
                                KEY_SHARE_INDICATOR_CHARACTER,
1219
                                REMOVE_GROUP_INDICATOR_CHARACTER,
1220
                                '\0'};
1221
1222
/*
1223
 * High-level description of how group strings are analyzed:
1224
 * A first call back function (tuple_cb) is used to process group tuples, and a
1225
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1226
 * Those callback functions are (indirectly) called by CONF_parse_list with
1227
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1228
 * is used to keep track of the parsing results between the various calls
1229
 */
1230
1231
typedef struct {
1232
    SSL_CTX *ctx;
1233
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1234
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1235
    size_t gidcnt; /* Number of groups */
1236
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1237
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1238
    size_t tplcnt; /* Number of tuples */
1239
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1240
    size_t ksidmax; /* The memory allocation chunk size */
1241
    size_t ksidcnt; /* Number of key shares */
1242
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1243
    /* Variable to keep state between execution of callback or helper functions */
1244
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1245
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1246
} gid_cb_st;
1247
1248
/* Forward declaration of tuple callback function */
1249
static int tuple_cb(const char *tuple, int len, void *arg);
1250
1251
/*
1252
 * Extract and process the individual groups (and their prefixes if present)
1253
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1254
 * and must be appended by a \0 if used as \0-terminated string
1255
 */
1256
static int gid_cb(const char *elem, int len, void *arg)
1257
0
{
1258
0
    gid_cb_st *garg = arg;
1259
0
    size_t i, j, k;
1260
0
    uint16_t gid = 0;
1261
0
    int found_group = 0;
1262
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1263
0
    int retval = 1; /* We assume success */
1264
0
    char *current_prefix;
1265
0
    int ignore_unknown = 0;
1266
0
    int add_keyshare = 0;
1267
0
    int remove_group = 0;
1268
0
    size_t restored_prefix_index = 0;
1269
0
    char *restored_default_group_string;
1270
0
    int continue_while_loop = 1;
1271
1272
    /* Sanity checks */
1273
0
    if (garg == NULL || elem == NULL || len <= 0) {
1274
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1275
0
        return 0;
1276
0
    }
1277
1278
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1279
0
    while (continue_while_loop && len > 0
1280
0
           && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1281
0
               || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1282
1283
0
        switch (*current_prefix) {
1284
0
        case TUPLE_DELIMITER_CHARACTER:
1285
            /* tuple delimiter not allowed here -> syntax error */
1286
0
            return -1;
1287
0
            break;
1288
0
        case GROUP_DELIMITER_CHARACTER:
1289
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1290
0
            break;
1291
0
        case KEY_SHARE_INDICATOR_CHARACTER:
1292
0
            if (add_keyshare)
1293
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1294
0
            add_keyshare = 1;
1295
0
            ++elem;
1296
0
            --len;
1297
0
            break;
1298
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1299
0
            if (remove_group)
1300
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1301
0
            remove_group = 1;
1302
0
            ++elem;
1303
0
            --len;
1304
0
            break;
1305
0
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1306
0
            if (ignore_unknown)
1307
0
                return -1; /* Only single ? allowed -> syntax error */
1308
0
            ignore_unknown = 1;
1309
0
            ++elem;
1310
0
            --len;
1311
0
            break;
1312
0
        default:
1313
            /*
1314
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1315
             * list of groups) should be added
1316
             */
1317
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1318
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1319
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1320
                    /*
1321
                     * We're asked to insert an entire list of groups from a
1322
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1323
                     * recursively calling this function (indirectly via
1324
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1325
                     * group string like a tuple which is appended to the current tuple
1326
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1327
                     * controls append tuple vs start new tuple.
1328
                     */
1329
1330
0
                    if (ignore_unknown || remove_group)
1331
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1332
1333
                    /*
1334
                     * First, we restore any keyshare prefix in a new zero-terminated string
1335
                     * (if not already present)
1336
                     */
1337
0
                    restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1338
0
                                                                    strlen(default_group_strings[i].group_string) +
1339
0
                                                                    1 /* \0 */) * sizeof(char));
1340
0
                    if (restored_default_group_string == NULL)
1341
0
                        return 0;
1342
0
                    if (add_keyshare
1343
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1344
0
                        && default_group_strings[i].group_string[0]
1345
0
                        != KEY_SHARE_INDICATOR_CHARACTER)
1346
0
                        restored_default_group_string[restored_prefix_index++] =
1347
0
                            KEY_SHARE_INDICATOR_CHARACTER;
1348
1349
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1350
0
                           default_group_strings[i].group_string,
1351
0
                           strlen(default_group_strings[i].group_string));
1352
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) +
1353
0
                                                  restored_prefix_index] = '\0';
1354
                    /* We execute the recursive call */
1355
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1356
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1357
0
                    garg->tuple_mode = 0;
1358
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1359
0
                    retval = CONF_parse_list(restored_default_group_string,
1360
0
                                             TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1361
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1362
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1363
                    /* We don't need the \0-terminated string anymore */
1364
0
                    OPENSSL_free(restored_default_group_string);
1365
1366
0
                    return retval;
1367
0
                }
1368
0
            }
1369
            /*
1370
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1371
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1372
             * name can continue as usual (= the while loop checking prefixes can end)
1373
             */
1374
0
            continue_while_loop = 0;
1375
0
            break;
1376
0
        }
1377
0
    }
1378
1379
0
    if (len == 0)
1380
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1381
1382
0
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1383
0
        ignore_unknown = 1;
1384
1385
    /* Memory management in case more groups are present compared to initial allocation */
1386
0
    if (garg->gidcnt == garg->gidmax) {
1387
0
        uint16_t *tmp =
1388
0
            OPENSSL_realloc(garg->gid_arr,
1389
0
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1390
1391
0
        if (tmp == NULL)
1392
0
            return 0;
1393
1394
0
        garg->gidmax += GROUPLIST_INCREMENT;
1395
0
        garg->gid_arr = tmp;
1396
0
    }
1397
    /* Memory management for key share groups */
1398
0
    if (garg->ksidcnt == garg->ksidmax) {
1399
0
        uint16_t *tmp =
1400
0
            OPENSSL_realloc(garg->ksid_arr,
1401
0
                            (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1402
1403
0
        if (tmp == NULL)
1404
0
            return 0;
1405
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1406
0
        garg->ksid_arr = tmp;
1407
0
    }
1408
1409
0
    if (len > (int)(sizeof(etmp) - 1))
1410
0
        return -1; /* group name to long  -> syntax error */
1411
1412
    /*
1413
     * Prepare addition or removal of a single group by converting
1414
     * a group name into its groupID equivalent
1415
     */
1416
1417
    /* Create a \0-terminated string and get the gid for this group if possible */
1418
0
    memcpy(etmp, elem, len);
1419
0
    etmp[len] = 0;
1420
1421
    /* Get the groupID */
1422
0
    gid = tls1_group_name2id(garg->ctx, etmp);
1423
    /*
1424
     * Handle the case where no valid groupID was returned
1425
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1426
     */
1427
0
    if (gid == 0) {
1428
        /* Is it one of the GOST groups ? */
1429
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1430
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1431
0
                gid = name2id_arr[i].groupID;
1432
0
                break;
1433
0
            }
1434
0
        }
1435
0
        if (gid == 0) { /* still not found */
1436
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1437
0
            retval = ignore_unknown;
1438
0
            goto done;
1439
0
        }
1440
0
    }
1441
1442
    /* Make sure that at least one provider is supporting this groupID */
1443
0
    found_group = 0;
1444
0
    for (j = 0; j < garg->ctx->group_list_len; j++)
1445
0
        if (garg->ctx->group_list[j].group_id == gid) {
1446
0
            found_group = 1;
1447
0
            break;
1448
0
        }
1449
1450
    /*
1451
     * No provider supports this group - ignore if
1452
     * ignore_unknown; trigger error otherwise
1453
     */
1454
0
    if (found_group == 0) {
1455
0
        retval = ignore_unknown;
1456
0
        goto done;
1457
0
    }
1458
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1459
0
    if (remove_group) {
1460
        /* Is the current group specified anywhere in the entire list so far? */
1461
0
        found_group = 0;
1462
0
        for (i = 0; i < garg->gidcnt; i++)
1463
0
            if (garg->gid_arr[i] == gid) {
1464
0
                found_group = 1;
1465
0
                break;
1466
0
            }
1467
        /* The group to remove is at position i in the list of (zero indexed) groups */
1468
0
        if (found_group) {
1469
            /* We remove that group from its position (which is at i)... */
1470
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1471
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1472
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1473
1474
            /*
1475
             * We also must update the number of groups either in a previous tuple (which we
1476
             * must identify and check whether it becomes empty due to the deletion) or in
1477
             * the current tuple, pending where the deleted group resides
1478
             */
1479
0
            k = 0;
1480
0
            for (j = 0; j < garg->tplcnt; j++) {
1481
0
                k += garg->tuplcnt_arr[j];
1482
                /* Remark: i is zero-indexed, k is one-indexed */
1483
0
                if (k > i) { /* remove from one of the previous tuples */
1484
0
                    garg->tuplcnt_arr[j]--;
1485
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1486
0
                }
1487
0
            }
1488
0
            if (k <= i) /* remove from current tuple */
1489
0
                garg->tuplcnt_arr[j]--;
1490
1491
            /* We also remove the group from the list of keyshares (if present) */
1492
0
            found_group = 0;
1493
0
            for (i = 0; i < garg->ksidcnt; i++)
1494
0
                if (garg->ksid_arr[i] == gid) {
1495
0
                    found_group = 1;
1496
0
                    break;
1497
0
                }
1498
0
            if (found_group) {
1499
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1500
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1501
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1502
                /* ... and update the book keeping */
1503
0
                garg->ksidcnt--;
1504
0
            }
1505
0
        }
1506
0
    } else { /* Processing addition of a single new group */
1507
1508
        /* Check for duplicates */
1509
0
        for (i = 0; i < garg->gidcnt; i++)
1510
0
            if (garg->gid_arr[i] == gid) {
1511
                /* Duplicate group anywhere in the list of groups - ignore */
1512
0
                goto done;
1513
0
            }
1514
1515
        /* Add the current group to the 'flat' list of groups */
1516
0
        garg->gid_arr[garg->gidcnt++] = gid;
1517
        /* and update the book keeping for the number of groups in current tuple */
1518
0
        garg->tuplcnt_arr[garg->tplcnt]++;
1519
1520
        /* We memorize if needed that we want to add a key share for the current group */
1521
0
        if (add_keyshare)
1522
0
            garg->ksid_arr[garg->ksidcnt++] = gid;
1523
0
    }
1524
1525
0
done:
1526
0
    return retval;
1527
0
}
1528
1529
/* Extract and process a tuple of groups */
1530
static int tuple_cb(const char *tuple, int len, void *arg)
1531
0
{
1532
0
    gid_cb_st *garg = arg;
1533
0
    int retval = 1; /* We assume success */
1534
0
    char *restored_tuple_string;
1535
1536
    /* Sanity checks */
1537
0
    if (garg == NULL || tuple == NULL || len <= 0) {
1538
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1539
0
        return 0;
1540
0
    }
1541
1542
    /* Memory management for tuples */
1543
0
    if (garg->tplcnt == garg->tplmax) {
1544
0
        size_t *tmp =
1545
0
            OPENSSL_realloc(garg->tuplcnt_arr,
1546
0
                            (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1547
1548
0
        if (tmp == NULL)
1549
0
            return 0;
1550
0
        garg->tplmax += GROUPLIST_INCREMENT;
1551
0
        garg->tuplcnt_arr = tmp;
1552
0
    }
1553
1554
    /* Convert to \0-terminated string */
1555
0
    restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1556
0
    if (restored_tuple_string == NULL)
1557
0
        return 0;
1558
0
    memcpy(restored_tuple_string, tuple, len);
1559
0
    restored_tuple_string[len] = '\0';
1560
1561
    /* Analyze group list of this tuple */
1562
0
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1563
1564
    /* We don't need the \o-terminated string anymore */
1565
0
    OPENSSL_free(restored_tuple_string);
1566
1567
0
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1568
0
        if (garg->tuple_mode) {
1569
            /* We 'close' the tuple */
1570
0
            garg->tplcnt++;
1571
0
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1572
0
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1573
0
        }
1574
0
    }
1575
1576
0
    return retval;
1577
0
}
1578
1579
/*
1580
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1581
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1582
 * (1) add a key share for this group, (2) ignore the group if unkown to the current
1583
 * context, (3) delete a previous occurrence of the group in the current tuple.
