Coverage Report

Created: 2025-08-03 07:12

/src/openssl/providers/implementations/kdfs/tls1_prf.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
11
/*
12
 * Refer to "The TLS Protocol Version 1.0" Section 5
13
 * (https://tools.ietf.org/html/rfc2246#section-5) and
14
 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
15
 * (https://tools.ietf.org/html/rfc5246#section-5).
16
 *
17
 * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
18
 *
19
 *   PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
20
 *                              P_SHA-1(S2, label + seed)
21
 *
22
 * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
23
 * two halves of the secret (with the possibility of one shared byte, in the
24
 * case where the length of the original secret is odd).  S1 is taken from the
25
 * first half of the secret, S2 from the second half.
26
 *
27
 * For TLS v1.2 the TLS PRF algorithm is given by:
28
 *
29
 *   PRF(secret, label, seed) = P_<hash>(secret, label + seed)
30
 *
31
 * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
32
 * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
33
 * unless defined otherwise by the cipher suite.
34
 *
35
 * P_<hash> is an expansion function that uses a single hash function to expand
36
 * a secret and seed into an arbitrary quantity of output:
37
 *
38
 *   P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
39
 *                            HMAC_<hash>(secret, A(2) + seed) +
40
 *                            HMAC_<hash>(secret, A(3) + seed) + ...
41
 *
42
 * where + indicates concatenation.  P_<hash> can be iterated as many times as
43
 * is necessary to produce the required quantity of data.
44
 *
45
 * A(i) is defined as:
46
 *     A(0) = seed
47
 *     A(i) = HMAC_<hash>(secret, A(i-1))
48
 */
49
50
/*
51
 * Low level APIs (such as DH) are deprecated for public use, but still ok for
52
 * internal use.
53
 */
54
#include "internal/deprecated.h"
55
56
#include <stdio.h>
57
#include <stdarg.h>
58
#include <string.h>
59
#include <openssl/evp.h>
60
#include <openssl/kdf.h>
61
#include <openssl/core_names.h>
62
#include <openssl/params.h>
63
#include <openssl/proverr.h>
64
#include "internal/cryptlib.h"
65
#include "internal/numbers.h"
66
#include "crypto/evp.h"
67
#include "prov/provider_ctx.h"
68
#include "prov/providercommon.h"
69
#include "prov/implementations.h"
70
#include "prov/provider_util.h"
71
#include "prov/securitycheck.h"
72
#include "internal/e_os.h"
73
#include "internal/params.h"
74
#include "internal/safe_math.h"
75
76
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
77
78
static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new;
79
static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup;
80
static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free;
81
static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset;
82
static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive;
83
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params;
84
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params;
85
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params;
86
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params;
87
88
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
89
                        const unsigned char *sec, size_t slen,
90
                        const unsigned char *seed, size_t seed_len,
91
                        unsigned char *out, size_t olen);
92
93
#define TLS_MD_MASTER_SECRET_CONST        "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74"
94
#define TLS_MD_MASTER_SECRET_CONST_SIZE   13
95
96
0
#define TLSPRF_MAX_SEEDS    6
97
98
/* TLS KDF kdf context structure */
99
typedef struct {
100
    void *provctx;
101
102
    /* MAC context for the main digest */
103
    EVP_MAC_CTX *P_hash;
