Coverage Report

Created: 2025-08-25 06:30

/src/openssl/providers/implementations/kdfs/argon2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 *
9
 * RFC 9106 Argon2 (see https://www.rfc-editor.org/rfc/rfc9106.txt)
10
 *
11
 */
12
13
14
#include <stdlib.h>
15
#include <stddef.h>
16
#include <stdarg.h>
17
#include <string.h>
18
#include <openssl/e_os2.h>
19
#include <openssl/evp.h>
20
#include <openssl/objects.h>
21
#include <openssl/crypto.h>
22
#include <openssl/kdf.h>
23
#include <openssl/err.h>
24
#include <openssl/core_names.h>
25
#include <openssl/params.h>
26
#include <openssl/thread.h>
27
#include <openssl/proverr.h>
28
#include "internal/thread.h"
29
#include "internal/numbers.h"
30
#include "internal/endian.h"
31
#include "crypto/evp.h"
32
#include "prov/implementations.h"
33
#include "prov/provider_ctx.h"
34
#include "prov/providercommon.h"
35
#include "prov/blake2.h"
36
37
#if defined(OPENSSL_NO_DEFAULT_THREAD_POOL) && defined(OPENSSL_NO_THREAD_POOL)
38
# define ARGON2_NO_THREADS
39
#endif
40
41
#if !defined(OPENSSL_THREADS)
42
# define ARGON2_NO_THREADS
43
#endif
44
45
#ifndef OPENSSL_NO_ARGON2
46
47
0
# define ARGON2_MIN_LANES 1u
48
0
# define ARGON2_MAX_LANES 0xFFFFFFu
49
0
# define ARGON2_MIN_THREADS 1u
50
0
# define ARGON2_MAX_THREADS 0xFFFFFFu
51
0
# define ARGON2_SYNC_POINTS 4u
52
0
# define ARGON2_MIN_OUT_LENGTH 4u
53
# define ARGON2_MAX_OUT_LENGTH 0xFFFFFFFFu
54
0
# define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS)
55
# define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
56
# define ARGON2_MAX_MEMORY 0xFFFFFFFFu
57
0
# define ARGON2_MIN_TIME 1u
58
# define ARGON2_MAX_TIME 0xFFFFFFFFu
59
# define ARGON2_MIN_PWD_LENGTH 0u
60
0
# define ARGON2_MAX_PWD_LENGTH 0xFFFFFFFFu
61
# define ARGON2_MIN_AD_LENGTH 0u
62
0
# define ARGON2_MAX_AD_LENGTH 0xFFFFFFFFu
63
0
# define ARGON2_MIN_SALT_LENGTH 8u
64
0
# define ARGON2_MAX_SALT_LENGTH 0xFFFFFFFFu
65
# define ARGON2_MIN_SECRET 0u
66
0
# define ARGON2_MAX_SECRET 0xFFFFFFFFu
67
0
# define ARGON2_BLOCK_SIZE 1024
68
0
# define ARGON2_QWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 8)
69
# define ARGON2_OWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 16)
70
# define ARGON2_HWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 32)
71
# define ARGON2_512BIT_WORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 64)
72
0
# define ARGON2_ADDRESSES_IN_BLOCK 128
73
0
# define ARGON2_PREHASH_DIGEST_LENGTH 64
74
# define ARGON2_PREHASH_SEED_LENGTH \
75
0
    (ARGON2_PREHASH_DIGEST_LENGTH + (2 * sizeof(uint32_t)))
76
77
0
# define ARGON2_DEFAULT_OUTLEN 64u
78
0
# define ARGON2_DEFAULT_T_COST 3u
79
0
# define ARGON2_DEFAULT_M_COST ARGON2_MIN_MEMORY
80
0
# define ARGON2_DEFAULT_LANES  1u
81
0
# define ARGON2_DEFAULT_THREADS 1u
82
0
# define ARGON2_DEFAULT_VERSION ARGON2_VERSION_NUMBER
83
84
# undef G
85
# define G(a, b, c, d)                                                        \
86
0
    do {                                                                      \
87
0
        a = a + b + 2 * mul_lower(a, b);                                      \
88
0
        d = rotr64(d ^ a, 32);                                                \
89
0
        c = c + d + 2 * mul_lower(c, d);                                      \
90
0
        b = rotr64(b ^ c, 24);                                                \
91
0
        a = a + b + 2 * mul_lower(a, b);                                      \
92
0
        d = rotr64(d ^ a, 16);                                                \
93
0
        c = c + d + 2 * mul_lower(c, d);                                      \
94
0
        b = rotr64(b ^ c, 63);                                                \
95
0
    } while ((void)0, 0)
96
97
# undef PERMUTATION_P
98
# define PERMUTATION_P(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,      \
99