1584
 *
1585
 * The list parsing is done in two hierachical steps: The top-level step extracts the
1586
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1587
 * parse and process the groups inside a tuple
1588
 */
1589
int tls1_set_groups_list(SSL_CTX *ctx,
1590
                         uint16_t **grpext, size_t *grpextlen,
1591
                         uint16_t **ksext, size_t *ksextlen,
1592
                         size_t **tplext, size_t *tplextlen,
1593
                         const char *str)
1594
0
{
1595
0
    size_t i = 0, j;
1596
0
    int ret = 0, parse_ret = 0;
1597
0
    gid_cb_st gcb;
1598
1599
    /* Sanity check */
1600
0
    if (ctx == NULL) {
1601
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1602
0
        return 0;
1603
0
    }
1604
1605
0
    memset(&gcb, 0, sizeof(gcb));
1606
0
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1607
0
    gcb.ignore_unknown_default = 0;
1608
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1609
0
    gcb.tplmax = GROUPLIST_INCREMENT;
1610
0
    gcb.ksidmax = GROUPLIST_INCREMENT;
1611
0
    gcb.ctx = ctx;
1612
1613
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1614
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1615
0
    if (gcb.gid_arr == NULL)
1616
0
        goto end;
1617
0
    gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1618
0
    if (gcb.tuplcnt_arr == NULL)
1619
0
        goto end;
1620
0
    gcb.tuplcnt_arr[0] = 0;
1621
0
    gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1622
0
    if (gcb.ksid_arr == NULL)
1623
0
        goto end;
1624
1625
0
    while (str[0] != '\0' && isspace((unsigned char)*str))
1626
0
        str++;
1627
0
    if (str[0] == '\0')
1628
0
        goto empty_list;
1629
1630
    /*
1631
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1632
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1633
     */
1634
0
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1635
1636
0
    if (parse_ret == 0)
1637
0
        goto end;
1638
0
    if (parse_ret == -1) {
1639
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1640
0
                       "Syntax error in '%s'", str);
1641
0
        goto end;
1642
0
    }
1643
1644
    /*
1645
     * We check whether a tuple was completly emptied by using "-" prefix
1646
     * excessively, in which case we remove the tuple
1647
     */
1648
0
    for (i = j = 0; j < gcb.tplcnt; j++) {
1649
0
        if (gcb.tuplcnt_arr[j] == 0)
1650
0
            continue;
1651
        /* If there's a gap, move to first unfilled slot */
1652
0
        if (j == i)
1653
0
            ++i;
1654
0
        else
1655
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1656
0
    }
1657
0
    gcb.tplcnt = i;
1658
1659
0
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1660
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1661
0
                       "To many keyshares requested in '%s' (max = %d)",
1662
0
                       str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1663
0
        goto end;
1664
0
    }
1665
1666
    /*
1667
     * For backward compatibility we let the rest of the code know that a key share
1668
     * for the first valid group should be added if no "*" prefix was used anywhere
1669
     */
1670
0
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1671
        /*
1672
         * No key share group prefix character was used, hence we indicate that a single
1673
         * key share should be sent and flag that it should come from the supported_groups list
1674
         */
1675
0
        gcb.ksidcnt = 1;
1676
0
        gcb.ksid_arr[0] = 0;
1677
0
    }
1678
1679
0
 empty_list:
1680
    /*
1681
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1682
     * to NULL only does a syntax check, hence we're done here and report success
1683
     */
1684
0
    if (grpext == NULL || ksext == NULL || tplext == NULL ||
1685
0
        grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1686
0
        ret = 1;
1687
0
        goto end;
1688
0
    }
1689
1690
    /*
1691
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1692
     * can just go ahead and set the results (after diposing the existing)
1693
     */
1694
0
    OPENSSL_free(*grpext);
1695
0
    *grpext = gcb.gid_arr;
1696
0
    *grpextlen = gcb.gidcnt;
1697
0
    OPENSSL_free(*ksext);
1698
0
    *ksext = gcb.ksid_arr;
1699
0
    *ksextlen = gcb.ksidcnt;
1700
0
    OPENSSL_free(*tplext);
1701
0
    *tplext = gcb.tuplcnt_arr;
1702
0
    *tplextlen = gcb.tplcnt;
1703
1704
0
    return 1;
1705
1706
0
 end:
1707
0
    OPENSSL_free(gcb.gid_arr);
1708
0
    OPENSSL_free(gcb.tuplcnt_arr);
1709
0
    OPENSSL_free(gcb.ksid_arr);
1710
0
    return ret;
1711
0
}
1712
1713
/* Check a group id matches preferences */
1714
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1715
                        int check_own_groups)
1716
0
    {
1717
0
    const uint16_t *groups;
1718
0
    size_t groups_len;
1719
1720
0
    if (group_id == 0)
1721
0
        return 0;
1722
1723
    /* Check for Suite B compliance */
1724
0
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1725
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1726
1727
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1728
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1729
0
                return 0;
1730
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1731
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1732
0
                return 0;
1733
0
        } else {
1734
            /* Should never happen */
1735
0
            return 0;
1736
0
        }
1737
0
    }
1738
1739
0
    if (check_own_groups) {
1740
        /* Check group is one of our preferences */
1741
0
        tls1_get_supported_groups(s, &groups, &groups_len);
1742
0
        if (!tls1_in_list(group_id, groups, groups_len))
1743
0
            return 0;
1744
0
    }
1745
1746
0
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1747
0
        return 0;
1748
1749
    /* For clients, nothing more to check */
1750
0
    if (!s->server)
1751
0
        return 1;
1752
1753
    /* Check group is one of peers preferences */
1754
0
    tls1_get_peer_groups(s, &groups, &groups_len);
1755
1756
    /*
1757
     * RFC 4492 does not require the supported elliptic curves extension
1758
     * so if it is not sent we can just choose any curve.
1759
     * It is invalid to send an empty list in the supported groups
1760
     * extension, so groups_len == 0 always means no extension.
1761
     */
1762
0
    if (groups_len == 0)
1763
0
            return 1;
1764
0
    return tls1_in_list(group_id, groups, groups_len);
1765
0
}
1766
1767
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1768
                         size_t *num_formats)
1769
0
{
1770
    /*
1771
     * If we have a custom point format list use it otherwise use default
1772
     */
1773
0
    if (s->ext.ecpointformats) {
1774
0
        *pformats = s->ext.ecpointformats;
1775
0
        *num_formats = s->ext.ecpointformats_len;
1776
0
    } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
1777
0
        *pformats = ecformats_all;
1778
        /* For Suite B we don't support char2 fields */
1779
0
        if (tls1_suiteb(s))
1780
0
            *num_formats = sizeof(ecformats_all) - 1;
1781
0
        else
1782
0
            *num_formats = sizeof(ecformats_all);
1783
0
    } else {
1784
0
        *pformats = ecformats_default;
1785
0
        *num_formats = sizeof(ecformats_default);
1786
0
    }
1787
0
}
1788
1789
/* Check a key is compatible with compression extension */
1790
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1791
0
{
1792
0
    unsigned char comp_id;
1793
0
    size_t i;
1794
0
    int point_conv;
1795
1796
    /* If not an EC key nothing to check */
1797
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1798
0
        return 1;
1799
1800
1801
    /* Get required compression id */
1802
0
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1803
0
    if (point_conv == 0)
1804
0
        return 0;
1805
0
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1806
0
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1807
0
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1808
        /*
1809
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1810
         * this check.
1811
         */
1812
0
        return 1;
1813
0
    } else {
1814
0
        int field_type = EVP_PKEY_get_field_type(pkey);
1815
1816
0
        if (field_type == NID_X9_62_prime_field)
1817
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1818
0
        else if (field_type == NID_X9_62_characteristic_two_field)
1819
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1820
0
        else
1821
0
            return 0;
1822
0
    }
1823
    /*
1824
     * If point formats extension present check it, otherwise everything is
1825
     * supported (see RFC4492).
1826
     */
1827
0
    if (s->ext.peer_ecpointformats == NULL)
1828
0
        return 1;
1829
1830
0
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1831
0
        if (s->ext.peer_ecpointformats[i] == comp_id)
1832
0
            return 1;
1833
0
    }
1834
0
    return 0;
1835
0
}
1836
1837
/* Return group id of a key */
1838
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1839
0
{
1840
0
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1841
1842
0
    if (curve_nid == NID_undef)
1843
0
        return 0;
1844
0
    return tls1_nid2group_id(curve_nid);
1845
0
}
1846
1847
/*
1848
 * Check cert parameters compatible with extensions: currently just checks EC
1849
 * certificates have compatible curves and compression.
1850
 */
1851
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1852
0
{
1853
0
    uint16_t group_id;
1854
0
    EVP_PKEY *pkey;
1855
0
    pkey = X509_get0_pubkey(x);
1856
0
    if (pkey == NULL)
1857
0
        return 0;
1858
    /* If not EC nothing to do */
1859
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1860
0
        return 1;
1861
    /* Check compression */
1862
0
    if (!tls1_check_pkey_comp(s, pkey))
1863
0
        return 0;
1864
0
    group_id = tls1_get_group_id(pkey);
1865
    /*
1866
     * For a server we allow the certificate to not be in our list of supported
1867
     * groups.
1868
     */
1869
0
    if (!tls1_check_group_id(s, group_id, !s->server))
1870
0
        return 0;
1871
    /*
1872
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1873
     * SHA384+P-384.
1874
     */
1875
0
    if (check_ee_md && tls1_suiteb(s)) {
1876
0
        int check_md;
1877
0
        size_t i;
1878
1879
        /* Check to see we have necessary signing algorithm */
1880
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1881
0
            check_md = NID_ecdsa_with_SHA256;
1882
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1883
0
            check_md = NID_ecdsa_with_SHA384;
1884
0
        else
1885
0
            return 0;           /* Should never happen */
1886
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1887
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1888
0
                return 1;
1889
0
        }
1890
0
        return 0;
1891
0
    }
1892
0
    return 1;
1893
0
}
1894
1895
/*
1896
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1897
 * @s: SSL connection
1898
 * @cid: Cipher ID we're considering using
1899
 *
1900
 * Checks that the kECDHE cipher suite we're considering using
1901
 * is compatible with the client extensions.
1902
 *
1903
 * Returns 0 when the cipher can't be used or 1 when it can.
1904
 */
1905
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1906
0
{
1907
    /* If not Suite B just need a shared group */
1908
0
    if (!tls1_suiteb(s))
1909
0
        return tls1_shared_group(s, 0) != 0;
1910
    /*
1911
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1912
     * curves permitted.
1913
     */
1914
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1915
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1916
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1917
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1918
1919
0
    return 0;
1920
0
}
1921
1922
/* Default sigalg schemes */
1923
static const uint16_t tls12_sigalgs[] = {
1924
    TLSEXT_SIGALG_mldsa65,
1925
    TLSEXT_SIGALG_mldsa87,
1926
    TLSEXT_SIGALG_mldsa44,
1927
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1928
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1929
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1930
    TLSEXT_SIGALG_ed25519,
1931
    TLSEXT_SIGALG_ed448,
1932
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1933
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1934
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1935
1936
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1937
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1938
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1939
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1940
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1941
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1942
1943
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1944
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1945
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1946
1947
    TLSEXT_SIGALG_ecdsa_sha224,
1948
    TLSEXT_SIGALG_ecdsa_sha1,
1949
1950
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1951
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1952
1953
    TLSEXT_SIGALG_dsa_sha224,
1954
    TLSEXT_SIGALG_dsa_sha1,
1955
1956
    TLSEXT_SIGALG_dsa_sha256,
1957
    TLSEXT_SIGALG_dsa_sha384,
1958
    TLSEXT_SIGALG_dsa_sha512,
1959
1960
#ifndef OPENSSL_NO_GOST
1961
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1962
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1963
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1964
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1965
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1966
#endif
1967
};
1968
1969
1970
static const uint16_t suiteb_sigalgs[] = {
1971
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1972
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1973
};
1974
1975
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1976
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1977
     "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1978
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1980
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1981
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1982
     "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1983
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1984
     NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1985
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1986
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1987
     "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1988
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1989
     NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1990
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1991
1992
    {TLSEXT_SIGALG_ed25519_name,
1993
     NULL, TLSEXT_SIGALG_ed25519,
1994
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1995
     NID_undef, NID_undef, 1, 0,
1996
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1997
    {TLSEXT_SIGALG_ed448_name,
1998
     NULL, TLSEXT_SIGALG_ed448,
1999
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
2000
     NID_undef, NID_undef, 1, 0,
2001
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2002
2003
    {TLSEXT_SIGALG_ecdsa_sha224_name,
2004
     "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2005
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2006
     NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2007
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2008
    {TLSEXT_SIGALG_ecdsa_sha1_name,
2009
     "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2010
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011
     NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2012
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2013
2014
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2015
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2016
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2017
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2018
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2019
     TLS1_3_VERSION, 0, -1, -1},
2020
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2021
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2022
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2023
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2024
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2025
     TLS1_3_VERSION, 0, -1, -1},
2026
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2027
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2028
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2029
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2030
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2031
     TLS1_3_VERSION, 0, -1, -1},
2032
2033
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2034
     "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2035
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036
     NID_undef, NID_undef, 1, 0,
2037
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2038
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2039
     "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2040
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2041
     NID_undef, NID_undef, 1, 0,
2042
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2043
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2044
     "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2045
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2046
     NID_undef, NID_undef, 1, 0,
2047
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2048
2049
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2050
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2051
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052
     NID_undef, NID_undef, 1, 0,
2053
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2054
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2055
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2056
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2057
     NID_undef, NID_undef, 1, 0,
2058
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2059
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2060
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2061
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2062
     NID_undef, NID_undef, 1, 0,
2063
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2064
2065
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2066
     "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2067
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068
     NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2069
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2070
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2071
     "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2072
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2073
     NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2074
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2075
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2076
     "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2077
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2078
     NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2079
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2080
2081
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2082
     "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2083
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2084
     NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2085
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2086
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2087
     "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2088
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2089
     NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2090
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2091
2092
    {TLSEXT_SIGALG_dsa_sha256_name,
2093
     "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2094
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095
     NID_dsa_with_SHA256, NID_undef, 1, 0,
2096
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2097
    {TLSEXT_SIGALG_dsa_sha384_name,
2098
     "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2099
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100
     NID_undef, NID_undef, 1, 0,
2101
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2102
    {TLSEXT_SIGALG_dsa_sha512_name,
2103
     "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2104
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105
     NID_undef, NID_undef, 1, 0,
2106
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2107
    {TLSEXT_SIGALG_dsa_sha224_name,
2108
     "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2109
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2110
     NID_undef, NID_undef, 1, 0,
2111
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2112
    {TLSEXT_SIGALG_dsa_sha1_name,
2113
     "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2114
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2115
     NID_dsaWithSHA1, NID_undef, 1, 0,
2116
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2117
2118
#ifndef OPENSSL_NO_GOST
2119
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121
     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2122
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2123
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2124
     NID_undef, NID_undef, 1, 0,
2125
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2127
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2128
     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2129
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2130
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2131
     NID_undef, NID_undef, 1, 0,
2132
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133
2134
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2135
     NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2136
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2137
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2138
     NID_undef, NID_undef, 1, 0,
2139
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2140
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2141
     NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2142
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2143
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2144
     NID_undef, NID_undef, 1, 0,
2145
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2146
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2147
     NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2148
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2149
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2150
     NID_undef, NID_undef, 1, 0,
2151
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2152
#endif
2153
};
2154
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2155
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2156
    "rsa_pkcs1_md5_sha1", NULL, 0,
2157
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2158
     EVP_PKEY_RSA, SSL_PKEY_RSA,
2159
     NID_undef, NID_undef, 1, 0,
2160
     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2161
};
2162
2163
/*
2164
 * Default signature algorithm values used if signature algorithms not present.
