/src/openssl/include/crypto/md32_common.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /*- |
11 | | * This is a generic 32 bit "collector" for message digest algorithms. |
12 | | * Whenever needed it collects input character stream into chunks of |
13 | | * 32 bit values and invokes a block function that performs actual hash |
14 | | * calculations. |
15 | | * |
16 | | * Porting guide. |
17 | | * |
18 | | * Obligatory macros: |
19 | | * |
20 | | * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN |
21 | | * this macro defines byte order of input stream. |
22 | | * HASH_CBLOCK |
23 | | * size of a unit chunk HASH_BLOCK operates on. |
24 | | * HASH_LONG |
25 | | * has to be at least 32 bit wide. |
26 | | * HASH_CTX |
27 | | * context structure that at least contains following |
28 | | * members: |
29 | | * typedef struct { |
30 | | * ... |
31 | | * HASH_LONG Nl,Nh; |
32 | | * either { |
33 | | * HASH_LONG data[HASH_LBLOCK]; |
34 | | * unsigned char data[HASH_CBLOCK]; |
35 | | * }; |
36 | | * unsigned int num; |
37 | | * ... |
38 | | * } HASH_CTX; |
39 | | * data[] vector is expected to be zeroed upon first call to |
40 | | * HASH_UPDATE. |
41 | | * HASH_UPDATE |
42 | | * name of "Update" function, implemented here. |
43 | | * HASH_TRANSFORM |
44 | | * name of "Transform" function, implemented here. |
45 | | * HASH_FINAL |
46 | | * name of "Final" function, implemented here. |
47 | | * HASH_BLOCK_DATA_ORDER |
48 | | * name of "block" function capable of treating *unaligned* input |
49 | | * message in original (data) byte order, implemented externally. |
50 | | * HASH_MAKE_STRING |
51 | | * macro converting context variables to an ASCII hash string. |
52 | | * |
53 | | * MD5 example: |
54 | | * |
55 | | * #define DATA_ORDER_IS_LITTLE_ENDIAN |
56 | | * |
57 | | * #define HASH_LONG MD5_LONG |
58 | | * #define HASH_CTX MD5_CTX |
59 | | * #define HASH_CBLOCK MD5_CBLOCK |
60 | | * #define HASH_UPDATE MD5_Update |
61 | | * #define HASH_TRANSFORM MD5_Transform |
62 | | * #define HASH_FINAL MD5_Final |
63 | | * #define HASH_BLOCK_DATA_ORDER md5_block_data_order |
64 | | */ |
65 | | |
66 | | #ifndef OSSL_CRYPTO_MD32_COMMON_H |
67 | | # define OSSL_CRYPTO_MD32_COMMON_H |
68 | | # pragma once |
69 | | |
70 | | # include <openssl/crypto.h> |
71 | | /* |
72 | | * For ossl_(un)likely |
73 | | */ |
74 | | # include <internal/common.h> |
75 | | |
76 | | # if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
77 | | # error "DATA_ORDER must be defined!" |
78 | | # endif |
79 | | |
80 | | # ifndef HASH_CBLOCK |
81 | | # error "HASH_CBLOCK must be defined!" |
82 | | # endif |
83 | | # ifndef HASH_LONG |
84 | | # error "HASH_LONG must be defined!" |
85 | | # endif |
86 | | # ifndef HASH_CTX |
87 | | # error "HASH_CTX must be defined!" |
88 | | # endif |
89 | | |
90 | | # ifndef HASH_UPDATE |
91 | | # error "HASH_UPDATE must be defined!" |
92 | | # endif |
93 | | # ifndef HASH_TRANSFORM |
94 | | # error "HASH_TRANSFORM must be defined!" |
95 | | # endif |
96 | | # ifndef HASH_FINAL |
97 | | # error "HASH_FINAL must be defined!" |
98 | | # endif |
99 | | |
100 | | # ifndef HASH_BLOCK_DATA_ORDER |
101 | | # error "HASH_BLOCK_DATA_ORDER must be defined!" |
102 | | # endif |
103 | | |
104 | 0 | # define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) |
105 | | |
106 | | #ifndef PEDANTIC |
107 | | # if defined(__GNUC__) && __GNUC__>=2 && \ |