                       v12, v13, v14, v15)                                    \
100
0
    do {                                                                      \
101
0
        G(v0, v4, v8, v12);                                                   \
102
0
        G(v1, v5, v9, v13);                                                   \
103
0
        G(v2, v6, v10, v14);                                                  \
104
0
        G(v3, v7, v11, v15);                                                  \
105
0
        G(v0, v5, v10, v15);                                                  \
106
0
        G(v1, v6, v11, v12);                                                  \
107
0
        G(v2, v7, v8, v13);                                                   \
108
0
        G(v3, v4, v9, v14);                                                   \
109
0
    } while ((void)0, 0)
110
111
# undef PERMUTATION_P_COLUMN
112
# define PERMUTATION_P_COLUMN(x, i)                                           \
113
0
    do {                                                                      \
114
0
        uint64_t *base = &x[16 * i];                                          \
115
0
        PERMUTATION_P(                                                        \
116
0
            *base,        *(base + 1),  *(base + 2),  *(base + 3),            \
117
0
            *(base + 4),  *(base + 5),  *(base + 6),  *(base + 7),            \
118
0
            *(base + 8),  *(base + 9),  *(base + 10), *(base + 11),           \
119
0
            *(base + 12), *(base + 13), *(base + 14), *(base + 15)            \
120
0
        );                                                                    \
121
0
    } while ((void)0, 0)
122
123
# undef PERMUTATION_P_ROW
124
# define PERMUTATION_P_ROW(x, i)                                              \
125
0
    do {                                                                      \
126
0
        uint64_t *base = &x[2 * i];                                           \
127
0
        PERMUTATION_P(                                                        \
128
0
            *base,        *(base + 1),  *(base + 16),  *(base + 17),          \
129
0
            *(base + 32), *(base + 33), *(base + 48),  *(base + 49),          \
130
0
            *(base + 64), *(base + 65), *(base + 80),  *(base + 81),          \
131
0
            *(base + 96), *(base + 97), *(base + 112), *(base + 113)          \
132
0
        );                                                                    \
133
0
    } while ((void)0, 0)
134
135
typedef struct {
136
    uint64_t v[ARGON2_QWORDS_IN_BLOCK];
137
} BLOCK;
138
139
typedef enum {
140
    ARGON2_VERSION_10 = 0x10,
141
    ARGON2_VERSION_13 = 0x13,
142
    ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
143
} ARGON2_VERSION;
144
145
typedef enum {
146
    ARGON2_D  = 0,
147
    ARGON2_I  = 1,
148
    ARGON2_ID = 2
149
} ARGON2_TYPE;
150
151
typedef struct {
152
    uint32_t pass;
153
    uint32_t lane;
154
    uint8_t slice;
155
    uint32_t index;
156
} ARGON2_POS;
157
158
typedef struct {
159
    void *provctx;
160
    uint32_t outlen;
161
    uint8_t *pwd;
162
    uint32_t pwdlen;
163
    uint8_t *salt;
164
    uint32_t saltlen;
165
    uint8_t *secret;
166
    uint32_t secretlen;
167
    uint8_t *ad;
168
    uint32_t adlen;
169
    uint32_t t_cost;
170
    uint32_t m_cost;
171
    uint32_t lanes;
172
    uint32_t threads;
173
    uint32_t version;
174
    uint32_t early_clean;
175
    ARGON2_TYPE type;
176
    BLOCK *memory;
177
    uint32_t passes;
178
    uint32_t memory_blocks;
179
    uint32_t segment_length;
180
    uint32_t lane_length;
181
    OSSL_LIB_CTX *libctx;
182
    EVP_MD *md;
183
    EVP_MAC *mac;
184
    char *propq;
185
} KDF_ARGON2;
186
187
typedef struct {
188
    ARGON2_POS pos;
189
    KDF_ARGON2 *ctx;
190
} ARGON2_THREAD_DATA;
191