2165
 * From RFC5246. Note: order must match certificate index order.
2166
 */
2167
static const uint16_t tls_default_sigalg[] = {
2168
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2169
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2170
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2171
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2172
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2173
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2174
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2175
    0, /* SSL_PKEY_ED25519 */
2176
    0, /* SSL_PKEY_ED448 */
2177
};
2178
2179
int ssl_setup_sigalgs(SSL_CTX *ctx)
2180
0
{
2181
0
    size_t i, cache_idx, sigalgs_len, enabled;
2182
0
    const SIGALG_LOOKUP *lu;
2183
0
    SIGALG_LOOKUP *cache = NULL;
2184
0
    uint16_t *tls12_sigalgs_list = NULL;
2185
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2186
0
    int istls;
2187
0
    int ret = 0;
2188
2189
0
    if (ctx == NULL)
2190
0
        goto err;
2191
2192
0
    istls = !SSL_CTX_IS_DTLS(ctx);
2193
2194
0
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2195
2196
0
    cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2197
0
    if (cache == NULL || tmpkey == NULL)
2198
0
        goto err;
2199
2200
0
    tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2201
0
    if (tls12_sigalgs_list == NULL)
2202
0
        goto err;
2203
2204
0
    ERR_set_mark();
2205
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2206
0
    for (i = 0, lu = sigalg_lookup_tbl;
2207
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2208
0
        EVP_PKEY_CTX *pctx;
2209
2210
0
        cache[i] = *lu;
2211
2212
        /*
2213
         * Check hash is available.
2214
         * This test is not perfect. A provider could have support
2215
         * for a signature scheme, but not a particular hash. However the hash
2216
         * could be available from some other loaded provider. In that case it
2217
         * could be that the signature is available, and the hash is available
2218
         * independently - but not as a combination. We ignore this for now.
2219
         */
2220
0
        if (lu->hash != NID_undef
2221
0
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2222
0
            cache[i].available = 0;
2223
0
            continue;
2224
0
        }
2225
2226
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2227
0
            cache[i].available = 0;
2228
0
            continue;
2229
0
        }
2230
0
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2231
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2232
0
        if (pctx == NULL)
2233
0
            cache[i].available = 0;
2234
0
        EVP_PKEY_CTX_free(pctx);
2235
0
    }
2236
2237
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2238
0
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2239
0
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2240
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2241
0
        cache[cache_idx].name = si.name;
2242
0
        cache[cache_idx].name12 = si.sigalg_name;
2243
0
        cache[cache_idx].sigalg = si.code_point;
2244
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
2245
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2246
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2247
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2248
0
        cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
2249
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2250
0
        cache[cache_idx].curve = NID_undef;
2251
0
        cache[cache_idx].mintls = TLS1_3_VERSION;
2252
0
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2253
0
        cache[cache_idx].mindtls = -1;
2254
0
        cache[cache_idx].maxdtls = -1;
2255
        /* Compatibility with TLS 1.3 is checked on load */
2256
0
        cache[cache_idx].available = istls;
2257
0
        cache[cache_idx].advertise = 0;
2258
0
        cache_idx++;
2259
0
    }
2260
0
    ERR_pop_to_mark();
2261
2262
0
    enabled = 0;
2263
0
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2264
0
        SIGALG_LOOKUP *ent = cache;
2265
0
        size_t j;
2266
2267
0
        for (j = 0; j < sigalgs_len; ent++, j++) {
2268
0
            if (ent->sigalg != tls12_sigalgs[i])
2269
0
                continue;
2270
            /* Dedup by marking cache entry as default enabled. */
2271
0
            if (ent->available && !ent->advertise) {
2272
0
                ent->advertise = 1;
2273
0
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2274
0
            }
2275
0
            break;
2276
0
        }
2277
0
    }
2278
2279
    /* Append any provider sigalgs not yet handled */
2280
0
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2281
0
        SIGALG_LOOKUP *ent = &cache[i];
2282
2283
0
        if (ent->available && !ent->advertise)
2284
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2285
0
    }
2286
2287
0
    ctx->sigalg_lookup_cache = cache;
2288
0
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2289
0
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2290
0
    ctx->tls12_sigalgs_len = enabled;
2291
0
    cache = NULL;
2292
0
    tls12_sigalgs_list = NULL;
2293
2294
0
    ret = 1;
2295
0
 err:
2296
0
    OPENSSL_free(cache);
2297
0
    OPENSSL_free(tls12_sigalgs_list);
2298
0
    EVP_PKEY_free(tmpkey);
2299
0
    return ret;
2300
0
}
2301
2302
0
#define SIGLEN_BUF_INCREMENT 100
2303
2304
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2305
0
{
2306
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2307
0
    const SIGALG_LOOKUP *lu;
2308
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2309
0
    char *retval = OPENSSL_malloc(maxretlen);
2310
2311
0
    if (retval == NULL)
2312
0
        return NULL;
2313
2314
    /* ensure retval string is NUL terminated */
2315
0
    retval[0] = (char)0;
2316
2317
0
    for (i = 0, lu = sigalg_lookup_tbl;
2318
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2319
0
        EVP_PKEY_CTX *pctx;
2320
0
        int enabled = 1;
2321
2322
0
        ERR_set_mark();
2323
        /* Check hash is available in some provider. */
2324
0
        if (lu->hash != NID_undef) {
2325
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2326
2327
            /* If unable to create we assume the hash algorithm is unavailable */
2328
0
            if (hash == NULL) {
2329
0
                enabled = 0;
2330
0
                ERR_pop_to_mark();
2331
0
                continue;
2332
0
            }
2333
0
            EVP_MD_free(hash);
2334
0
        }
2335
2336
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2337
0
            enabled = 0;
2338
0
            ERR_pop_to_mark();
2339
0
            continue;
2340
0
        }
2341
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2342
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2343
0
        if (pctx == NULL)
2344
0
            enabled = 0;
2345
0
        ERR_pop_to_mark();
2346
0
        EVP_PKEY_CTX_free(pctx);
2347
2348
0
        if (enabled) {
2349
0
            const char *sa = lu->name;
2350
2351
0
            if (sa != NULL) {
2352
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2353
0
                    char *tmp;
2354
2355
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2356
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2357
0
                    if (tmp == NULL) {
2358
0
                        OPENSSL_free(retval);
2359
0
                        return NULL;
2360
0
                    }
2361
0
                    retval = tmp;
2362
0
                }
2363
0
                if (strlen(retval) > 0)
2364
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2365
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2366
0
            } else {
2367
                /* lu->name must not be NULL */
2368
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2369
0
            }
2370
0
        }
2371
0
    }
2372
2373
0
    EVP_PKEY_free(tmpkey);
2374
0
    return retval;
2375
0
}
2376
2377
/* Lookup TLS signature algorithm */
2378
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2379
                                               uint16_t sigalg)
2380
0
{
2381
0
    size_t i;
2382
0
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2383
2384
0
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2385
0
        if (lu->sigalg == sigalg) {
2386
0
            if (!lu->available)
2387
0
                return NULL;
2388
0
            return lu;
2389
0
        }
2390
0
    }
2391
0
    return NULL;
2392
0
}
2393
2394
/* Lookup hash: return 0 if invalid or not enabled */
2395
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2396
0
{
2397
0
    const EVP_MD *md;
2398
2399
0
    if (lu == NULL)
2400
0
        return 0;
2401
    /* lu->hash == NID_undef means no associated digest */
2402
0
    if (lu->hash == NID_undef) {
2403
0
        md = NULL;
2404
0
    } else {
2405
0
        md = ssl_md(ctx, lu->hash_idx);
2406
0
        if (md == NULL)
2407
0
            return 0;
2408
0
    }
2409
0
    if (pmd)
2410
0
        *pmd = md;
2411
0
    return 1;
2412
0
}
2413
2414
/*
2415
 * Check if key is large enough to generate RSA-PSS signature.
2416
 *
2417
 * The key must greater than or equal to 2 * hash length + 2.
2418
 * SHA512 has a hash length of 64 bytes, which is incompatible
2419
 * with a 128 byte (1024 bit) key.
2420
 */
2421
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2422
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2423
                                      const SIGALG_LOOKUP *lu)
2424
0
{
2425
0
    const EVP_MD *md;
2426
2427
0
    if (pkey == NULL)
2428
0
        return 0;
2429
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2430
0
        return 0;
2431
0
    if (EVP_MD_get_size(md) <= 0)
2432
0
        return 0;
2433
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2434
0
        return 0;
2435
0
    return 1;
2436
0
}
2437
2438
/*
2439
 * Returns a signature algorithm when the peer did not send a list of supported
2440
 * signature algorithms. The signature algorithm is fixed for the certificate
2441
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2442
 * certificate type from |s| will be used.
2443
 * Returns the signature algorithm to use, or NULL on error.
2444
 */
2445
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2446
                                                   int idx)
2447
0
{
2448
0
    if (idx == -1) {
2449
0
        if (s->server) {
2450
0
            size_t i;
2451
2452
            /* Work out index corresponding to ciphersuite */
2453
0
            for (i = 0; i < s->ssl_pkey_num; i++) {
2454
0
                const SSL_CERT_LOOKUP *clu
2455
0
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2456
2457
0
                if (clu == NULL)
2458
0
                    continue;
2459
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2460
0
                    idx = (int)i;
2461
0
                    break;
2462
0
                }
2463
0
            }
2464
2465
            /*
2466
             * Some GOST ciphersuites allow more than one signature algorithms
2467
             * */
2468
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2469
0
                int real_idx;
2470
2471
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2472
0
                     real_idx--) {
2473
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2474
0
                        idx = real_idx;
2475
0
                        break;
2476
0
                    }
2477
0
                }
2478
0
            }
2479
            /*
2480
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2481
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2482
             */
2483
0
            else if (idx == SSL_PKEY_GOST12_256) {
2484
0
                int real_idx;
2485
2486
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2487
0
                     real_idx--) {
2488
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2489
0
                         idx = real_idx;
2490
0
                         break;
2491
0
                     }
2492
0
                }
2493
0
            }
2494
0
        } else {
2495
0
            idx = (int)(s->cert->key - s->cert->pkeys);
2496
0
        }
2497
0
    }
2498
0
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2499
0
        return NULL;
2500
2501
0
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2502
0
        const SIGALG_LOOKUP *lu =
2503
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2504
0
                               tls_default_sigalg[idx]);
2505
2506
0
        if (lu == NULL)
2507
0
            return NULL;
2508
0
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2509
0
            return NULL;
2510
0
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2511
0
            return NULL;
2512
0
        return lu;
2513
0
    }
2514
0
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2515
0
        return NULL;
2516
0
    return &legacy_rsa_sigalg;
2517
0
}
2518
/* Set peer sigalg based key type */
2519
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2520
0
{
2521
0
    size_t idx;
2522
0
    const SIGALG_LOOKUP *lu;
2523
2524
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2525
0
        return 0;
2526
0
    lu = tls1_get_legacy_sigalg(s, (int)idx);
2527
0
    if (lu == NULL)
2528
0
        return 0;
2529
0
    s->s3.tmp.peer_sigalg = lu;
2530
0
    return 1;
2531
0
}
2532
2533
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2534
0
{
2535
    /*
2536
     * If Suite B mode use Suite B sigalgs only, ignore any other
2537
     * preferences.
2538
     */
2539
0
    switch (tls1_suiteb(s)) {
2540
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2541
0
        *psigs = suiteb_sigalgs;
2542
0
        return OSSL_NELEM(suiteb_sigalgs);
2543
2544
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2545
0
        *psigs = suiteb_sigalgs;
2546
0
        return 1;
2547
2548
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2549
0
        *psigs = suiteb_sigalgs + 1;
2550
0
        return 1;
2551
0
    }
2552
    /*
2553
     *  We use client_sigalgs (if not NULL) if we're a server
2554
     *  and sending a certificate request or if we're a client and
2555
     *  determining which shared algorithm to use.
2556
     */
2557
0
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2558
0
        *psigs = s->cert->client_sigalgs;
2559
0
        return s->cert->client_sigalgslen;
2560
0
    } else if (s->cert->conf_sigalgs) {
2561
0
        *psigs = s->cert->conf_sigalgs;
2562
0
        return s->cert->conf_sigalgslen;
2563
0
    } else {
2564
0
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2565
0
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2566
0
    }
2567
0
}
2568
2569
/*
2570
 * Called by servers only. Checks that we have a sig alg that supports the
2571
 * specified EC curve.
2572
 */
2573
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2574
0
{
2575
0
   const uint16_t *sigs;
2576
0
   size_t siglen, i;
2577
2578
0
    if (s->cert->conf_sigalgs) {
2579
0
        sigs = s->cert->conf_sigalgs;
2580
0
        siglen = s->cert->conf_sigalgslen;
2581
0
    } else {
2582
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2583
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2584
0
    }
2585
2586
0
    for (i = 0; i < siglen; i++) {
2587
0
        const SIGALG_LOOKUP *lu =
2588
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2589
2590
0
        if (lu == NULL)
2591
0
            continue;
2592
0
        if (lu->sig == EVP_PKEY_EC
2593
0
                && lu->curve != NID_undef
2594
0
                && curve == lu->curve)
2595
0
            return 1;
2596
0
    }
2597
2598
0
    return 0;
2599
0
}
2600
2601
/*
2602
 * Return the number of security bits for the signature algorithm, or 0 on
2603
 * error.
2604
 */
2605
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2606
0
{
2607
0
    const EVP_MD *md = NULL;
2608
0
    int secbits = 0;
2609
2610
0
    if (!tls1_lookup_md(ctx, lu, &md))
2611
0
        return 0;
2612
0
    if (md != NULL)
2613
0
    {
2614
0
        int md_type = EVP_MD_get_type(md);
2615
2616
        /* Security bits: half digest bits */
2617
0
        secbits = EVP_MD_get_size(md) * 4;
2618
0
        if (secbits <= 0)
2619
0
            return 0;
2620
        /*
2621
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2622
         * they're no longer accepted at security level 1. The real values don't
2623
         * really matter as long as they're lower than 80, which is our
2624
         * security level 1.
2625
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2626
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2627
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2628
         * puts a chosen-prefix attack for MD5 at 2^39.