108 | | !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) |
109 | | # if defined(__riscv_zbb) || defined(__riscv_zbkb) |
110 | | # if __riscv_xlen == 64 |
111 | | # undef ROTATE |
112 | | # define ROTATE(x, n) ({ MD32_REG_T ret; \ |
113 | | asm ("roriw %0, %1, %2" \ |
114 | | : "=r"(ret) \ |
115 | | : "r"(x), "i"(32 - (n))); ret;}) |
116 | | # endif |
117 | | # if __riscv_xlen == 32 |
118 | | # undef ROTATE |
119 | | # define ROTATE(x, n) ({ MD32_REG_T ret; \ |
120 | | asm ("rori %0, %1, %2" \ |
121 | | : "=r"(ret) \ |
122 | | : "r"(x), "i"(32 - (n))); ret;}) |
123 | | # endif |
124 | | # endif |
125 | | # endif |
126 | | #endif |
127 | | |
128 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) |
129 | | |
130 | 0 | # define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ |
131 | 0 | l|=(((unsigned long)(*((c)++)))<<16), \ |
132 | 0 | l|=(((unsigned long)(*((c)++)))<< 8), \ |
133 | 0 | l|=(((unsigned long)(*((c)++))) ) ) |
134 | 1.16M | # define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ |
135 | 1.16M | *((c)++)=(unsigned char)(((l)>>16)&0xff), \ |
136 | 1.16M | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
137 | 1.16M | *((c)++)=(unsigned char)(((l) )&0xff), \ |
138 | 1.16M | l) |
139 | | |
140 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
141 | | |
142 | 0 | # define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ |
143 | 0 | l|=(((unsigned long)(*((c)++)))<< 8), \ |
144 | 0 | l|=(((unsigned long)(*((c)++)))<<16), \ |
145 | 0 | l|=(((unsigned long)(*((c)++)))<<24) ) |
146 | 0 | # define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ |
147 | 0 | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
148 | 0 | *((c)++)=(unsigned char)(((l)>>16)&0xff), \ |
149 | 0 | *((c)++)=(unsigned char)(((l)>>24)&0xff), \ |
150 | 0 | l) |
151 | | |
152 | | # endif |
153 | | |
154 | | /* |
155 | | * Time for some action :-) |
156 | | */ |
157 | | |
158 | | int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len) |
159 | 123k | { |
160 | 123k | const unsigned char *data = data_; |
161 | 123k | unsigned char *p; |
162 | 123k | HASH_LONG l; |
163 | 123k | size_t n; |
164 | | |
165 | 123k | if (ossl_unlikely(len == 0)) |
166 | 0 | return 1; |
167 | | |
168 | 123k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; |
169 | 123k | if (ossl_unlikely(l < c->Nl)) /* overflow */ |
170 | 0 | c->Nh++; |
171 | 123k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on |
172 | | * 16-bit */ |
173 | 123k | c->Nl = l; |
174 | | |
175 | 123k | n = c->num; |
176 | 123k | if (ossl_likely(n != 0)) { |
177 | 3.19k | p = (unsigned char *)c->data; |
178 | | |
179 | 3.19k | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { |
180 | 3.19k | memcpy(p + n, data, HASH_CBLOCK - n); |
181 | 3.19k | HASH_BLOCK_DATA_ORDER(c, p, 1); |
182 | 3.19k | n = HASH_CBLOCK - n; |
183 | 3.19k | data += n; |
184 | 3.19k | len -= n; |
185 | 3.19k | c->num = 0; |
186 | | /* |
187 | | * We use memset rather than OPENSSL_cleanse() here deliberately. |
188 | | * Using OPENSSL_cleanse() here could be a performance issue. It |
189 | | * will get properly cleansed on finalisation so this isn't a |
190 | | * security problem. |
191 | | */ |
192 | 3.19k | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ |
193 | 3.19k | } else { |
194 | 0 | memcpy(p + n, data, len); |
195 | 0 | c->num += (unsigned int)len; |
196 | 0 | return 1; |
197 | 0 | } |