104
    /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */
105
    EVP_MAC_CTX *P_sha1;
106
107
    /* Secret value to use for PRF */
108
    unsigned char *sec;
109
    size_t seclen;
110
    /* Concatenated seed data */
111
    unsigned char *seed;
112
    size_t seedlen;
113
114
    OSSL_FIPS_IND_DECLARE
115
} TLS1_PRF;
116
117
static void *kdf_tls1_prf_new(void *provctx)
118
0
{
119
0
    TLS1_PRF *ctx;
120
121
0
    if (!ossl_prov_is_running())
122
0
        return NULL;
123
124
0
    if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) {
125
0
        ctx->provctx = provctx;
126
0
        OSSL_FIPS_IND_INIT(ctx)
127
0
    }
128
0
    return ctx;
129
0
}
130
131
static void kdf_tls1_prf_free(void *vctx)
132
0
{
133
0
    TLS1_PRF *ctx = (TLS1_PRF *)vctx;
134
135
0
    if (ctx != NULL) {
136
0
        kdf_tls1_prf_reset(ctx);
137
0
        OPENSSL_free(ctx);
138
0
    }
139
0
}
140
141
static void kdf_tls1_prf_reset(void *vctx)
142
0
{
143
0
    TLS1_PRF *ctx = (TLS1_PRF *)vctx;
144
0
    void *provctx = ctx->provctx;
145
146
0
    EVP_MAC_CTX_free(ctx->P_hash);
147
0
    EVP_MAC_CTX_free(ctx->P_sha1);
148
0
    OPENSSL_clear_free(ctx->sec, ctx->seclen);
149
0
    OPENSSL_clear_free(ctx->seed, ctx->seedlen);
150
0
    memset(ctx, 0, sizeof(*ctx));
151
0
    ctx->provctx = provctx;
152
0
}
153
154
static void *kdf_tls1_prf_dup(void *vctx)
155
0
{
156
0
    const TLS1_PRF *src = (const TLS1_PRF *)vctx;
157
0
    TLS1_PRF *dest;
158
159
0
    dest = kdf_tls1_prf_new(src->provctx);
160
0
    if (dest != NULL) {
161
0
        if (src->P_hash != NULL
162
0
                    && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL)
163
0
            goto err;
164
0
        if (src->P_sha1 != NULL
165
0
                    && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL)
166
0
            goto err;
167
0
        if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen))
168
0
            goto err;
169
0
        if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed,
170
0
                              &dest->seedlen))
171
0
            goto err;
172
0
        OSSL_FIPS_IND_COPY(dest, src)
173
0
    }
174
0
    return dest;
175
176
0
 err:
177
0
    kdf_tls1_prf_free(dest);
178
0
    return NULL;
179
0
}
180
181
#ifdef FIPS_MODULE
182
183
static int fips_ems_check_passed(TLS1_PRF *ctx)
184
{
185
    OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
186
    /*
187
     * Check that TLS is using EMS.
188
     *
189
     * The seed buffer is prepended with a label.
190
     * If EMS mode is enforced then the label "master secret" is not allowed,
191
     * We do the check this way since the PRF is used for other purposes, as well
192
     * as "extended master secret".
193
     */
194
    int ems_approved = (ctx->seedlen < TLS_MD_MASTER_SECRET_CONST_SIZE
195
                       || memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST,
196
                                 TLS_MD_MASTER_SECRET_CONST_SIZE) != 0);
197
198
    if (!ems_approved) {
199
        if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0,
200
                                         libctx, "TLS_PRF", "EMS",
201
                                         ossl_fips_config_tls1_prf_ems_check)) {
202
            ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED);
203
            return 0;
204
        }
205
    }
206
    return 1;
207
}
208
209
static int fips_digest_check_passed(TLS1_PRF *ctx, const EVP_MD *md)
210
{
211
    OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
212
    /*
213
     * Perform digest check
214
     *
215
     * According to NIST SP 800-135r1 section 5.2, the valid hash functions are
216
     * specified in FIPS 180-3. ACVP also only lists the same set of hash
217
     * functions.