2629
         */
2630
0
        if (md_type == NID_sha1)
2631
0
            secbits = 64;
2632
0
        else if (md_type == NID_md5_sha1)
2633
0
            secbits = 67;
2634
0
        else if (md_type == NID_md5)
2635
0
            secbits = 39;
2636
0
    } else {
2637
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2638
0
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2639
0
            secbits = 128;
2640
0
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2641
0
            secbits = 224;
2642
0
    }
2643
    /*
2644
     * For provider-based sigalgs we have secbits information available
2645
     * in the (provider-loaded) sigalg_list structure
2646
     */
2647
0
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2648
0
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2649
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2650
0
    }
2651
0
    return secbits;
2652
0
}
2653
2654
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2655
0
{
2656
0
    int minversion, maxversion;
2657
0
    int minproto, maxproto;
2658
2659
0
    if (!lu->available)
2660
0
        return 0;
2661
2662
0
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2663
0
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2664
0
            minproto = sc->min_proto_version;
2665
0
            maxproto = sc->max_proto_version;
2666
0
        } else {
2667
0
            maxproto = minproto = sc->version;
2668
0
        }
2669
0
        minversion = lu->mindtls;
2670
0
        maxversion = lu->maxdtls;
2671
0
    } else {
2672
0
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2673
0
            minproto = sc->min_proto_version;
2674
0
            maxproto = sc->max_proto_version;
2675
0
        } else {
2676
0
            maxproto = minproto = sc->version;
2677
0
        }
2678
0
        minversion = lu->mintls;
2679
0
        maxversion = lu->maxtls;
2680
0
    }
2681
0
    if (minversion == -1 || maxversion == -1
2682
0
        || (minversion != 0 && maxproto != 0
2683
0
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2684
0
        || (maxversion != 0 && minproto != 0
2685
0
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2686
0
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2687
0
        return 0;
2688
0
    return 1;
2689
0
}
2690
2691
/*
2692
 * Check signature algorithm is consistent with sent supported signature
2693
 * algorithms and if so set relevant digest and signature scheme in
2694
 * s.
2695
 */
2696
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2697
0
{
2698
0
    const uint16_t *sent_sigs;
2699
0
    const EVP_MD *md = NULL;
2700
0
    char sigalgstr[2];
2701
0
    size_t sent_sigslen, i, cidx;
2702
0
    int pkeyid = -1;
2703
0
    const SIGALG_LOOKUP *lu;
2704
0
    int secbits = 0;
2705
2706
0
    pkeyid = EVP_PKEY_get_id(pkey);
2707
2708
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
2709
        /* Disallow DSA for TLS 1.3 */
2710
0
        if (pkeyid == EVP_PKEY_DSA) {
2711
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2712
0
            return 0;
2713
0
        }
2714
        /* Only allow PSS for TLS 1.3 */
2715
0
        if (pkeyid == EVP_PKEY_RSA)
2716
0
            pkeyid = EVP_PKEY_RSA_PSS;
2717
0
    }
2718
2719
    /* Is this code point available and compatible with the protocol */
2720
0
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2721
0
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2722
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2723
0
        return 0;
2724
0
    }
2725
2726
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2727
0
    if (pkeyid == EVP_PKEY_KEYMGMT)
2728
0
        pkeyid = lu->sig;
2729
2730
    /* Should never happen */
2731
0
    if (pkeyid == -1) {
2732
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2733
0
        return -1;
2734
0
    }
2735
2736
    /*
2737
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2738
     * is consistent with signature: RSA keys can be used for RSA-PSS
2739
     */
2740
0
    if ((SSL_CONNECTION_IS_TLS13(s)
2741
0
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2742
0
        || (pkeyid != lu->sig
2743
0
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2744
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2745
0
        return 0;
2746
0
    }
2747
    /* Check the sigalg is consistent with the key OID */
2748
0
    if (!ssl_cert_lookup_by_nid(
2749
0
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2750
0
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2751
0
            || lu->sig_idx != (int)cidx) {
2752
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2753
0
        return 0;
2754
0
    }
2755
2756
0
    if (pkeyid == EVP_PKEY_EC) {
2757
2758
        /* Check point compression is permitted */
2759
0
        if (!tls1_check_pkey_comp(s, pkey)) {
2760
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2761
0
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2762
0
            return 0;
2763
0
        }
2764
2765
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2766
0
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2767
0
            int curve = ssl_get_EC_curve_nid(pkey);
2768
2769
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2770
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771
0
                return 0;
2772
0
            }
2773
0
        }
2774
0
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2775
            /* Check curve matches extensions */
2776
0
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2777
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2778
0
                return 0;
2779
0
            }
2780
0
            if (tls1_suiteb(s)) {
2781
                /* Check sigalg matches a permissible Suite B value */
2782
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2783
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2784
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2785
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2786
0
                    return 0;
2787
0
                }
2788
0
            }
2789
0
        }
2790
0
    } else if (tls1_suiteb(s)) {
2791
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2792
0
        return 0;
2793
0
    }
2794
2795
    /* Check signature matches a type we sent */
2796
0
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2797
0
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2798
0
        if (sig == *sent_sigs)
2799
0
            break;
2800
0
    }
2801
    /* Allow fallback to SHA1 if not strict mode */
2802
0
    if (i == sent_sigslen && (lu->hash != NID_sha1
2803
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2804
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2805
0
        return 0;
2806
0
    }
2807
0
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2808
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2809
0
        return 0;
2810
0
    }
2811
    /*
2812
     * Make sure security callback allows algorithm. For historical
2813
     * reasons we have to pass the sigalg as a two byte char array.
2814
     */
2815
0
    sigalgstr[0] = (sig >> 8) & 0xff;
2816
0
    sigalgstr[1] = sig & 0xff;
2817
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2818
0
    if (secbits == 0 ||
2819
0
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2820
0
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2821
0
                      (void *)sigalgstr)) {
2822
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2823
0
        return 0;
2824
0
    }
2825
    /* Store the sigalg the peer uses */
2826
0
    s->s3.tmp.peer_sigalg = lu;
2827
0
    return 1;
2828
0
}
2829
2830
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2831
0
{
2832
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2833
2834
0
    if (sc == NULL)
2835
0
        return 0;
2836
2837
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2838
0
        return 0;
2839
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2840
0
    return 1;
2841
0
}
2842
2843
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2844
0
{
2845
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2846
2847
0
    if (sc == NULL)
2848
0
        return 0;
2849
2850
0
    if (sc->s3.tmp.sigalg == NULL)
2851
0
        return 0;
2852
0
    *pnid = sc->s3.tmp.sigalg->sig;
2853
0
    return 1;
2854
0
}
2855
2856
/*
2857
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2858
 * supported, doesn't appear in supported signature algorithms, isn't supported
2859
 * by the enabled protocol versions or by the security level.
2860
 *
2861
 * This function should only be used for checking which ciphers are supported
2862
 * by the client.
2863
 *
2864
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2865
 */
2866
int ssl_set_client_disabled(SSL_CONNECTION *s)
2867
0
{
2868
0
    s->s3.tmp.mask_a = 0;
2869
0
    s->s3.tmp.mask_k = 0;
2870
0
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2871
0
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2872
0
                                &s->s3.tmp.max_ver, NULL) != 0)
2873
0
        return 0;
2874
0
#ifndef OPENSSL_NO_PSK
2875
    /* with PSK there must be client callback set */
2876
0
    if (!s->psk_client_callback) {
2877
0
        s->s3.tmp.mask_a |= SSL_aPSK;
2878
0
        s->s3.tmp.mask_k |= SSL_PSK;
2879
0
    }
2880
0
#endif                          /* OPENSSL_NO_PSK */
2881
0
#ifndef OPENSSL_NO_SRP
2882
0
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2883
0
        s->s3.tmp.mask_a |= SSL_aSRP;
2884
0
        s->s3.tmp.mask_k |= SSL_kSRP;
2885
0
    }
2886
0
#endif
2887
0
    return 1;
2888
0
}
2889
2890
/*
2891
 * ssl_cipher_disabled - check that a cipher is disabled or not
2892
 * @s: SSL connection that you want to use the cipher on
2893
 * @c: cipher to check
2894
 * @op: Security check that you want to do
2895
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2896
 *
2897
 * Returns 1 when it's disabled, 0 when enabled.
2898
 */
2899
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2900
                        int op, int ecdhe)
2901
0
{
2902
0
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2903
0
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2904
2905
0
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2906
0
        || c->algorithm_auth & s->s3.tmp.mask_a)
2907
0
        return 1;
2908
0
    if (s->s3.tmp.max_ver == 0)
2909
0
        return 1;
2910
2911
0
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2912
        /* For QUIC, only allow these ciphersuites. */
2913
0
        switch (SSL_CIPHER_get_id(c)) {
2914
0
        case TLS1_3_CK_AES_128_GCM_SHA256:
2915
0
        case TLS1_3_CK_AES_256_GCM_SHA384:
2916
0
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2917
0
            break;
2918
0
        default:
2919
0
            return 1;
2920
0
        }
2921
2922
    /*
2923
     * For historical reasons we will allow ECHDE to be selected by a server
2924
     * in SSLv3 if we are a client
2925
     */
2926
0
    if (minversion == TLS1_VERSION
2927
0
            && ecdhe
2928
0
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2929
0
        minversion = SSL3_VERSION;
2930
2931
0
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2932
0
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2933
0
        return 1;
2934
2935
0
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2936
0
}
2937
2938
int tls_use_ticket(SSL_CONNECTION *s)
2939
0
{
2940
0
    if ((s->options & SSL_OP_NO_TICKET))
2941
0
        return 0;
2942
0
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2943
0
}
2944
2945
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2946
0
{
2947
0
    size_t i;
2948
2949
    /* Clear any shared signature algorithms */
2950
0
    OPENSSL_free(s->shared_sigalgs);
2951
0
    s->shared_sigalgs = NULL;
2952
0
    s->shared_sigalgslen = 0;
2953
2954
    /* Clear certificate validity flags */
2955
0
    if (s->s3.tmp.valid_flags)
2956
0
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2957
0
    else
2958
0
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2959
0
    if (s->s3.tmp.valid_flags == NULL)
2960
0
        return 0;
2961
    /*
2962
     * If peer sent no signature algorithms check to see if we support
2963
     * the default algorithm for each certificate type
2964
     */
2965
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2966
0
            && s->s3.tmp.peer_sigalgs == NULL) {
2967
0
        const uint16_t *sent_sigs;
2968
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2969
2970
0
        for (i = 0; i < s->ssl_pkey_num; i++) {
2971
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
2972
0
            size_t j;
2973
2974
0
            if (lu == NULL)
2975
0
                continue;
2976
            /* Check default matches a type we sent */
2977
0
            for (j = 0; j < sent_sigslen; j++) {
2978
0
                if (lu->sigalg == sent_sigs[j]) {
2979
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2980
0
                        break;
2981
0
                }
2982
0
            }
2983
0
        }
2984
0
        return 1;
2985
0
    }
2986
2987
0
    if (!tls1_process_sigalgs(s)) {
2988
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2989
0
        return 0;
2990
0
    }
2991
0
    if (s->shared_sigalgs != NULL)
2992
0
        return 1;
2993
2994
    /* Fatal error if no shared signature algorithms */
2995
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2996
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2997
0
    return 0;
2998
0
}
2999
3000
/*-
3001
 * Gets the ticket information supplied by the client if any.
3002
 *
3003
 *   hello: The parsed ClientHello data
3004
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
3005
 *       point to the resulting session.
3006
 */
3007
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3008
                                             CLIENTHELLO_MSG *hello,
3009
                                             SSL_SESSION **ret)
3010
0
{
3011
0
    size_t size;
3012
0
    RAW_EXTENSION *ticketext;
3013
3014
0
    *ret = NULL;
3015
0
    s->ext.ticket_expected = 0;
3016
3017
    /*
3018
     * If tickets disabled or not supported by the protocol version
3019
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3020
     * resumption.
3021
     */
3022
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3023
0
        return SSL_TICKET_NONE;
3024
3025
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3026
0
    if (!ticketext->present)
3027
0
        return SSL_TICKET_NONE;
3028
3029
0
    size = PACKET_remaining(&ticketext->data);
3030
3031
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3032
0
                              hello->session_id, hello->session_id_len, ret);
3033
0
}
3034
3035
/*-
3036
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3037
 *
3038
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3039
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3040
 * session tickets and one will never be decrypted, nor will
3041
 * s->ext.ticket_expected be set to 1.
3042
 *
3043
 * Side effects:
3044
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3045
 *   a new session ticket to the client because the client indicated support
3046
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3047
 *   a session ticket or we couldn't use the one it gave us, or if
3048
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3049
 *   Otherwise, s->ext.ticket_expected is set to 0.
3050
 *
3051
 *   etick: points to the body of the session ticket extension.
3052
 *   eticklen: the length of the session tickets extension.
3053
 *   sess_id: points at the session ID.
3054
 *   sesslen: the length of the session ID.
3055
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3056
 *       point to the resulting session.
3057
 */
3058
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3059
                                     const unsigned char *etick,
3060
                                     size_t eticklen,
3061
                                     const unsigned char *sess_id,
3062
                                     size_t sesslen, SSL_SESSION **psess)
3063
0
{
3064
0
    SSL_SESSION *sess = NULL;
3065
0
    unsigned char *sdec;
3066
0
    const unsigned char *p;
3067
0
    int slen, ivlen, renew_ticket = 0, declen;
3068
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3069
0
    size_t mlen;
3070
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3071
0
    SSL_HMAC *hctx = NULL;
3072
0
    EVP_CIPHER_CTX *ctx = NULL;
3073
0
    SSL_CTX *tctx = s->session_ctx;
3074
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3075
3076
0
    if (eticklen == 0) {
3077
        /*
3078
         * The client will accept a ticket but doesn't currently have
3079
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3080
         */
3081
0
        ret = SSL_TICKET_EMPTY;
3082
0
        goto end;
3083
0
    }
3084
0
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3085
        /*
3086
         * Indicate that the ticket couldn't be decrypted rather than
3087
         * generating the session from ticket now, trigger
3088
         * abbreviated handshake based on external mechanism to
3089
         * calculate the master secret later.