192
static OSSL_FUNC_kdf_newctx_fn kdf_argon2i_new;
193
static OSSL_FUNC_kdf_newctx_fn kdf_argon2d_new;
194
static OSSL_FUNC_kdf_newctx_fn kdf_argon2id_new;
195
static OSSL_FUNC_kdf_freectx_fn kdf_argon2_free;
196
static OSSL_FUNC_kdf_reset_fn kdf_argon2_reset;
197
static OSSL_FUNC_kdf_derive_fn kdf_argon2_derive;
198
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_argon2_settable_ctx_params;
199
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_argon2_set_ctx_params;
200
201
static void kdf_argon2_init(KDF_ARGON2 *ctx, ARGON2_TYPE t);
202
static void *kdf_argon2d_new(void *provctx);
203
static void *kdf_argon2i_new(void *provctx);
204
static void *kdf_argon2id_new(void *provctx);
205
static void kdf_argon2_free(void *vctx);
206
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
207
                             const OSSL_PARAM params[]);
208
static void kdf_argon2_reset(void *vctx);
209
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads);
210
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes);
211
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost);
212
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost);
213
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen);
214
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
215
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
216
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
217
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
218
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[]);
219
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[]);
220
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version);
221
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
222
                                                        ossl_unused void *p_ctx);
223
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
224
                                                        ossl_unused void *p_ctx);
225
static int argon2_set_ctx_params(KDF_ARGON2 *ctx, const OSSL_PARAM params[],
226
                                 OSSL_PARAM **size_param_ptr);
227
228
static ossl_inline uint64_t load64(const uint8_t *src);
229
static ossl_inline void store32(uint8_t *dst, uint32_t w);
230
static ossl_inline void store64(uint8_t *dst, uint64_t w);
231
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c);
232
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y);
233
234
static void init_block_value(BLOCK *b, uint8_t in);
235
static void copy_block(BLOCK *dst, const BLOCK *src);
236
static void xor_block(BLOCK *dst, const BLOCK *src);
237
static void load_block(BLOCK *dst, const void *input);
238
static void store_block(void *output, const BLOCK *src);
239
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx);
240
static void fill_block(const BLOCK *prev, const BLOCK *ref, BLOCK *next,
241
                       int with_xor);
242
243
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
244
                           const BLOCK *zero_block);
245
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
246
                                 uint8_t slice);
247
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
248
                            uint8_t slice, uint32_t index,
249
                            uint32_t pseudo_rand, int same_lane);
250
251
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
252
                         uint8_t slice);
253
254
# if !defined(ARGON2_NO_THREADS)
255
static uint32_t fill_segment_thr(void *thread_data);
256
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx);
257
# endif
258
259
static int fill_mem_blocks_st(KDF_ARGON2 *ctx);
260
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx);
261
262
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx);
263
static int initialize(KDF_ARGON2 *ctx);
264
static void finalize(const KDF_ARGON2 *ctx, void *out);