218
     */
219
    int digest_unapproved = !EVP_MD_is_a(md, SN_sha256)
220
        && !EVP_MD_is_a(md, SN_sha384)
221
        && !EVP_MD_is_a(md, SN_sha512);
222
223
    if (digest_unapproved) {
224
        if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE1,
225
                                         libctx, "TLS_PRF", "Digest",
226
                                         ossl_fips_config_tls1_prf_digest_check)) {
227
            ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED);
228
            return 0;
229
        }
230
    }
231
    return 1;
232
}
233
234
static int fips_key_check_passed(TLS1_PRF *ctx)
235
{
236
    OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
237
    int key_approved = ossl_kdf_check_key_size(ctx->seclen);
238
239
    if (!key_approved) {
240
        if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE2,
241
                                         libctx, "TLS_PRF", "Key size",
242
                                         ossl_fips_config_tls1_prf_key_check)) {
243
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
244
            return 0;
245
        }
246
    }
247
    return 1;
248
}
249
#endif
250
251
static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen,
252
                               const OSSL_PARAM params[])
253
0
{
254
0
    TLS1_PRF *ctx = (TLS1_PRF *)vctx;
255
256
0
    if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params))
257
0
        return 0;
258
259
0
    if (ctx->P_hash == NULL) {
260
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
261
0
        return 0;
262
0
    }
263
0
    if (ctx->sec == NULL) {
264
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET);
265
0
        return 0;
266
0
    }
267
0
    if (ctx->seedlen == 0) {
268
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
269
0
        return 0;
270
0
    }
271
0
    if (keylen == 0) {
272
0
        ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
273
0
        return 0;
274
0
    }
275
276
#ifdef FIPS_MODULE
277
    if (!fips_ems_check_passed(ctx))
278
        return 0;
279
#endif
280
281
0
    return tls1_prf_alg(ctx->P_hash, ctx->P_sha1,
282
0
                        ctx->sec, ctx->seclen,
283
0
                        ctx->seed, ctx->seedlen,
284
0
                        key, keylen);
285
0
}
286
287
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
288
#ifndef tls1prf_set_ctx_params_list
289
static const OSSL_PARAM tls1prf_set_ctx_params_list[] = {
290
    OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
291
    OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
292
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
293
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0),
294
    OSSL_PARAM_int(OSSL_KDF_PARAM_FIPS_EMS_CHECK, NULL),
295
    OSSL_PARAM_int(OSSL_KDF_PARAM_FIPS_DIGEST_CHECK, NULL),
296
    OSSL_PARAM_int(OSSL_KDF_PARAM_FIPS_KEY_CHECK, NULL),
297
    OSSL_PARAM_END
298
};
299
#endif
300
301
#ifndef tls1prf_set_ctx_params_st
302
struct tls1prf_set_ctx_params_st {
303
    OSSL_PARAM *digest;
304
    OSSL_PARAM *engine;
305
    OSSL_PARAM *ind_d;
306
    OSSL_PARAM *ind_e;
307
    OSSL_PARAM *ind_k;
308
    OSSL_PARAM *propq;
309
    OSSL_PARAM *secret;
310
    OSSL_PARAM *seed[TLSPRF_MAX_SEEDS];
311
    int num_seed;
312
};
313
#endif
314
315
#ifndef tls1prf_set_ctx_params_decoder
316
static int tls1prf_set_ctx_params_decoder
317
    (const OSSL_PARAM *p, struct tls1prf_set_ctx_params_st *r)
318
0
{
319
0
    const char *s;
320
321
0
    memset(r, 0, sizeof(*r));
322
0
    if (p != NULL)
323
0
        for (; (s = p->key) != NULL; p++)
324
0
            switch(s[0]) {
325
0
            default:
326
0
                break;
327
0
            case 'd':
328
0
                switch(s[1]) {
329
0
                default:
330
0
                    break;
331
0
                case 'i':
332
0
                    switch(s[2]) {
333
0
                    default:
334
0
                        break;
335
0
                    case 'g':
336
0
                        switch(s[3]) {
337
0
                        default:
338
0
                            break;
339
0
                        case 'e':
340
0
                            switch(s[4]) {