198 | 3.19k | } |
199 | | |
200 | 123k | n = len / HASH_CBLOCK; |
201 | 123k | if (n > 0) { |
202 | 107k | HASH_BLOCK_DATA_ORDER(c, data, n); |
203 | 107k | n *= HASH_CBLOCK; |
204 | 107k | data += n; |
205 | 107k | len -= n; |
206 | 107k | } |
207 | | |
208 | 123k | if (len != 0) { |
209 | 122k | p = (unsigned char *)c->data; |
210 | 122k | c->num = (unsigned int)len; |
211 | 122k | memcpy(p, data, len); |
212 | 122k | } |
213 | 123k | return 1; |
214 | 123k | } Line | Count | Source | 159 | 14.3k | { | 160 | 14.3k | const unsigned char *data = data_; | 161 | 14.3k | unsigned char *p; | 162 | 14.3k | HASH_LONG l; | 163 | 14.3k | size_t n; | 164 | | | 165 | 14.3k | if (ossl_unlikely(len == 0)) | 166 | 0 | return 1; | 167 | | | 168 | 14.3k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 169 | 14.3k | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 170 | 0 | c->Nh++; | 171 | 14.3k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 172 | | * 16-bit */ | 173 | 14.3k | c->Nl = l; | 174 | | | 175 | 14.3k | n = c->num; | 176 | 14.3k | if (ossl_likely(n != 0)) { | 177 | 0 | p = (unsigned char *)c->data; | 178 | |
| 179 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 180 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 181 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 182 | 0 | n = HASH_CBLOCK - n; | 183 | 0 | data += n; | 184 | 0 | len -= n; | 185 | 0 | c->num = 0; | 186 | | /* | 187 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 188 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 189 | | * will get properly cleansed on finalisation so this isn't a | 190 | | * security problem. | 191 | | */ | 192 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 193 | 0 | } else { | 194 | 0 | memcpy(p + n, data, len); | 195 | 0 | c->num += (unsigned int)len; | 196 | 0 | return 1; | 197 | 0 | } | 198 | 0 | } | 199 | | | 200 | 14.3k | n = len / HASH_CBLOCK; | 201 | 14.3k | if (n > 0) { | 202 | 13.7k | HASH_BLOCK_DATA_ORDER(c, data, n); | 203 | 13.7k | n *= HASH_CBLOCK; | 204 | 13.7k | data += n; | 205 | 13.7k | len -= n; | 206 | 13.7k | } | 207 | | | 208 | 14.3k | if (len != 0) { | 209 | 14.0k | p = (unsigned char *)c->data; | 210 | 14.0k | c->num = (unsigned int)len; | 211 | 14.0k | memcpy(p, data, len); | 212 | 14.0k | } | 213 | 14.3k | return 1; | 214 | 14.3k | } |
Line | Count | Source | 159 | 109k | { | 160 | 109k | const unsigned char *data = data_; | 161 | 109k | unsigned char *p; | 162 | 109k | HASH_LONG l; | 163 | 109k | size_t n; | 164 | | | 165 | 109k | if (ossl_unlikely(len == 0)) | 166 | 0 | return 1; | 167 | | | 168 | 109k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 169 | 109k | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 170 | 0 | c->Nh++; | 171 | 109k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 172 | | * 16-bit */ | 173 | 109k | c->Nl = l; | 174 | | | 175 | 109k | n = c->num; | 176 | 109k | if (ossl_likely(n != 0)) { | 177 | 3.19k | p = (unsigned char *)c->data; | 178 | | | 179 | 3.19k | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 180 | 3.19k | memcpy(p + n, data, HASH_CBLOCK - n); | 181 | 3.19k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 182 | 3.19k | n = HASH_CBLOCK - n; | 183 | 3.19k | data += n; | 184 | 3.19k | len -= n; | 185 | 3.19k | c->num = 0; | 186 | | /* | 187 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 188 