3090
         */
3091
0
        ret = SSL_TICKET_NO_DECRYPT;
3092
0
        goto end;
3093
0
    }
3094
3095
    /* Need at least keyname + iv */
3096
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3097
0
        ret = SSL_TICKET_NO_DECRYPT;
3098
0
        goto end;
3099
0
    }
3100
3101
    /* Initialize session ticket encryption and HMAC contexts */
3102
0
    hctx = ssl_hmac_new(tctx);
3103
0
    if (hctx == NULL) {
3104
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3105
0
        goto end;
3106
0
    }
3107
0
    ctx = EVP_CIPHER_CTX_new();
3108
0
    if (ctx == NULL) {
3109
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3110
0
        goto end;
3111
0
    }
3112
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3113
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3114
#else
3115
    if (tctx->ext.ticket_key_evp_cb != NULL)
3116
#endif
3117
0
    {
3118
0
        unsigned char *nctick = (unsigned char *)etick;
3119
0
        int rv = 0;
3120
3121
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3122
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3123
0
                                             nctick,
3124
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
3125
0
                                             ctx,
3126
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
3127
0
                                             0);
3128
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3129
0
        else if (tctx->ext.ticket_key_cb != NULL)
3130
            /* if 0 is returned, write an empty ticket */
3131
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3132
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
3133
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3134
0
#endif
3135
0
        if (rv < 0) {
3136
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3137
0
            goto end;
3138
0
        }
3139
0
        if (rv == 0) {
3140
0
            ret = SSL_TICKET_NO_DECRYPT;
3141
0
            goto end;
3142
0
        }
3143
0
        if (rv == 2)
3144
0
            renew_ticket = 1;
3145
0
    } else {
3146
0
        EVP_CIPHER *aes256cbc = NULL;
3147
3148
        /* Check key name matches */
3149
0
        if (memcmp(etick, tctx->ext.tick_key_name,
3150
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
3151
0
            ret = SSL_TICKET_NO_DECRYPT;
3152
0
            goto end;
3153
0
        }
3154
3155
0
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3156
0
                                     sctx->propq);
3157
0
        if (aes256cbc == NULL
3158
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3159
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
3160
0
                             "SHA256") <= 0
3161
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3162
0
                                  tctx->ext.secure->tick_aes_key,
3163
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3164
0
            EVP_CIPHER_free(aes256cbc);
3165
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3166
0
            goto end;
3167
0
        }
3168
0
        EVP_CIPHER_free(aes256cbc);
3169
0
        if (SSL_CONNECTION_IS_TLS13(s))
3170
0
            renew_ticket = 1;
3171
0
    }
3172
    /*
3173
     * Attempt to process session ticket, first conduct sanity and integrity
3174
     * checks on ticket.
3175
     */
3176
0
    mlen = ssl_hmac_size(hctx);
3177
0
    if (mlen == 0) {
3178
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3179
0
        goto end;
3180
0
    }
3181
3182
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3183
0
    if (ivlen < 0) {
3184
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3185
0
        goto end;
3186
0
    }
3187
3188
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3189
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3190
0
        ret = SSL_TICKET_NO_DECRYPT;
3191
0
        goto end;
3192
0
    }
3193
0
    eticklen -= mlen;
3194
    /* Check HMAC of encrypted ticket */
3195
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3196
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3197
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3198
0
        goto end;
3199
0
    }
3200
3201
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3202
0
        ret = SSL_TICKET_NO_DECRYPT;
3203
0
        goto end;
3204
0
    }
3205
    /* Attempt to decrypt session data */
3206
    /* Move p after IV to start of encrypted ticket, update length */
3207
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3208
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3209
0
    sdec = OPENSSL_malloc(eticklen);
3210
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3211
0
                                          (int)eticklen) <= 0) {
3212
0
        OPENSSL_free(sdec);
3213
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3214
0
        goto end;
3215
0
    }
3216
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3217
0
        OPENSSL_free(sdec);
3218
0
        ret = SSL_TICKET_NO_DECRYPT;
3219
0
        goto end;
3220
0
    }
3221
0
    slen += declen;
3222
0
    p = sdec;
3223
3224
0
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3225
0
    slen -= (int)(p - sdec);
3226
0
    OPENSSL_free(sdec);
3227
0
    if (sess) {
3228
        /* Some additional consistency checks */
3229
0
        if (slen != 0) {
3230
0
            SSL_SESSION_free(sess);
3231
0
            sess = NULL;
3232
0
            ret = SSL_TICKET_NO_DECRYPT;
3233
0
            goto end;
3234
0
        }
3235
        /*
3236
         * The session ID, if non-empty, is used by some clients to detect
3237
         * that the ticket has been accepted. So we copy it to the session
3238
         * structure. If it is empty set length to zero as required by
3239
         * standard.
3240
         */
3241
0
        if (sesslen) {
3242
0
            memcpy(sess->session_id, sess_id, sesslen);
3243
0
            sess->session_id_length = sesslen;
3244
0
        }
3245
0
        if (renew_ticket)
3246
0
            ret = SSL_TICKET_SUCCESS_RENEW;
3247
0
        else
3248
0
            ret = SSL_TICKET_SUCCESS;
3249
0
        goto end;
3250
0
    }
3251
0
    ERR_clear_error();
3252
    /*
3253
     * For session parse failure, indicate that we need to send a new ticket.
3254
     */
3255
0
    ret = SSL_TICKET_NO_DECRYPT;
3256
3257
0
 end:
3258
0
    EVP_CIPHER_CTX_free(ctx);
3259
0
    ssl_hmac_free(hctx);
3260
3261
    /*
3262
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3263
     * detected above. The callback is responsible for checking |ret| before it
3264
     * performs any action
3265
     */
3266
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
3267
0
            && (ret == SSL_TICKET_EMPTY
3268
0
                || ret == SSL_TICKET_NO_DECRYPT
3269
0
                || ret == SSL_TICKET_SUCCESS
3270
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
3271
0
        size_t keyname_len = eticklen;
3272
0
        int retcb;
3273
3274
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3275
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3276
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3277
0
                                                  sess, etick, keyname_len,
3278
0
                                                  ret,
3279
0
                                                  s->session_ctx->ticket_cb_data);
3280
0
        switch (retcb) {
3281
0
        case SSL_TICKET_RETURN_ABORT:
3282
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3283
0
            break;
3284
3285
0
        case SSL_TICKET_RETURN_IGNORE:
3286
0
            ret = SSL_TICKET_NONE;
3287
0
            SSL_SESSION_free(sess);
3288
0
            sess = NULL;
3289
0
            break;
3290
3291
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3292
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3293
0
                ret = SSL_TICKET_NO_DECRYPT;
3294
            /* else the value of |ret| will already do the right thing */
3295
0
            SSL_SESSION_free(sess);
3296
0
            sess = NULL;
3297
0
            break;
3298
3299
0
        case SSL_TICKET_RETURN_USE:
3300
0
        case SSL_TICKET_RETURN_USE_RENEW:
3301
0
            if (ret != SSL_TICKET_SUCCESS
3302
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
3303
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3304
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3305
0
                ret = SSL_TICKET_SUCCESS;
3306
0
            else
3307
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3308
0
            break;
3309
3310
0
        default:
3311
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3312
0
        }
3313
0
    }
3314
3315
0
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3316
0
        switch (ret) {
3317
0
        case SSL_TICKET_NO_DECRYPT:
3318
0
        case SSL_TICKET_SUCCESS_RENEW:
3319
0
        case SSL_TICKET_EMPTY:
3320
0
            s->ext.ticket_expected = 1;
3321
0
        }
3322
0
    }
3323
3324
0
    *psess = sess;
3325
3326
0
    return ret;
3327
0
}
3328
3329
/* Check to see if a signature algorithm is allowed */
3330
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3331
                                const SIGALG_LOOKUP *lu)
3332
0
{
3333
0
    unsigned char sigalgstr[2];
3334
0
    int secbits;
3335
3336
0
    if (lu == NULL || !lu->available)
3337
0
        return 0;
3338
    /* DSA is not allowed in TLS 1.3 */
3339
0
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3340
0
        return 0;
3341
    /*
3342
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3343
     * spec
3344
     */
3345
0
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3346
0
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3347
0
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3348
0
            || lu->hash_idx == SSL_MD_MD5_IDX
3349
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3350
0
        return 0;
3351
3352
    /* See if public key algorithm allowed */
3353
0
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3354
0
        return 0;
3355
3356
0
    if (lu->sig == NID_id_GostR3410_2012_256
3357
0
            || lu->sig == NID_id_GostR3410_2012_512
3358
0
            || lu->sig == NID_id_GostR3410_2001) {
3359
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3360
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3361
0
            return 0;
3362
0
        if (!s->server
3363
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3364
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3365
0
            int i, num;
3366
0
            STACK_OF(SSL_CIPHER) *sk;
3367
3368
            /*
3369
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3370
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3371
             * ciphersuites enabled.
3372
             */
3373
3374
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3375
0
                return 0;
3376
3377
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3378
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3379
0
            for (i = 0; i < num; i++) {
3380
0
                const SSL_CIPHER *c;
3381
3382
0
                c = sk_SSL_CIPHER_value(sk, i);
3383
                /* Skip disabled ciphers */
3384
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3385
0
                    continue;
3386
3387
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3388
0
                    break;
3389
0
            }
3390
0
            if (i == num)
3391
0
                return 0;
3392
0
        }
3393
0
    }
3394
3395
    /* Finally see if security callback allows it */
3396
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3397
0
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3398
0
    sigalgstr[1] = lu->sigalg & 0xff;
3399
0
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3400
0
}
3401
3402
/*
3403
 * Get a mask of disabled public key algorithms based on supported signature
3404
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3405
 * disabled.
3406
 */
3407
3408
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3409
0
{
3410
0
    const uint16_t *sigalgs;
3411
0
    size_t i, sigalgslen;
3412
0
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3413
    /*
3414
     * Go through all signature algorithms seeing if we support any
3415
     * in disabled_mask.