341
0
                            default:
342
0
                                break;
343
0
                            case 's':
344
0
                                switch(s[5]) {
345
0
                                default:
346
0
                                    break;
347
0
                                case 't':
348
0
                                    switch(s[6]) {
349
0
                                    default:
350
0
                                        break;
351
0
                                    case '-':
352
0
                                        if (ossl_likely(strcmp("check", s + 7) == 0)) {
353
0
                                            if (ossl_likely(r->ind_d == NULL))
354
0
                                                r->ind_d = (OSSL_PARAM *)p;
355
0
                                        }
356
0
                                        break;
357
0
                                    case '\0':
358
0
                                        if (ossl_likely(r->digest == NULL))
359
0
                                            r->digest = (OSSL_PARAM *)p;
360
0
                                    }
361
0
                                }
362
0
                            }
363
0
                        }
364
0
                    }
365
0
                }
366
0
                break;
367
0
            case 'e':
368
0
                switch(s[1]) {
369
0
                default:
370
0
                    break;
371
0
                case 'm':
372
0
                    if (ossl_likely(strcmp("s_check", s + 2) == 0)) {
373
0
                        if (ossl_likely(r->ind_e == NULL))
374
0
                            r->ind_e = (OSSL_PARAM *)p;
375
0
                    }
376
0
                    break;
377
0
                case 'n':
378
0
                    if (ossl_likely(strcmp("gine", s + 2) == 0)) {
379
0
                        if (ossl_likely(r->engine == NULL))
380
0
                            r->engine = (OSSL_PARAM *)p;
381
0
                    }
382
0
                }
383
0
                break;
384
0
            case 'k':
385
0
                if (ossl_likely(strcmp("ey-check", s + 1) == 0)) {
386
0
                    if (ossl_likely(r->ind_k == NULL))
387
0
                        r->ind_k = (OSSL_PARAM *)p;
388
0
                }
389
0
                break;
390
0
            case 'p':
391
0
                if (ossl_likely(strcmp("roperties", s + 1) == 0)) {
392
0
                    if (ossl_likely(r->propq == NULL))
393
0
                        r->propq = (OSSL_PARAM *)p;
394
0
                }
395
0
                break;
396
0
            case 's':
397
0
                switch(s[1]) {
398
0
                default:
399
0
                    break;
400
0
                case 'e':
401
0
                    switch(s[2]) {
402
0
                    default:
403
0
                        break;
404
0
                    case 'c':
405
0
                        if (ossl_likely(strcmp("ret", s + 3) == 0)) {
406
0
                            if (ossl_likely(r->secret == NULL))
407
0
                                r->secret = (OSSL_PARAM *)p;
408
0
                        }
409
0
                        break;
410
0
                    case 'e':
411
0
                        if (ossl_likely(strcmp("d", s + 3) == 0)) {
412
0
                            if (ossl_unlikely(r->num_seed >= TLSPRF_MAX_SEEDS)) {
413
0
                                ERR_raise_data(ERR_LIB_PROV, PROV_R_TOO_MANY_RECORDS,
414
0
                                               "param %s present >%d times", s, TLSPRF_MAX_SEEDS);
415
0
                                return 0;
416
0
                            }
417
0
                            r->seed[r->num_seed++] = (OSSL_PARAM *)p;
418
0
                        }
419
0
                    }
420
0
                }
421
0
            }
422
0
    return 1;
423
0
}
424
#endif
425
/* End of machine generated */
426
427
static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
428
0
{
429
0
    struct tls1prf_set_ctx_params_st p;
430
0
    TLS1_PRF *ctx = vctx;
431
0
    OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
432
433
0