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 189 | | * will get properly cleansed on finalisation so this isn't a | 190 | | * security problem. | 191 | | */ | 192 | 3.19k | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 193 | 3.19k | } else { | 194 | 0 | memcpy(p + n, data, len); | 195 | 0 | c->num += (unsigned int)len; | 196 | 0 | return 1; | 197 | 0 | } | 198 | 3.19k | } | 199 | | | 200 | 109k | n = len / HASH_CBLOCK; | 201 | 109k | if (n > 0) { | 202 | 94.0k | HASH_BLOCK_DATA_ORDER(c, data, n); | 203 | 94.0k | n *= HASH_CBLOCK; | 204 | 94.0k | data += n; | 205 | 94.0k | len -= n; | 206 | 94.0k | } | 207 | | | 208 | 109k | if (len != 0) { | 209 | 108k | p = (unsigned char *)c->data; | 210 | 108k | c->num = (unsigned int)len; | 211 | 108k | memcpy(p, data, len); | 212 | 108k | } | 213 | 109k | return 1; | 214 | 109k | } |
Unexecuted instantiation: MD4_Update Unexecuted instantiation: MD5_Update Unexecuted instantiation: RIPEMD160_Update Unexecuted instantiation: ossl_sm3_update |
215 | | |
216 | | void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data) |
217 | 0 | { |
218 | 0 | HASH_BLOCK_DATA_ORDER(c, data, 1); |
219 | 0 | } Unexecuted instantiation: SHA1_Transform Unexecuted instantiation: SHA256_Transform Unexecuted instantiation: MD4_Transform Unexecuted instantiation: MD5_Transform Unexecuted instantiation: RIPEMD160_Transform Unexecuted instantiation: ossl_sm3_transform |
220 | | |
221 | | int HASH_FINAL(unsigned char *md, HASH_CTX *c) |
222 | 120k | { |
223 | 120k | unsigned char *p = (unsigned char *)c->data; |
224 | 120k | size_t n = c->num; |
225 | | |
226 | 120k | p[n] = 0x80; /* there is always room for one */ |
227 | 120k | n++; |
228 | | |
229 | 120k | if (n > (HASH_CBLOCK - 8)) { |
230 | 5.18k | memset(p + n, 0, HASH_CBLOCK - n); |
231 | 5.18k | n = 0; |
232 | 5.18k | HASH_BLOCK_DATA_ORDER(c, p, 1); |
233 | 5.18k | } |
234 | 120k | memset(p + n, 0, HASH_CBLOCK - 8 - n); |
235 | | |
236 | 120k | p += HASH_CBLOCK - 8; |
237 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) |
238 | 120k | (void)HOST_l2c(c->Nh, p); |
239 | 120k | (void)HOST_l2c(c->Nl, p); |
240 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
241 | 0 | (void)HOST_l2c(c->Nl, p); |
242 | 0 | (void)HOST_l2c(c->Nh, p); |
243 | | # endif |
244 | 120k | p -= HASH_CBLOCK; |
245 | 120k | HASH_BLOCK_DATA_ORDER(c, p, 1); |
246 | 120k | c->num = 0; |
247 | 120k | OPENSSL_cleanse(p, HASH_CBLOCK); |
248 | | |
249 | | # ifndef HASH_MAKE_STRING |
250 | | # error "HASH_MAKE_STRING must be defined!" |
251 | | # else |
252 | 120k | HASH_MAKE_STRING(c, md); |
253 | 106k | # endif |
254 | | |
255 | 106k | return 1; |
256 | 120k | } Line | Count | Source | 222 | 14.3k | { | 223 | 14.3k | unsigned char *p = (unsigned char *)c->data; | 224 | 14.3k | size_t n = c->num; | 225 | | | 226 | 14.3k | p[n] = 0x80; /* there is always room for one */ | 227 | 14.3k | n++; | 228 | | | 229 | 14.3k | if (n > (HASH_CBLOCK - 8)) { | 230 | 1.10k | memset(p + n, 0, HASH_CBLOCK - n); | 231 | 1.10k | n = 0; | 232 | 1.10k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 233 | 1.10k | } | 234 | 14.3k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 235 | | | 236 | 14.3k | p += HASH_CBLOCK - 8; | 237 | 14.3k | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 238 | 14.3k | (void)HOST_l2c(c->Nh, p); | 239 | 14.3k | (void)HOST_l2c(c->Nl, p); | 240 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 