3416
     */
3417
0
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3418
0
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3419
0
        const SIGALG_LOOKUP *lu =
3420
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3421
0
        const SSL_CERT_LOOKUP *clu;
3422
3423
0
        if (lu == NULL)
3424
0
            continue;
3425
3426
0
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3427
0
                                     SSL_CONNECTION_GET_CTX(s));
3428
0
        if (clu == NULL)
3429
0
                continue;
3430
3431
        /* If algorithm is disabled see if we can enable it */
3432
0
        if ((clu->amask & disabled_mask) != 0
3433
0
                && tls12_sigalg_allowed(s, op, lu))
3434
0
            disabled_mask &= ~clu->amask;
3435
0
    }
3436
0
    *pmask_a |= disabled_mask;
3437
0
}
3438
3439
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3440
                       const uint16_t *psig, size_t psiglen)
3441
0
{
3442
0
    size_t i;
3443
0
    int rv = 0;
3444
3445
0
    for (i = 0; i < psiglen; i++, psig++) {
3446
0
        const SIGALG_LOOKUP *lu =
3447
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3448
3449
0
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3450
0
            continue;
3451
0
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3452
0
            return 0;
3453
        /*
3454
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3455
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3456
         */
3457
0
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3458
0
            || (lu->sig != EVP_PKEY_RSA
3459
0
                && lu->hash != NID_sha1
3460
0
                && lu->hash != NID_sha224)))
3461
0
            rv = 1;
3462
0
    }
3463
0
    if (rv == 0)
3464
0
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3465
0
    return rv;
3466
0
}
3467
3468
/* Given preference and allowed sigalgs set shared sigalgs */
3469
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3470
                                   const SIGALG_LOOKUP **shsig,
3471
                                   const uint16_t *pref, size_t preflen,
3472
                                   const uint16_t *allow, size_t allowlen)
3473
0
{
3474
0
    const uint16_t *ptmp, *atmp;
3475
0
    size_t i, j, nmatch = 0;
3476
0
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3477
0
        const SIGALG_LOOKUP *lu =
3478
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3479
3480
        /* Skip disabled hashes or signature algorithms */
3481
0
        if (lu == NULL
3482
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3483
0
            continue;
3484
0
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3485
0
            if (*ptmp == *atmp) {
3486
0
                nmatch++;
3487
0
                if (shsig)
3488
0
                    *shsig++ = lu;
3489
0
                break;
3490
0
            }
3491
0
        }
3492
0
    }
3493
0
    return nmatch;
3494
0
}
3495
3496
/* Set shared signature algorithms for SSL structures */
3497
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3498
0
{
3499
0
    const uint16_t *pref, *allow, *conf;
3500
0
    size_t preflen, allowlen, conflen;
3501
0
    size_t nmatch;
3502
0
    const SIGALG_LOOKUP **salgs = NULL;
3503
0
    CERT *c = s->cert;
3504
0
    unsigned int is_suiteb = tls1_suiteb(s);
3505
3506
0
    OPENSSL_free(s->shared_sigalgs);
3507
0
    s->shared_sigalgs = NULL;
3508
0
    s->shared_sigalgslen = 0;
3509
    /* If client use client signature algorithms if not NULL */
3510
0
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3511
0
        conf = c->client_sigalgs;
3512
0
        conflen = c->client_sigalgslen;
3513
0
    } else if (c->conf_sigalgs && !is_suiteb) {
3514
0
        conf = c->conf_sigalgs;
3515
0
        conflen = c->conf_sigalgslen;
3516
0
    } else
3517
0
        conflen = tls12_get_psigalgs(s, 0, &conf);
3518
0
    if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
3519
0
        pref = conf;
3520
0
        preflen = conflen;
3521
0
        allow = s->s3.tmp.peer_sigalgs;
3522
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3523
0
    } else {
3524
0
        allow = conf;
3525
0
        allowlen = conflen;
3526
0
        pref = s->s3.tmp.peer_sigalgs;
3527
0
        preflen = s->s3.tmp.peer_sigalgslen;
3528
0
    }
3529
0
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3530
0
    if (nmatch) {
3531
0
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3532
0
            return 0;
3533
0
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3534
0
    } else {
3535
0
        salgs = NULL;
3536
0
    }
3537
0
    s->shared_sigalgs = salgs;
3538
0
    s->shared_sigalgslen = nmatch;
3539
0
    return 1;
3540
0
}
3541
3542
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3543
0
{
3544
0
    unsigned int stmp;
3545
0
    size_t size, i;
3546
0
    uint16_t *buf;
3547
3548
0
    size = PACKET_remaining(pkt);
3549
3550
    /* Invalid data length */
3551
0
    if (size == 0 || (size & 1) != 0)
3552
0
        return 0;
3553
3554
0
    size >>= 1;
3555
3556
0
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3557
0
        return 0;
3558
0
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3559
0
        buf[i] = stmp;
3560
3561
0
    if (i != size) {
3562
0
        OPENSSL_free(buf);
3563
0
        return 0;
3564
0
    }
3565
3566
0
    OPENSSL_free(*pdest);
3567
0
    *pdest = buf;
3568
0
    *pdestlen = size;
3569
3570
0
    return 1;
3571
0
}
3572
3573
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3574
0
{
3575
    /* Extension ignored for inappropriate versions */
3576
0
    if (!SSL_USE_SIGALGS(s))
3577
0
        return 1;
3578
    /* Should never happen */
3579
0
    if (s->cert == NULL)
3580
0
        return 0;
3581
3582
0
    if (cert)
3583
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3584
0
                             &s->s3.tmp.peer_cert_sigalgslen);
3585
0
    else
3586
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3587
0
                             &s->s3.tmp.peer_sigalgslen);
3588
3589
0
}
3590
3591
/* Set preferred digest for each key type */
3592
3593
int tls1_process_sigalgs(SSL_CONNECTION *s)
3594
0
{
3595
0
    size_t i;
3596
0
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3597
3598
0
    if (!tls1_set_shared_sigalgs(s))
3599
0
        return 0;
3600
3601
0
    for (i = 0; i < s->ssl_pkey_num; i++)
3602
0
        pvalid[i] = 0;
3603
3604
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3605
0
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3606
0
        int idx = sigptr->sig_idx;
3607
3608
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3609
0
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3610
0
            continue;
3611
        /* If not disabled indicate we can explicitly sign */
3612
0
        if (pvalid[idx] == 0
3613
0
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3614
0
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3615
0
    }
3616
0
    return 1;
3617
0
}
3618
3619
int SSL_get_sigalgs(SSL *s, int idx,
3620
                    int *psign, int *phash, int *psignhash,
3621
                    unsigned char *rsig, unsigned char *rhash)
3622
0
{
3623
0
    uint16_t *psig;
3624
0
    size_t numsigalgs;
3625
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3626
3627
0
    if (sc == NULL)
3628
0
        return 0;
3629
3630
0
    psig = sc->s3.tmp.peer_sigalgs;
3631
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3632
3633
0
    if (psig == NULL || numsigalgs > INT_MAX)
3634
0
        return 0;
3635
0
    if (idx >= 0) {
3636
0
        const SIGALG_LOOKUP *lu;
3637
3638
0
        if (idx >= (int)numsigalgs)
3639
0
            return 0;
3640
0
        psig += idx;
3641
0
        if (rhash != NULL)
3642
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3643
0
        if (rsig != NULL)
3644
0
            *rsig = (unsigned char)(*psig & 0xff);
3645
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3646
0
        if (psign != NULL)
3647
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3648
0
        if (phash != NULL)
3649
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3650
0
        if (psignhash != NULL)
3651
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3652
0
    }
3653
0
    return (int)numsigalgs;
3654
0
}
3655
3656
int SSL_get_shared_sigalgs(SSL *s, int idx,
3657
                           int *psign, int *phash, int *psignhash,
3658
                           unsigned char *rsig, unsigned char *rhash)
3659
0
{
3660
0
    const SIGALG_LOOKUP *shsigalgs;
3661
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3662
3663
0
    if (sc == NULL)
3664
0
        return 0;
3665
3666
0
    if (sc->shared_sigalgs == NULL
3667
0
        || idx < 0
3668
0
        || idx >= (int)sc->shared_sigalgslen
3669
0
        || sc->shared_sigalgslen > INT_MAX)
3670
0
        return 0;
3671
0
    shsigalgs = sc->shared_sigalgs[idx];
3672
0
    if (phash != NULL)
3673
0
        *phash = shsigalgs->hash;
3674
0
    if (psign != NULL)
3675
0
        *psign = shsigalgs->sig;
3676
0
    if (psignhash != NULL)
3677
0
        *psignhash = shsigalgs->sigandhash;
3678
0
    if (rsig != NULL)
3679
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3680
0
    if (rhash != NULL)
3681
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3682
0
    return (int)sc->shared_sigalgslen;
3683
0
}
3684
3685
/* Maximum possible number of unique entries in sigalgs array */
3686
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3687
3688
typedef struct {
3689
    size_t sigalgcnt;
3690
    /* TLSEXT_SIGALG_XXX values */
3691
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3692
    SSL_CTX *ctx;
3693
} sig_cb_st;
3694
3695
static void get_sigorhash(int *psig, int *phash, const char *str)
3696
0
{
3697
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3698
0
        *psig = EVP_PKEY_RSA;
3699
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3700
0
               || OPENSSL_strcasecmp(str, "PSS") == 0) {
3701
0
        *psig = EVP_PKEY_RSA_PSS;
3702
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3703
0
        *psig = EVP_PKEY_DSA;
3704
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3705
0
        *psig = EVP_PKEY_EC;
3706
0
    } else {
3707
0
        *phash = OBJ_sn2nid(str);
3708
0
        if (*phash == NID_undef)
3709
0
            *phash = OBJ_ln2nid(str);
3710
0
    }
3711
0
}
3712
/* Maximum length of a signature algorithm string component */
3713
#define TLS_MAX_SIGSTRING_LEN   40
3714
3715
static int sig_cb(const char *elem, int len, void *arg)
3716
0
{
3717
0
    sig_cb_st *sarg = arg;
3718
0
    size_t i = 0;
3719
0
    const SIGALG_LOOKUP *s;
3720
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3721
0
    const char *iana, *alias;
3722
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3723
0
    int ignore_unknown = 0;
3724
3725
0
    if (elem == NULL)
3726
0
        return 0;
3727
0
    if (elem[0] == '?') {
3728
0
        ignore_unknown = 1;
3729
0
        ++elem;
3730
0
        --len;
3731
0
    }
3732
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3733
0
        return 0;
3734
0
    if (len > (int)(sizeof(etmp) - 1))
3735
0
        return 0;
3736
0
    memcpy(etmp, elem, len);
3737
0
    etmp[len] = 0;
3738
0
    p = strchr(etmp, '+');
3739
    /*
3740
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3741
     * if there's no '+' in the provided name, look for the new-style combined
3742
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3743
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3744
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3745
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3746
     * in the table.
3747
     */
3748
0
    if (p == NULL) {
3749
0
        if (sarg->ctx != NULL) {
3750
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3751
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3752
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3753
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3754
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3755
                    /* Ignore known, but unavailable sigalgs. */
3756
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3757
0
                        return 1;
3758
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3759
0
                        sarg->ctx->sigalg_lookup_cache[i].sigalg;
3760
0
                    goto found;
3761
0
                }
3762
0
            }
3763
0
        } else {
3764
            /* Syntax checks use the built-in sigalgs */
3765
0
            for (i = 0, s = sigalg_lookup_tbl;
3766
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3767
0
                iana = s->name;
3768
0
                alias = s->name12;
3769
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3770
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3771
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3772
0
                    goto found;
3773
0
                }
3774
0
            }
3775
0
        }
3776
0
    } else {
3777
0
        *p = 0;
3778
0
        p++;
3779
0
        if (*p == 0)
3780
0
            return 0;
3781
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3782
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3783
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3784
0
            if (sarg->ctx != NULL) {
3785
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3786
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3787
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3788
                        /* Ignore known, but unavailable sigalgs. */
3789
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3790
0
                            return 1;
3791
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3792
0
                        goto found;
3793
0
                    }
3794
0
                }
3795
0
            } else {
3796
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3797
0
                    s = &sigalg_lookup_tbl[i];
3798
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3799
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3800
0
                        goto found;
3801
0
                    }
3802
0
                }
3803
0
            }
3804
0
        }
3805
0
    }
3806
    /* Ignore unknown algorithms if ignore_unknown */
3807
0
    return ignore_unknown;
3808
3809
0
 found:
3810
    /* Ignore duplicates */
3811
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3812
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3813
0
            sarg->sigalgcnt--;
3814
0
            return 1;
3815
0
        }
3816
0
    }
3817
0
    return 1;
3818
0
}
3819
3820
/*
3821
 * Set supported signature algorithms based on a colon separated list of the
3822
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3823
 */
3824
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3825
0
{
3826
0
    sig_cb_st sig;
3827
0
    sig.sigalgcnt = 0;
3828
3829
0
    if (ctx != NULL)
3830
0
        sig.ctx = ctx;
3831
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3832
0
        return 0;
3833
0
    if (sig.sigalgcnt == 0) {
3834
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3835
0
                       "No valid signature algorithms in '%s'", str);
3836
0
        return 0;
3837
0
    }
3838
0
    if (c == NULL)
3839
0
        return 1;
3840
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3841
0
}
3842
3843
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3844
                     int client)
3845
0
{
3846
0
    uint16_t *sigalgs;
3847
3848
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3849
0
        return 0;
3850
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3851
3852
0
    if (client) {
3853
0
        OPENSSL_free(c->client_sigalgs);
3854
0
        c->client_sigalgs = sigalgs;
3855
0
        c->client_sigalgslen = salglen;
3856
0
    } else {
3857
0
        OPENSSL_free(c->conf_sigalgs);
3858
0
        c->conf_sigalgs = sigalgs;
3859
0
        c->conf_sigalgslen = salglen;
3860
0
    }
3861
3862
0
    return 1;
3863
0
}
3864
3865
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3866
0
{
3867
0
    uint16_t *sigalgs, *sptr;
3868
0
    size_t i;
3869
3870
0
    if (salglen & 1)
3871
0
        return 0;
3872
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3873
0
        return 0;
3874
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3875
0
        size_t j;
3876
0
        const SIGALG_LOOKUP *curr;
3877
0
        int md_id = *psig_nids++;
3878
0
        int sig_id = *psig_nids++;
3879
3880
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3881
0
             j++, curr++) {
3882
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3883
0
                *sptr++ = curr->sigalg;
3884
0
                break;
3885
0
            }
3886
0
        }
3887
3888
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3889
0
            goto err;
3890
0
    }
3891
3892
0
    if (client) {
3893
0
        OPENSSL_free(c->client_sigalgs);
3894
0
        c->client_sigalgs = sigalgs;
3895
0
        c->client_sigalgslen = salglen / 2;
3896
0
    } else {
3897
0
        OPENSSL_free(c->conf_sigalgs);
3898
0
        c->conf_sigalgs = sigalgs;
3899
0
        c->conf_sigalgslen = salglen / 2;
3900
0
    }
3901
3902
0
    return 1;
3903
3904
0
 err:
3905
0
    OPENSSL_free(sigalgs);
3906
0
    return 0;
3907
0
}
3908
3909
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3910
0
{
3911
0
    int sig_nid, use_pc_sigalgs = 0;
3912
0
    size_t i;
3913
0
    const SIGALG_LOOKUP *sigalg;
3914
0
    size_t sigalgslen;
3915
3916
    /*-
3917
     * RFC 8446, section 4.2.3:
3918
     *
3919
     * The signatures on certificates that are self-signed or certificates
3920
     * that are trust anchors are not validated, since they begin a
3921
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3922
     * begins a certification path MAY use a signature algorithm that is not
3923
     * advertised as being supported in the "signature_algorithms"
3924
     * extension.
3925
     */
3926
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3927
0
        return 1;
3928
0
    sig_nid = X509_get_signature_nid(x);
3929
0
    if (default_nid)
3930
0
        return sig_nid == default_nid ? 1 : 0;
3931
3932
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3933
        /*
3934
         * If we're in TLSv1.3 then we only get here if we're checking the
3935
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3936
         * otherwise we default to normal sigalgs.
3937
         */
3938
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3939
0
        use_pc_sigalgs = 1;
3940
0
    } else {
3941
0
        sigalgslen = s->shared_sigalgslen;
3942
0
    }
3943
0
    for (i = 0; i < sigalgslen; i++) {
3944
0
        int mdnid, pknid;
3945
3946
0
        sigalg = use_pc_sigalgs
3947
0
                 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3948
0
                                      s->s3.tmp.peer_cert_sigalgs[i])
3949
0
                 : s->shared_sigalgs[i];
3950
0
        if (sigalg == NULL)
3951
0
            continue;
3952
0
        if (sig_nid == sigalg->sigandhash)
3953
0
            return 1;
3954
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3955
0
            continue;
3956
        /*
3957
         * Accept RSA PKCS#1 signatures in certificates when the signature
3958
         * algorithms include RSA-PSS with a matching digest algorithm.
3959
         *
3960
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3961
         * points, and we're doing strict checking of the certificate chain (in
3962
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3963
         * certificates in the chain, but the TLS requirement on PSS should not
3964
         * extend to certificates.  Though the peer can in fact list the legacy
3965
         * sigalgs for just this purpose, it is not likely that a better chain
3966
         * signed with RSA-PSS is available.
3967
         */
3968
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3969
0
            continue;
3970
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3971
0
            return 1;
3972
0
    }
3973
0
    return 0;
3974
0
}
3975
3976
/* Check to see if a certificate issuer name matches list of CA names */
3977
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3978
0
{
3979
0
    const X509_NAME *nm;
3980
0
    int i;
3981
0
    nm = X509_get_issuer_name(x);
3982
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3983
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3984
0
            return 1;
3985
0
    }
3986
0
    return 0;
3987
0
}
3988
3989
/*
3990
 * Check certificate chain is consistent with TLS extensions and is usable by
3991
 * server. This servers two purposes: it allows users to check chains before
3992
 * passing them to the server and it allows the server to check chains before
3993
 * attempting to use them.