    if (ctx == NULL || !tls1prf_set_ctx_params_decoder(params, &p))
434
0
        return 0;
435
436
0
    if (!OSSL_FIPS_IND_SET_CTX_FROM_PARAM(ctx, OSSL_FIPS_IND_SETTABLE0, p.ind_e))
437
0
        return 0;
438
0
    if (!OSSL_FIPS_IND_SET_CTX_FROM_PARAM(ctx, OSSL_FIPS_IND_SETTABLE1, p.ind_d))
439
0
        return 0;
440
0
    if (!OSSL_FIPS_IND_SET_CTX_FROM_PARAM(ctx, OSSL_FIPS_IND_SETTABLE2, p.ind_k))
441
0
        return 0;
442
443
0
    if (p.digest != NULL) {
444
0
        PROV_DIGEST digest;
445
0
        const EVP_MD *md = NULL;
446
0
        const char *dgst;
447
448
0
        if (!OSSL_PARAM_get_utf8_string_ptr(p.digest, &dgst))
449
0
            return 0;
450
451
0
        if (OPENSSL_strcasecmp(dgst, OSSL_DIGEST_NAME_MD5_SHA1) == 0) {
452
0
            if (!ossl_prov_macctx_load(&ctx->P_hash, NULL, NULL, NULL,
453
0
                                       p.propq, p.engine,
454
0
                                       OSSL_MAC_NAME_HMAC, NULL,
455
0
                                       OSSL_DIGEST_NAME_MD5, libctx))
456
0
                return 0;
457
0
            if (!ossl_prov_macctx_load(&ctx->P_sha1, NULL, NULL, NULL,
458
0
                                       p.propq, p.engine,
459
0
                                       OSSL_MAC_NAME_HMAC, NULL,
460
0
                                       OSSL_DIGEST_NAME_SHA1, libctx))
461
0
                return 0;
462
0
        } else {
463
0
            EVP_MAC_CTX_free(ctx->P_sha1);
464
0
            if (!ossl_prov_macctx_load(&ctx->P_hash, NULL, NULL, p.digest,
465
0
                                       p.propq, p.engine,
466
0
                                       OSSL_MAC_NAME_HMAC, NULL, NULL, libctx))
467
0
                return 0;
468
0
        }
469
470
0
        memset(&digest, 0, sizeof(digest));
471
0
        if (!ossl_prov_digest_load(&digest, p.digest, p.propq, p.engine, libctx))
472
0
            return 0;
473
474
0
        md = ossl_prov_digest_md(&digest);
475
0
        if (EVP_MD_xof(md)) {
476
0
            ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
477
0
            ossl_prov_digest_reset(&digest);
478
0
            return 0;
479
0
        }
480
481
#ifdef FIPS_MODULE
482
        if (!fips_digest_check_passed(ctx, md)) {
483
            ossl_prov_digest_reset(&digest);
484
            return 0;
485
        }
486
#endif
487
488
0
        ossl_prov_digest_reset(&digest);
489
0
    }
490
491
0
    if (p.secret != NULL) {
492
0
        OPENSSL_clear_free(ctx->sec, ctx->seclen);
493
0
        ctx->sec = NULL;
494
0
        if (!OSSL_PARAM_get_octet_string(p.secret, (void **)&ctx->sec, 0,
495
0
                                         &ctx->seclen))
496
0
            return 0;
497
498
#ifdef FIPS_MODULE
499
        if (!fips_key_check_passed(ctx))
500
            return 0;
501
#endif
502
0
    }
503
504
    /*
505
     * The seed fields concatenate across set calls, so process them all
506
     * but only reallocate once.
507
     */
508
0
    if (p.num_seed > 0) {
509
0
        const void *vals[TLSPRF_MAX_SEEDS];
510
0
        size_t sizes[TLSPRF_MAX_SEEDS];
511
0
        size_t seedlen = ctx->seedlen;
512
0
        int i, n = 0;
513
514
0
        for (i = 0; i < p.num_seed; i++) {
515
0
            sizes[i] = 0;
516
0
            vals[i] = NULL;
517
0
            if (p.seed[i]->data_size != 0 && p.seed[i]->data != NULL) {
518
0
                int err = 0;
519
520
0
                if (!OSSL_PARAM_get_octet_string_ptr(p.seed[i],
521
0
                                                     vals + n, sizes + n))
522
0
                    return 0;
523
524
0
                seedlen = safe_add_size_t(seedlen, sizes[n], &err);
525
0
                if (err)
526
0
                    return 0;
527
0
                n++;
528
0
            }
529
0
        }
530
531
0
        if (seedlen != ctx->seedlen) {
532
0
            unsigned char *seed = OPENSSL_clear_realloc(ctx->seed,
533
0
                                                        ctx->seedlen, seedlen);
534
535
0
            if (seed == NULL)
536
0
                return 0;
537
0
            ctx->seed = seed;
538
539
            /* No errors are possible, so copy them across */
540
0