241 | | (void)HOST_l2c(c->Nl, p); | 242 | | (void)HOST_l2c(c->Nh, p); | 243 | | # endif | 244 | 14.3k | p -= HASH_CBLOCK; | 245 | 14.3k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 246 | 14.3k | c->num = 0; | 247 | 14.3k | OPENSSL_cleanse(p, HASH_CBLOCK); | 248 | | | 249 | | # ifndef HASH_MAKE_STRING | 250 | | # error "HASH_MAKE_STRING must be defined!" | 251 | | # else | 252 | 14.3k | HASH_MAKE_STRING(c, md); | 253 | 14.3k | # endif | 254 | | | 255 | 14.3k | return 1; | 256 | 14.3k | } |
Line | Count | Source | 222 | 106k | { | 223 | 106k | unsigned char *p = (unsigned char *)c->data; | 224 | 106k | size_t n = c->num; | 225 | | | 226 | 106k | p[n] = 0x80; /* there is always room for one */ | 227 | 106k | n++; | 228 | | | 229 | 106k | if (n > (HASH_CBLOCK - 8)) { | 230 | 4.08k | memset(p + n, 0, HASH_CBLOCK - n); | 231 | 4.08k | n = 0; | 232 | 4.08k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 233 | 4.08k | } | 234 | 106k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 235 | | | 236 | 106k | p += HASH_CBLOCK - 8; | 237 | 106k | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 238 | 106k | (void)HOST_l2c(c->Nh, p); | 239 | 106k | (void)HOST_l2c(c->Nl, p); | 240 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 241 | | (void)HOST_l2c(c->Nl, p); | 242 | | (void)HOST_l2c(c->Nh, p); | 243 | | # endif | 244 | 106k | p -= HASH_CBLOCK; | 245 | 106k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 246 | 106k | c->num = 0; | 247 | 106k | OPENSSL_cleanse(p, HASH_CBLOCK); | 248 | | | 249 | | # ifndef HASH_MAKE_STRING | 250 | | # error "HASH_MAKE_STRING must be defined!" | 251 | | # else | 252 | 106k | HASH_MAKE_STRING(c, md); | 253 | 106k | # endif | 254 | | | 255 | 106k | return 1; | 256 | 106k | } |
Unexecuted instantiation: MD4_Final Unexecuted instantiation: MD5_Final Unexecuted instantiation: RIPEMD160_Final Unexecuted instantiation: ossl_sm3_final |
257 | | |
258 | | # ifndef MD32_REG_T |
259 | | # if defined(__alpha) || defined(__sparcv9) || defined(__mips) |
260 | | # define MD32_REG_T long |
261 | | /* |
262 | | * This comment was originally written for MD5, which is why it |
263 | | * discusses A-D. But it basically applies to all 32-bit digests, |
264 | | * which is why it was moved to common header file. |
265 | | * |
266 | | * In case you wonder why A-D are declared as long and not |
267 | | * as MD5_LONG. Doing so results in slight performance |
268 | | * boost on LP64 architectures. The catch is we don't |
269 | | * really care if 32 MSBs of a 64-bit register get polluted |
270 | | * with eventual overflows as we *save* only 32 LSBs in |
271 | | * *either* case. Now declaring 'em long excuses the compiler |
272 | | * from keeping 32 MSBs zeroed resulting in 13% performance |
273 | | * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. |
274 | | * Well, to be honest it should say that this *prevents* |
275 | | * performance degradation. |
276 | | */ |
277 | | # else |
278 | | /* |
279 | | * Above is not absolute and there are LP64 compilers that |
280 | | * generate better code if MD32_REG_T is defined int. The above |
281 | | * pre-processor condition reflects the circumstances under which |
282 | | * the conclusion was made and is subject to further extension. |
283 | | */ |
284 | | # define MD32_REG_T int |
285 | | # endif |
286 | | # endif |
287 | | |
288 | | #endif |