3994
 */
3995
3996
/* Flags which need to be set for a certificate when strict mode not set */
3997
3998
#define CERT_PKEY_VALID_FLAGS \
3999
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4000
/* Strict mode flags */
4001
#define CERT_PKEY_STRICT_FLAGS \
4002
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4003
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4004
4005
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4006
                     STACK_OF(X509) *chain, int idx)
4007
0
{
4008
0
    int i;
4009
0
    int rv = 0;
4010
0
    int check_flags = 0, strict_mode;
4011
0
    CERT_PKEY *cpk = NULL;
4012
0
    CERT *c = s->cert;
4013
0
    uint32_t *pvalid;
4014
0
    unsigned int suiteb_flags = tls1_suiteb(s);
4015
4016
    /*
4017
     * Meaning of idx:
4018
     * idx == -1 means SSL_check_chain() invocation
4019
     * idx == -2 means checking client certificate chains
4020
     * idx >= 0 means checking SSL_PKEY index
4021
     *
4022
     * For RPK, where there may be no cert, we ignore -1
4023
     */
4024
0
    if (idx != -1) {
4025
0
        if (idx == -2) {
4026
0
            cpk = c->key;
4027
0
            idx = (int)(cpk - c->pkeys);
4028
0
        } else
4029
0
            cpk = c->pkeys + idx;
4030
0
        pvalid = s->s3.tmp.valid_flags + idx;
4031
0
        x = cpk->x509;
4032
0
        pk = cpk->privatekey;
4033
0
        chain = cpk->chain;
4034
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4035
0
        if (tls12_rpk_and_privkey(s, idx)) {
4036
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4037
0
                return 0;
4038
0
            *pvalid = rv = CERT_PKEY_RPK;
4039
0
            return rv;
4040
0
        }
4041
        /* If no cert or key, forget it */
4042
0
        if (x == NULL || pk == NULL)
4043
0
            goto end;
4044
0
    } else {
4045
0
        size_t certidx;
4046
4047
0
        if (x == NULL || pk == NULL)
4048
0
            return 0;
4049
4050
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4051
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
4052
0
            return 0;
4053
0
        idx = (int)certidx;
4054
0
        pvalid = s->s3.tmp.valid_flags + idx;
4055
4056
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4057
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4058
0
        else
4059
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4060
0
        strict_mode = 1;
4061
0
    }
4062
4063
0
    if (suiteb_flags) {
4064
0
        int ok;
4065
0
        if (check_flags)
4066
0
            check_flags |= CERT_PKEY_SUITEB;
4067
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4068
0
        if (ok == X509_V_OK)
4069
0
            rv |= CERT_PKEY_SUITEB;
4070
0
        else if (!check_flags)
4071
0
            goto end;
4072
0
    }
4073
4074
    /*
4075
     * Check all signature algorithms are consistent with signature
4076
     * algorithms extension if TLS 1.2 or later and strict mode.
4077
     */
4078
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4079
0
        && strict_mode) {
4080
0
        int default_nid;
4081
0
        int rsign = 0;
4082
4083
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4084
0
                || s->s3.tmp.peer_sigalgs != NULL) {
4085
0
            default_nid = 0;
4086
        /* If no sigalgs extension use defaults from RFC5246 */
4087
0
        } else {
4088
0
            switch (idx) {
4089
0
            case SSL_PKEY_RSA:
4090
0
                rsign = EVP_PKEY_RSA;
4091
0
                default_nid = NID_sha1WithRSAEncryption;
4092
0
                break;
4093
4094
0
            case SSL_PKEY_DSA_SIGN:
4095
0
                rsign = EVP_PKEY_DSA;
4096
0
                default_nid = NID_dsaWithSHA1;
4097
0
                break;
4098
4099
0
            case SSL_PKEY_ECC:
4100
0
                rsign = EVP_PKEY_EC;
4101
0
                default_nid = NID_ecdsa_with_SHA1;
4102
0
                break;
4103
4104
0
            case SSL_PKEY_GOST01:
4105
0
                rsign = NID_id_GostR3410_2001;
4106
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4107
0
                break;
4108
4109
0
            case SSL_PKEY_GOST12_256:
4110
0
                rsign = NID_id_GostR3410_2012_256;
4111
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4112
0
                break;
4113
4114
0
            case SSL_PKEY_GOST12_512:
4115
0
                rsign = NID_id_GostR3410_2012_512;
4116
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4117
0
                break;
4118
4119
0
            default:
4120
0
                default_nid = -1;
4121
0
                break;
4122
0
            }
4123
0
        }
4124
        /*
4125
         * If peer sent no signature algorithms extension and we have set
4126
         * preferred signature algorithms check we support sha1.
4127
         */
4128
0
        if (default_nid > 0 && c->conf_sigalgs) {
4129
0
            size_t j;
4130
0
            const uint16_t *p = c->conf_sigalgs;
4131
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4132
0
                const SIGALG_LOOKUP *lu =
4133
0
                    tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4134
4135
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4136
0
                    break;
4137
0
            }
4138
0
            if (j == c->conf_sigalgslen) {
4139
0
                if (check_flags)
4140
0
                    goto skip_sigs;
4141
0
                else
4142
0
                    goto end;
4143
0
            }
4144
0
        }
4145
        /* Check signature algorithm of each cert in chain */
4146
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4147
            /*
4148
             * We only get here if the application has called SSL_check_chain(),
4149
             * so check_flags is always set.
4150
             */
4151
0
            if (find_sig_alg(s, x, pk) != NULL)
4152
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4153
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4154
0
            if (!check_flags)
4155
0
                goto end;
4156
0
        } else
4157
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4158
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4159
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4160
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4161
0
                if (check_flags) {
4162
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4163
0
                    break;
4164
0
                } else
4165
0
                    goto end;
4166
0
            }
4167
0
        }
4168
0
    }
4169
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4170
0
    else if (check_flags)
4171
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4172
0
 skip_sigs:
4173
    /* Check cert parameters are consistent */
4174
0
    if (tls1_check_cert_param(s, x, 1))
4175
0
        rv |= CERT_PKEY_EE_PARAM;
4176
0
    else if (!check_flags)
4177
0
        goto end;
4178
0
    if (!s->server)
4179
0
        rv |= CERT_PKEY_CA_PARAM;
4180
    /* In strict mode check rest of chain too */
4181
0
    else if (strict_mode) {
4182
0
        rv |= CERT_PKEY_CA_PARAM;
4183
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4184
0
            X509 *ca = sk_X509_value(chain, i);
4185
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4186
0
                if (check_flags) {
4187
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4188
0
                    break;
4189
0
                } else
4190
0
                    goto end;
4191
0
            }
4192
0
        }
4193
0
    }
4194
0
    if (!s->server && strict_mode) {
4195
0
        STACK_OF(X509_NAME) *ca_dn;
4196
0
        int check_type = 0;
4197
4198
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4199
0
            check_type = TLS_CT_RSA_SIGN;
4200
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4201
0
            check_type = TLS_CT_DSS_SIGN;
4202
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4203
0
            check_type = TLS_CT_ECDSA_SIGN;
4204
4205
0
        if (check_type) {
4206
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4207
0
            size_t j;
4208
4209
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4210
0
                if (*ctypes == check_type) {
4211
0
                    rv |= CERT_PKEY_CERT_TYPE;
4212
0
                    break;
4213
0
                }
4214
0
            }
4215
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4216
0
                goto end;
4217
0
        } else {
4218
0
            rv |= CERT_PKEY_CERT_TYPE;
4219
0
        }
4220
4221
0
        ca_dn = s->s3.tmp.peer_ca_names;
4222
4223
0
        if (ca_dn == NULL
4224
0
            || sk_X509_NAME_num(ca_dn) == 0
4225
0
            || ssl_check_ca_name(ca_dn, x))
4226
0
            rv |= CERT_PKEY_ISSUER_NAME;
4227
0
        else
4228
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4229
0
                X509 *xtmp = sk_X509_value(chain, i);
4230
4231
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4232
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4233
0
                    break;
4234
0
                }
4235
0
            }
4236
4237
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4238
0
            goto end;
4239
0
    } else
4240
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4241
4242
0
    if (!check_flags || (rv & check_flags) == check_flags)
4243
0
        rv |= CERT_PKEY_VALID;
4244
4245
0
 end:
4246
4247
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4248
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4249
0
    else
4250
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4251
4252
    /*
4253
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4254
     * chain is invalid.
4255
     */
4256
0
    if (!check_flags) {
4257
0
        if (rv & CERT_PKEY_VALID) {
4258
0
            *pvalid = rv;
4259
0
        } else {
4260
            /* Preserve sign and explicit sign flag, clear rest */
4261
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4262
0
            return 0;
4263
0
        }
4264
0
    }
4265
0
    return rv;
4266
0
}
4267
4268
/* Set validity of certificates in an SSL structure */
4269
void tls1_set_cert_validity(SSL_CONNECTION *s)
4270
0
{
4271
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4272
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4273
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4274
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4275
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4276
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4277
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4278
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4279
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4280
0
}
4281
4282
/* User level utility function to check a chain is suitable */
4283
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4284
0
{
4285
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4286
4287
0
    if (sc == NULL)
4288
0
        return 0;
4289
4290
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4291
0
}
4292
4293
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4294
0
{
4295
0
    EVP_PKEY *dhp = NULL;
4296
0
    BIGNUM *p;
4297
0
    int dh_secbits = 80, sec_level_bits;
4298
0
    EVP_PKEY_CTX *pctx = NULL;
4299
0
    OSSL_PARAM_BLD *tmpl = NULL;
4300
0
    OSSL_PARAM *params = NULL;
4301
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4302
4303
0
    if (s->cert->dh_tmp_auto != 2) {
4304
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4305
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4306
0
                dh_secbits = 128;
4307
0
            else
4308
0
                dh_secbits = 80;
4309
0
        } else {
4310
0
            if (s->s3.tmp.cert == NULL)
4311
0
                return NULL;
4312
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4313
0
        }
4314
0
    }
4315
4316
    /* Do not pick a prime that is too weak for the current security level */
4317
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4318
0
                                                 NULL, NULL);
4319
0
    if (dh_secbits < sec_level_bits)
4320
0
        dh_secbits = sec_level_bits;
4321
4322
0
    if (dh_secbits >= 192)
4323
0
        p = BN_get_rfc3526_prime_8192(NULL);
4324
0
    else if (dh_secbits >= 152)
4325
0
        p = BN_get_rfc3526_prime_4096(NULL);
4326
0
    else if (dh_secbits >= 128)
4327
0
        p = BN_get_rfc3526_prime_3072(NULL);
4328
0
    else if (dh_secbits >= 112)
4329
0
        p = BN_get_rfc3526_prime_2048(NULL);
4330
0
    else
4331
0
        p = BN_get_rfc2409_prime_1024(NULL);
4332
0
    if (p == NULL)
4333
0
        goto err;
4334
4335
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4336
0
    if (pctx == NULL
4337
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
4338
0
        goto err;
4339
4340
0
    tmpl = OSSL_PARAM_BLD_new();
4341
0
    if (tmpl == NULL
4342
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4343
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4344
0
        goto err;
4345
4346
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4347
0
    if (params == NULL
4348
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4349
0
        goto err;
4350
4351
0
err:
4352
0
    OSSL_PARAM_free(params);
4353
0
    OSSL_PARAM_BLD_free(tmpl);
4354
0
    EVP_PKEY_CTX_free(pctx);
4355
0
    BN_free(p);
4356
0
    return dhp;
4357
0
}
4358
4359
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4360
                                 int op)
4361
0
{
4362
0
    int secbits = -1;
4363
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4364
4365
0
    if (pkey) {
4366
        /*
4367
         * If no parameters this will return -1 and fail using the default
4368
         * security callback for any non-zero security level. This will
4369
         * reject keys which omit parameters but this only affects DSA and
4370
         * omission of parameters is never (?) done in practice.
4371
         */
4372
0
        secbits = EVP_PKEY_get_security_bits(pkey);
4373
0
    }
4374
0
    if (s != NULL)
4375
0
        return ssl_security(s, op, secbits, 0, x);
4376
0
    else
4377
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4378
0
}
4379
4380
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4381
                                 int op)
4382
0
{
4383
    /* Lookup signature algorithm digest */
4384
0
    int secbits, nid, pknid;
4385
4386
    /* Don't check signature if self signed */
4387
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4388
0
        return 1;
4389
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4390
0
        secbits = -1;
4391
    /* If digest NID not defined use signature NID */
4392
0
    if (nid == NID_undef)
4393
0
        nid = pknid;
4394
0
    if (s != NULL)
4395
0
        return ssl_security(s, op, secbits, nid, x);
4396
0
    else
4397
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4398
0
}
4399
4400
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4401
                      int is_ee)
4402
0
{
4403
0
    if (vfy)
4404
0
        vfy = SSL_SECOP_PEER;
4405
0
    if (is_ee) {
4406
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4407
0
            return SSL_R_EE_KEY_TOO_SMALL;
4408
0
    } else {
4409
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4410
0
            return SSL_R_CA_KEY_TOO_SMALL;
4411
0
    }
4412
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4413
0
        return SSL_R_CA_MD_TOO_WEAK;
4414
0
    return 1;
4415
0
}
4416
4417
/*
4418
 * Check security of a chain, if |sk| includes the end entity certificate then
4419
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4420
 * one to the peer. Return values: 1 if ok otherwise error code to use
4421
 */
4422
4423
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4424
                            X509 *x, int vfy)
4425
0
{
4426
0
    int rv, start_idx, i;
4427
4428
0
    if (x == NULL) {
4429
0
        x = sk_X509_value(sk, 0);
4430
0
        if (x == NULL)
4431
0
            return ERR_R_INTERNAL_ERROR;
4432
0
        start_idx = 1;
4433
0
    } else
4434
0
        start_idx = 0;
4435
4436
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4437
0
    if (rv != 1)
4438
0
        return rv;
4439
4440
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4441
0
        x = sk_X509_value(sk, i);
4442
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4443
0
        if (rv != 1)
4444
0
            return rv;
4445
0
    }
4446
0
    return 1;
4447
0
}
4448
4449
/*
4450
 * For TLS 1.2 servers check if we have a certificate which can be used
4451
 * with the signature algorithm "lu" and return index of certificate.