            for (i = 0; i < n; i++) {
541
0
                memcpy(ctx->seed + ctx->seedlen, vals[i], sizes[i]);
542
0
                ctx->seedlen += sizes[i];
543
0
            }
544
0
        }
545
0
    }
546
547
0
    return 1;
548
0
}
549
550
static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(
551
        ossl_unused void *ctx, ossl_unused void *provctx)
552
0
{
553
0
    return tls1prf_set_ctx_params_list;
554
0
}
555
556
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
557
#ifndef tls1prf_get_ctx_params_list
558
static const OSSL_PARAM tls1prf_get_ctx_params_list[] = {
559
    OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
560
    OSSL_PARAM_int(OSSL_KDF_PARAM_FIPS_APPROVED_INDICATOR, NULL),
561
    OSSL_PARAM_END
562
};
563
#endif
564
565
#ifndef tls1prf_get_ctx_params_st
566
struct tls1prf_get_ctx_params_st {
567
    OSSL_PARAM *ind;
568
    OSSL_PARAM *size;
569
};
570
#endif
571
572
#ifndef tls1prf_get_ctx_params_decoder
573
static int tls1prf_get_ctx_params_decoder
574
    (const OSSL_PARAM *p, struct tls1prf_get_ctx_params_st *r)
575
0
{
576
0
    const char *s;
577
578
0
    memset(r, 0, sizeof(*r));
579
0
    if (p != NULL)
580
0
        for (; (s = p->key) != NULL; p++)
581
0
            switch(s[0]) {
582
0
            default:
583
0
                break;
584
0
            case 'f':
585
0
                if (ossl_likely(strcmp("ips-indicator", s + 1) == 0)) {
586
0
                    if (ossl_likely(r->ind == NULL))
587
0
                        r->ind = (OSSL_PARAM *)p;
588
0
                }
589
0
                break;
590
0
            case 's':
591
0
                if (ossl_likely(strcmp("ize", s + 1) == 0)) {
592
0
                    if (ossl_likely(r->size == NULL))
593
0
                        r->size = (OSSL_PARAM *)p;
594
0
                }
595
0
            }
596
0
    return 1;
597
0
}
598
#endif
599
/* End of machine generated */
600
601
static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[])
602
0
{
603
0
    struct tls1prf_get_ctx_params_st p;
604
0
    TLS1_PRF *ctx = (TLS1_PRF *)vctx;
605
606
0
    if (ctx == NULL || !tls1prf_get_ctx_params_decoder(params, &p))
607
0
        return 0;
608
609
0
    if (p.size != NULL && !OSSL_PARAM_set_size_t(p.size, SIZE_MAX))
610
0
        return 0;
611
612
0
    if (!OSSL_FIPS_IND_GET_CTX_FROM_PARAM(ctx, p.ind))
613
0
        return 0;
614
0
    return 1;
615
0
}
616
617
static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(
618
        ossl_unused void *ctx, ossl_unused void *provctx)
619
0
{
620
0
    return tls1prf_get_ctx_params_list;
621
0
}
622
623
const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = {
624
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new },
625
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_tls1_prf_dup },
626
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free },
627
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset },
628
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive },
629
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
630
      (void(*)(void))kdf_tls1_prf_settable_ctx_params },
631
    { OSSL_FUNC_KDF_SET_CTX_PARAMS,
632
      (void(*)(void))kdf_tls1_prf_set_ctx_params },
633
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
634
      (void(*)(void))kdf_tls1_prf_gettable_ctx_params },
635
    { OSSL_FUNC_KDF_GET_CTX_PARAMS,
636
      (void(*)(void))kdf_tls1_prf_get_ctx_params },
637
    OSSL_DISPATCH_END
638
};
639
640
/*
641
 * Refer to "The TLS Protocol Version 1.0" Section 5
642
 * (https://tools.ietf.org/html/rfc2246#section-5) and
643
 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
644
 * (https://tools.ietf.org/html/rfc5246#section-5).
645
 *
646
 * P_<hash> is an expansion function that uses a single hash function to expand
647
 * a secret and seed into an arbitrary quantity of output:
648
 *
649
 *   P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
650
 *                            HMAC_<hash>(secret, A(2) + seed) +
651
 *                            HMAC_<hash>(secret, A(3) + seed) + ...
652
 *
653
 * where + indicates concatenation.  P_<hash> can be iterated as many times as
654
 * is necessary to produce the required quantity of data.