265
266
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
267
                   const void *in, size_t inlen, const void *key,
268
                   size_t keylen);
269
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
270
                        size_t outlen, const void *in, size_t inlen);
271
272
static ossl_inline uint64_t load64(const uint8_t *src)
273
0
{
274
0
    return
275
0
      (((uint64_t)src[0]) << 0)
276
0
    | (((uint64_t)src[1]) << 8)
277
0
    | (((uint64_t)src[2]) << 16)
278
0
    | (((uint64_t)src[3]) << 24)
279
0
    | (((uint64_t)src[4]) << 32)
280
0
    | (((uint64_t)src[5]) << 40)
281
0
    | (((uint64_t)src[6]) << 48)
282
0
    | (((uint64_t)src[7]) << 56);
283
0
}
284
285
static ossl_inline void store32(uint8_t *dst, uint32_t w)
286
0
{
287
0
    dst[0] = (uint8_t)(w >> 0);
288
0
    dst[1] = (uint8_t)(w >> 8);
289
0
    dst[2] = (uint8_t)(w >> 16);
290
0
    dst[3] = (uint8_t)(w >> 24);
291
0
}
292
293
static ossl_inline void store64(uint8_t *dst, uint64_t w)
294
0
{
295
0
    dst[0] = (uint8_t)(w >> 0);
296
0
    dst[1] = (uint8_t)(w >> 8);
297
0
    dst[2] = (uint8_t)(w >> 16);
298
0
    dst[3] = (uint8_t)(w >> 24);
299
0
    dst[4] = (uint8_t)(w >> 32);
300
0
    dst[5] = (uint8_t)(w >> 40);
301
0
    dst[6] = (uint8_t)(w >> 48);
302
0
    dst[7] = (uint8_t)(w >> 56);
303
0
}
304
305
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c)
306
0
{
307
0
    return (w >> c) | (w << (64 - c));
308
0
}
309
310
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y)
311
0
{
312
0
    const uint64_t m = 0xFFFFFFFFUL;
313
0
    return (x & m) * (y & m);
314
0
}
315
316
static void init_block_value(BLOCK *b, uint8_t in)
317
0
{
318
0
    memset(b->v, in, sizeof(b->v));
319
0
}
320
321
static void copy_block(BLOCK *dst, const BLOCK *src)
322
0
{
323
0
    memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
324
0
}
325
326
static void xor_block(BLOCK *dst, const BLOCK *src)
327
0
{
328
0
    int i;
329
330
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
331
0
        dst->v[i] ^= src->v[i];
332
0
}
333
334
static void load_block(BLOCK *dst, const void *input)
335
0
{
336
0
    unsigned i;
337
338
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
339
0
        dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
340
0
}
341
342
static void store_block(void *output, const BLOCK *src)
343
0
{
344
0
    unsigned i;
345
346
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
347
0
        store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
348
0
}
349
350
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx)
351
0
{
352
0
    uint32_t l;
353
0
    uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
354
355
    /*
356
     * Make the first and second block in each lane as G(H0||0||i)
357
     * or G(H0||1||i).
358
     */
359
0
    for (l = 0; l < ctx->lanes; ++l) {
360
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
361
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
362
0
        blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
363
0
                     blockhash, ARGON2_PREHASH_SEED_LENGTH);
364
0
        load_block(&ctx->memory[l * ctx->lane_length + 0],
365
0
                   blockhash_bytes);
366
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
367
0
        blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
368
0
                     blockhash, ARGON2_PREHASH_SEED_LENGTH);
369
0
        load_block(&ctx->memory[l * ctx->lane_length + 1],
370
0
                   blockhash_bytes);
371
0
    }
372
0
    OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
373
0
}
374
375
static void fill_block(const BLOCK *prev, const BLOCK *ref,
376
                       BLOCK *next, int with_xor)
377
0
{
378
0
    BLOCK blockR, tmp;
379
0
    unsigned i;
380
381
0
    copy_block(&blockR, ref);
382
0