4452
 */
4453
4454
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4455
                                     const SIGALG_LOOKUP *lu)
4456
0
{
4457
0
    int sig_idx = lu->sig_idx;
4458
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4459
0
                                                        SSL_CONNECTION_GET_CTX(s));
4460
4461
    /* If not recognised or not supported by cipher mask it is not suitable */
4462
0
    if (clu == NULL
4463
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4464
0
            || (clu->nid == EVP_PKEY_RSA_PSS
4465
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4466
0
        return -1;
4467
4468
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4469
0
    if (tls12_rpk_and_privkey(s, sig_idx))
4470
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4471
4472
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4473
0
}
4474
4475
/*
4476
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4477
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4478
 * the key.
4479
 * Returns true if the cert is usable and false otherwise.
4480
 */
4481
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4482
                             X509 *x, EVP_PKEY *pkey)
4483
0
{
4484
0
    const SIGALG_LOOKUP *lu;
4485
0
    int mdnid, pknid, supported;
4486
0
    size_t i;
4487
0
    const char *mdname = NULL;
4488
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4489
4490
    /*
4491
     * If the given EVP_PKEY cannot support signing with this digest,
4492
     * the answer is simply 'no'.
4493
     */
4494
0
    if (sig->hash != NID_undef)
4495
0
        mdname = OBJ_nid2sn(sig->hash);
4496
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4497
0
                                                    mdname,
4498
0
                                                    sctx->propq);
4499
0
    if (supported <= 0)
4500
0
        return 0;
4501
4502
    /*
4503
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4504
     * on the sigalg with which the certificate was signed (by its issuer).
4505
     */
4506
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4507
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4508
0
            return 0;
4509
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4510
0
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4511
0
                                    s->s3.tmp.peer_cert_sigalgs[i]);
4512
0
            if (lu == NULL)
4513
0
                continue;
4514
4515
            /*
4516
             * This does not differentiate between the
4517
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4518
             * have a chain here that lets us look at the key OID in the
4519
             * signing certificate.
4520
             */
4521
0
            if (mdnid == lu->hash && pknid == lu->sig)
4522
0
                return 1;
4523
0
        }
4524
0
        return 0;
4525
0
    }
4526
4527
    /*
4528
     * Without signat_algorithms_cert, any certificate for which we have
4529
     * a viable public key is permitted.
4530
     */
4531
0
    return 1;
4532
0
}
4533
4534
/*
4535
 * Returns true if |s| has a usable certificate configured for use
4536
 * with signature scheme |sig|.
4537
 * "Usable" includes a check for presence as well as applying
4538
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4539
 * Returns false if no usable certificate is found.
4540
 */
4541
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4542
0
{
4543
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4544
0
    if (idx == -1)
4545
0
        idx = sig->sig_idx;
4546
0
    if (!ssl_has_cert(s, idx))
4547
0
        return 0;
4548
4549
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4550
0
                             s->cert->pkeys[idx].privatekey);
4551
0
}
4552
4553
/*
4554
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4555
 * specified signature scheme |sig|, or false otherwise.
4556
 */
4557
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4558
                          EVP_PKEY *pkey)
4559
0
{
4560
0
    size_t idx;
4561
4562
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4563
0
        return 0;
4564
4565
    /* Check the key is consistent with the sig alg */
4566
0
    if ((int)idx != sig->sig_idx)
4567
0
        return 0;
4568
4569
0
    return check_cert_usable(s, sig, x, pkey);
4570
0
}
4571
4572
/*
4573
 * Find a signature scheme that works with the supplied certificate |x| and key
4574
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4575
 * available certs/keys to find one that works.
4576
 */
4577
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4578
                                         EVP_PKEY *pkey)
4579
0
{
4580
0
    const SIGALG_LOOKUP *lu = NULL;
4581
0
    size_t i;
4582
0
    int curve = -1;
4583
0
    EVP_PKEY *tmppkey;
4584
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4585
4586
    /* Look for a shared sigalgs matching possible certificates */
4587
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
4588
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4589
0
        lu = s->shared_sigalgs[i];
4590
0
        if (lu->hash == NID_sha1
4591
0
            || lu->hash == NID_sha224
4592
0
            || lu->sig == EVP_PKEY_DSA
4593
0
            || lu->sig == EVP_PKEY_RSA
4594
0
            || !tls_sigalg_compat(s, lu))
4595
0
            continue;
4596
4597
        /* Check that we have a cert, and signature_algorithms_cert */
4598
0
        if (!tls1_lookup_md(sctx, lu, NULL))
4599
0
            continue;
4600
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4601
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4602
0
            continue;
4603
4604
0
        tmppkey = (pkey != NULL) ? pkey
4605
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4606
4607
0
        if (lu->sig == EVP_PKEY_EC) {
4608
0
            if (curve == -1)
4609
0
                curve = ssl_get_EC_curve_nid(tmppkey);
4610
0
            if (lu->curve != NID_undef && curve != lu->curve)
4611
0
                continue;
4612
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4613
            /* validate that key is large enough for the signature algorithm */
4614
0
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4615
0
                continue;
4616
0
        }
4617
0
        break;
4618
0
    }
4619
4620
0
    if (i == s->shared_sigalgslen)
4621
0
        return NULL;
4622
4623
0
    return lu;
4624
0
}
4625
4626
/*
4627
 * Choose an appropriate signature algorithm based on available certificates
4628
 * Sets chosen certificate and signature algorithm.
4629
 *
4630
 * For servers if we fail to find a required certificate it is a fatal error,
4631
 * an appropriate error code is set and a TLS alert is sent.
4632
 *
4633
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4634
 * a fatal error: we will either try another certificate or not present one
4635
 * to the server. In this case no error is set.
4636
 */
4637
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4638
0
{
4639
0
    const SIGALG_LOOKUP *lu = NULL;
4640
0
    int sig_idx = -1;
4641
4642
0
    s->s3.tmp.cert = NULL;
4643
0
    s->s3.tmp.sigalg = NULL;
4644
4645
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
4646
0
        lu = find_sig_alg(s, NULL, NULL);
4647
0
        if (lu == NULL) {
4648
0
            if (!fatalerrs)
4649
0
                return 1;
4650
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4651
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4652
0
            return 0;
4653
0
        }
4654
0
    } else {
4655
        /* If ciphersuite doesn't require a cert nothing to do */
4656
0
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4657
0
            return 1;
4658
0
        if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
4659
0
                return 1;
4660
4661
0
        if (SSL_USE_SIGALGS(s)) {
4662
0
            size_t i;
4663
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
4664
0
                int curve = -1;
4665
0
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4666
4667
                /* For Suite B need to match signature algorithm to curve */
4668
0
                if (tls1_suiteb(s))
4669
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4670
0
                                                 .privatekey);
4671
4672
                /*
4673
                 * Find highest preference signature algorithm matching
4674
                 * cert type
4675
                 */
4676
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
4677
                    /* Check the sigalg version bounds */
4678
0
                    lu = s->shared_sigalgs[i];
4679
0
                    if (!tls_sigalg_compat(s, lu))
4680
0
                        continue;
4681
0
                    if (s->server) {
4682
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4683
0
                            continue;
4684
0
                    } else {
4685
0
                        int cc_idx = (int)(s->cert->key - s->cert->pkeys);
4686
4687
0
                        sig_idx = lu->sig_idx;
4688
0
                        if (cc_idx != sig_idx)
4689
0
                            continue;
4690
0
                    }
4691
                    /* Check that we have a cert, and sig_algs_cert */
4692
0
                    if (!has_usable_cert(s, lu, sig_idx))
4693
0
                        continue;
4694
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4695
                        /* validate that key is large enough for the signature algorithm */
4696
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4697
4698
0
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4699
0
                            continue;
4700
0
                    }
4701
0
                    if (curve == -1 || lu->curve == curve)
4702
0
                        break;
4703
0
                }
4704
0
#ifndef OPENSSL_NO_GOST
4705
                /*
4706
                 * Some Windows-based implementations do not send GOST algorithms indication
4707
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4708
                 * we have to assume GOST support.
4709
                 */
4710
0
                if (i == s->shared_sigalgslen
4711
0
                    && (s->s3.tmp.new_cipher->algorithm_auth
4712
0
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4713
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4714
0
                    if (!fatalerrs)
4715
0
                      return 1;
4716
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4717
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4718
0
                    return 0;
4719
0
                  } else {
4720
0
                    i = 0;
4721
0
                    sig_idx = lu->sig_idx;
4722
0
                  }
4723
0
                }
4724
0
#endif
4725
0
                if (i == s->shared_sigalgslen) {
4726
0
                    if (!fatalerrs)
4727
0
                        return 1;
4728
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730
0
                    return 0;
4731
0
                }
4732
0
            } else {
4733
                /*
4734
                 * If we have no sigalg use defaults
4735
                 */
4736
0
                const uint16_t *sent_sigs;
4737
0
                size_t sent_sigslen;
4738
4739
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4740
0
                    if (!fatalerrs)
4741
0
                        return 1;
4742
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4743
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4744
0
                    return 0;
4745
0
                }
4746
4747
                /* Check signature matches a type we sent */
4748
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4749
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4750
0
                    if (lu->sigalg == *sent_sigs
4751
0
                            && has_usable_cert(s, lu, lu->sig_idx))
4752
0
                        break;
4753
0
                }
4754
0
                if (i == sent_sigslen) {
4755
0
                    if (!fatalerrs)
4756
0
                        return 1;
4757
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4758
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
4759
0
                    return 0;
4760
0
                }
4761
0
            }
4762
0
        } else {
4763
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4764
0
                if (!fatalerrs)
4765
0
                    return 1;
4766
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4767
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4768
0
                return 0;
4769
0
            }
4770
0
        }
4771
0
    }
4772
0
    if (sig_idx == -1)
4773
0
        sig_idx = lu->sig_idx;
4774
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4775
0
    s->cert->key = s->s3.tmp.cert;
4776
0
    s->s3.tmp.sigalg = lu;
4777
0
    return 1;
4778
0
}
4779
4780
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4781
0
{
4782
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4783
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4784
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4785
0
        return 0;
4786
0
    }
4787
4788
0
    ctx->ext.max_fragment_len_mode = mode;
4789
0
    return 1;
4790
0
}
4791
4792
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4793
0
{
4794
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4795
4796
0
    if (sc == NULL
4797
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4798
0
        return 0;
4799
4800
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4801
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4802
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4803
0
        return 0;
4804
0
    }
4805
4806
0
    sc->ext.max_fragment_len_mode = mode;
4807
0
    return 1;
4808
0
}
4809
4810
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4811
0
{
4812
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4813
0
        return TLSEXT_max_fragment_length_DISABLED;
4814
0
    return session->ext.max_fragment_len_mode;
4815
0
}
4816
4817
/*
4818
 * Helper functions for HMAC access with legacy support included.
4819
 */
4820
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4821
0
{
4822
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4823
0
    EVP_MAC *mac = NULL;
4824
4825
0
    if (ret == NULL)
4826
0
        return NULL;
4827
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4828
0
    if (ctx->ext.ticket_key_evp_cb == NULL
4829
0
            && ctx->ext.ticket_key_cb != NULL) {
4830
0
        if (!ssl_hmac_old_new(ret))
4831
0
            goto err;
4832
0
        return ret;
4833
0
    }
4834
0
#endif
4835
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4836
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4837
0
        goto err;
4838
0
    EVP_MAC_free(mac);
4839
0
    return ret;
4840
0
 err:
4841
0
    EVP_MAC_CTX_free(ret->ctx);
4842
0
    EVP_MAC_free(mac);
4843
0
    OPENSSL_free(ret);
4844
0
    return NULL;
4845
0
}
4846
4847
void ssl_hmac_free(SSL_HMAC *ctx)
4848
0
{
4849
0
    if (ctx != NULL) {
4850
0
        EVP_MAC_CTX_free(ctx->ctx);
4851
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4852
0
        ssl_hmac_old_free(ctx);
4853
0
#endif
4854
0
        OPENSSL_free(ctx);
4855
0
    }
4856
0
}
4857
4858
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4859
0
{
4860
0
    return ctx->ctx;
4861
0
}
4862
4863
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4864
0
{
4865
0
    OSSL_PARAM params[2], *p = params;
4866
4867
0
    if (ctx->ctx != NULL) {
4868
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4869
0
        *p = OSSL_PARAM_construct_end();
4870
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4871
0
            return 1;
4872
0
    }
4873
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4874
0
    if (ctx->old_ctx != NULL)
4875
0
        return ssl_hmac_old_init(ctx, key, len, md);
4876
0
#endif
4877
0
    return 0;
4878
0
}
4879
4880
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4881
0
{
4882
0
    if (ctx->ctx != NULL)
4883
0
        return EVP_MAC_update(ctx->ctx, data, len);
4884
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4885
0
    if (ctx->old_ctx != NULL)
4886
0
        return ssl_hmac_old_update(ctx, data, len);
4887
0
#endif
4888
0
    return 0;
4889
0
}
4890
4891
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4892
                   size_t max_size)
4893
0
{
4894
0
    if (ctx->ctx != NULL)
4895
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4896
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4897
0
    if (ctx->old_ctx != NULL)
4898
0
        return ssl_hmac_old_final(ctx, md, len);
4899
0
#endif
4900
0
    return 0;
4901
0
}
4902
4903
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4904
0
{
4905
0
    if (ctx->ctx != NULL)
4906
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4907
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4908
0
    if (ctx->old_ctx != NULL)
4909
0
        return ssl_hmac_old_size(ctx);
4910
0
#endif
4911
0
    return 0;
4912
0
}
4913
4914
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4915
0
{
4916
0
    char gname[OSSL_MAX_NAME_SIZE];
4917
4918
0
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4919
0
        return OBJ_txt2nid(gname);
4920
4921
0
    return NID_undef;
4922
0
}
4923
4924
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4925
                                     const unsigned char *enckey,
4926
                                     size_t enckeylen)
4927
0
{
4928
0
    if (EVP_PKEY_is_a(pkey, "DH")) {
4929
0
        int bits = EVP_PKEY_get_bits(pkey);
4930
4931
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4932
            /* the encoded key must be padded to the length of the p */
4933
0
            return 0;
4934
0
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4935
0
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4936
0
            || enckey[0] != 0x04)
4937
0
            return 0;
4938
0
    }
4939
4940
0
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4941
0
}