655
 *
656
 * A(i) is defined as:
657
 *     A(0) = seed
658
 *     A(i) = HMAC_<hash>(secret, A(i-1))
659
 */
660
static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init,
661
                           const unsigned char *sec, size_t sec_len,
662
                           const unsigned char *seed, size_t seed_len,
663
                           unsigned char *out, size_t olen)
664
0
{
665
0
    size_t chunk;
666
0
    EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL;
667
0
    unsigned char Ai[EVP_MAX_MD_SIZE];
668
0
    size_t Ai_len;
669
0
    int ret = 0;
670
671
0
    if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL))
672
0
        goto err;
673
0
    chunk = EVP_MAC_CTX_get_mac_size(ctx_init);
674
0
    if (chunk == 0)
675
0
        goto err;
676
    /* A(0) = seed */
677
0
    ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
678
0
    if (ctx_Ai == NULL)
679
0
        goto err;
680
0
    if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
681
0
        goto err;
682
683
0
    for (;;) {
684
        /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
685
0
        if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
686
0
            goto err;
687
0
        EVP_MAC_CTX_free(ctx_Ai);
688
0
        ctx_Ai = NULL;
689
690
        /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
691
0
        ctx = EVP_MAC_CTX_dup(ctx_init);
692
0
        if (ctx == NULL)
693
0
            goto err;
694
0
        if (!EVP_MAC_update(ctx, Ai, Ai_len))
695
0
            goto err;
696
        /* save state for calculating next A(i) value */
697
0
        if (olen > chunk) {
698
0
            ctx_Ai = EVP_MAC_CTX_dup(ctx);
699
0
            if (ctx_Ai == NULL)
700
0
                goto err;
701
0
        }
702
0
        if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
703
0
            goto err;
704
0
        if (olen <= chunk) {
705
            /* last chunk - use Ai as temp bounce buffer */
706
0
            if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
707
0
                goto err;
708
0
            memcpy(out, Ai, olen);
709
0
            break;
710
0
        }
711
0
        if (!EVP_MAC_final(ctx, out, NULL, olen))
712
0
            goto err;
713
0
        EVP_MAC_CTX_free(ctx);
714
0
        ctx = NULL;
715
0
        out += chunk;
716
0
        olen -= chunk;
717
0
    }
718
0
    ret = 1;
719
0
 err:
720
0
    EVP_MAC_CTX_free(ctx);
721
0
    EVP_MAC_CTX_free(ctx_Ai);
722
0
    OPENSSL_cleanse(Ai, sizeof(Ai));
723
0
    return ret;
724
0
}
725
726
/*
727
 * Refer to "The TLS Protocol Version 1.0" Section 5
728
 * (https://tools.ietf.org/html/rfc2246#section-5) and
729
 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
730
 * (https://tools.ietf.org/html/rfc5246#section-5).
731
 *
732
 * For TLS v1.0 and TLS v1.1:
733
 *
734
 *   PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
735
 *                              P_SHA-1(S2, label + seed)
736
 *
737
 * S1 is taken from the first half of the secret, S2 from the second half.
738
 *
739
 *   L_S = length in bytes of secret;
740
 *   L_S1 = L_S2 = ceil(L_S / 2);
741
 *
742
 * For TLS v1.2:
743
 *
744
 *   PRF(secret, label, seed) = P_<hash>(secret, label + seed)
745
 */
746
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
747
                        const unsigned char *sec, size_t slen,
748
                        const unsigned char *seed, size_t seed_len,
749
                        unsigned char *out, size_t olen)
750
0
{
751
0
    if (sha1ctx != NULL) {
752
        /* TLS v1.0 and TLS v1.1 */
753
0
        size_t i;
754
0
        unsigned char *tmp;
755
        /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
756
0
        size_t L_S1 = (slen + 1) / 2;
757
0
        size_t L_S2 = L_S1;
758
759
0
        if (!tls1_prf_P_hash(mdctx, sec, L_S1,
760
0
                             seed, seed_len, out, olen))
761
0
            return 0;
762
763
0
        if ((tmp = OPENSSL_malloc(olen)) == NULL)
764
0
            return 0;
765
766
0
        if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2,
767
0
                             seed, seed_len, tmp, olen)) {
768
0
            OPENSSL_clear_free(tmp, olen);
769
0
            return 0;
770
0
        }
771
0
        for (i = 0; i < olen; i++)
772
0
            out[i] ^= tmp[i];
773
0
        OPENSSL_clear_free(tmp, olen);
774
0
        return 1;
775
0
    }
776
777
    /* TLS v1.2 */
778
0
    if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen))
779
0
        return 0;
780
781
0
    return 1;
782
0
}