    xor_block(&blockR, prev);
383
0
    copy_block(&tmp, &blockR);
384
385
0
    if (with_xor)
386
0
        xor_block(&tmp, next);
387
388
0
    for (i = 0; i < 8; ++i)
389
0
        PERMUTATION_P_COLUMN(blockR.v, i);
390
391
0
    for (i = 0; i < 8; ++i)
392
0
        PERMUTATION_P_ROW(blockR.v, i);
393
394
0
    copy_block(next, &tmp);
395
0
    xor_block(next, &blockR);
396
0
}
397
398
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
399
                           const BLOCK *zero_block)
400
0
{
401
0
    input_block->v[6]++;
402
0
    fill_block(zero_block, input_block, address_block, 0);
403
0
    fill_block(zero_block, address_block, address_block, 0);
404
0
}
405
406
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
407
                                 uint8_t slice)
408
0
{
409
0
    switch (ctx->type) {
410
0
    case ARGON2_I:
411
0
        return 1;
412
0
    case ARGON2_ID:
413
0
        return (pass == 0) && (slice < ARGON2_SYNC_POINTS / 2);
414
0
    case ARGON2_D:
415
0
    default:
416
0
        return 0;
417
0
    }
418
0
}
419
420
/*
421
 * Pass 0 (pass = 0):
422
 * This lane: all already finished segments plus already constructed blocks
423
 *            in this segment
424
 * Other lanes: all already finished segments
425
 *
426
 * Pass 1+:
427
 * This lane: (SYNC_POINTS - 1) last segments plus already constructed
428
 *            blocks in this segment
429
 * Other lanes: (SYNC_POINTS - 1) last segments
430
 */
431
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
432
                            uint8_t slice, uint32_t index,
433
                            uint32_t pseudo_rand, int same_lane)
434
0
{
435
0
    uint32_t ref_area_sz;
436
0
    uint64_t rel_pos;
437
0
    uint32_t start_pos, abs_pos;
438
439
0
    start_pos = 0;
440
0
    switch (pass) {
441
0
    case 0:
442
0
        if (slice == 0)
443
0
            ref_area_sz = index - 1;
444
0
        else if (same_lane)
445
0
            ref_area_sz = slice * ctx->segment_length + index - 1;
446
0
        else
447
0
            ref_area_sz = slice * ctx->segment_length +
448
0
                ((index == 0) ? (-1) : 0);
449
0
        break;
450
0
    default:
451
0
        if (same_lane)
452
0
            ref_area_sz = ctx->lane_length - ctx->segment_length + index - 1;
453
0
        else
454
0
            ref_area_sz = ctx->lane_length - ctx->segment_length +
455
0
                ((index == 0) ? (-1) : 0);
456
0
        if (slice != ARGON2_SYNC_POINTS - 1)
457
0
            start_pos = (slice + 1) * ctx->segment_length;
458
0
        break;
459
0
    }
460
461
0
    rel_pos = pseudo_rand;
462
0
    rel_pos = rel_pos * rel_pos >> 32;
463
0
    rel_pos = ref_area_sz - 1 - (ref_area_sz * rel_pos >> 32);
464
0
    abs_pos = (start_pos + rel_pos) % ctx->lane_length;
465
466
0
    return abs_pos;
467
0
}
468
469
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
470
                         uint8_t slice)
471
0
{
472
0
    BLOCK *ref_block = NULL, *curr_block = NULL;
473
0
    BLOCK address_block, input_block, zero_block;
474
0
    uint64_t rnd, ref_index, ref_lane;
475
0
    uint32_t prev_offset;
476
0
    uint32_t start_idx;
477
0
    uint32_t j;
478
0
    uint32_t curr_offset; /* Offset of the current block */
479
480
0
    memset(&input_block, 0, sizeof(BLOCK));
481
482
0
    if (ctx == NULL)
483
0
        return;
484
485
0
    if (data_indep_addressing(ctx, pass, slice)) {
486
0
        init_block_value(&zero_block, 0);
487
0
        init_block_value(&input_block, 0);
488
489
0
        input_block.v[0] = pass;
490
0
        input_block.v[1] = lane;
491
0
        input_block.v[2] = slice;
492
0
        input_block.v[3] = ctx->memory_blocks;
493
0
        input_block.v[4] = ctx->passes;
494
0
        input_block.v[5] = ctx->type;
495
0
    }
496
497
0
    start_idx = 0;
498
499
    /* We've generated the first two blocks. Generate the 1st block of addrs. */
500
0
    if ((pass == 0) && (slice == 0)) {
501
0
        start_idx = 2;
502
0
        if (data_indep_addressing(ctx, pass, slice))
503
0
            next_addresses(&address_block, &input_block, &zero_block);
504
0
    }
505
506
0
    curr_offset = lane * ctx->lane_length + slice * ctx->segment_length
507
0
        + start_idx;
508
509
0
    if ((curr_offset % ctx->lane_length) == 0)
510
0
        prev_offset = curr_offset + ctx->lane_length - 1;
511
0
    else
512
0
        prev_offset = curr_offset - 1;
513
514
0
    for (j = start_idx; j < ctx->segment_length; ++j, ++curr_offset, ++prev_offset) {
515
0
        if (curr_offset % ctx->lane_length == 1)
516
0
            prev_offset = curr_offset - 1;
517
518
        /* Taking pseudo-random value from the previous block. */
519
0
        if (data_indep_addressing(ctx, pass, slice)) {
520
0
            if (j % ARGON2_ADDRESSES_IN_BLOCK == 0)
521
0
                next_addresses(&address_block, &input_block, &zero_block);
522
0
            rnd = address_block.v[j % ARGON2_ADDRESSES_IN_BLOCK];
523
0
        } else {
524
0
            rnd = ctx->memory[prev_offset].v[0];
525
0
        }
526
527
        /* Computing the lane of the reference block */
528
0
        ref_lane = ((rnd >> 32)) % ctx->lanes;
529
        /* Can not reference other lanes yet */
530
0
        if ((pass == 0) && (slice == 0))
531
0
            ref_lane = lane;
532
533
        /* Computing the number of possible reference block within the lane. */
534
0
        ref_index = index_alpha(ctx, pass, slice, j, rnd & 0xFFFFFFFF,
535
0
                                ref_lane == lane);
536
537
        /* Creating a new block */
538
0
        ref_block = ctx->memory + ctx->lane_length * ref_lane + ref_index;
539
0
        curr_block = ctx->memory + curr_offset;
540
0
        if (ARGON2_VERSION_10 == ctx->version) {
541
            /* Version 1.2.1 and earlier: overwrite, not XOR */
542
0
            fill_block(ctx->memory + prev_offset, ref_block, curr_block, 0);
543
0
            continue;
544
0
        }
545
546
0
        fill_block(ctx->memory + prev_offset, ref_block, curr_block,
547
0
                   pass == 0 ? 0 : 1);
548
0
    }
549
0
}
550
551
# if !defined(ARGON2_NO_THREADS)
552
553
static uint32_t fill_segment_thr(void *thread_data)
554
0
{
555
0
    ARGON2_THREAD_DATA *my_data;
556
557
0
    my_data = (ARGON2_THREAD_DATA *) thread_data;
558
0
    fill_segment(my_data->ctx, my_data->pos.pass, my_data->pos.lane,
559
0
                 my_data->pos.slice);
560
561
0
    return 0;
562
0
}
563
564
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx)
565
0
{
566
0
    uint32_t r, s, l, ll;
567
0
    void **t;
568
0
    ARGON2_THREAD_DATA *t_data;
569
570
0
    t = OPENSSL_calloc(ctx->lanes, sizeof(void *));
571
0
    t_data = OPENSSL_calloc(ctx->lanes, sizeof(ARGON2_THREAD_DATA));
572
573
0
    if (t == NULL || t_data == NULL)
574
0
        goto fail;
575
576
0
    for (r = 0; r < ctx->passes; ++r) {
577
0
        for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
578
0
            for (l = 0; l < ctx->lanes; ++l) {
579
0
                ARGON2_POS p;
580
0
                if (l >= ctx->threads) {
581
0
                    if (ossl_crypto_thread_join(t[l - ctx->threads], NULL) == 0)
582
0
                        goto fail;
583
0
                    if (ossl_crypto_thread_clean(t[l - ctx->threads]) == 0)
584
0
                        goto fail;
585
0
                    t[l] = NULL;
586
0
                }
587
588
0
                p.pass = r;
589
0
                p.lane = l;
590
0
                p.slice = (uint8_t)s;
591
0
                p.index = 0;
592
593
0
                t_data[l].ctx = ctx;
594
0
                memcpy(&(t_data[l].pos), &p, sizeof(ARGON2_POS));
595
0
                t[l] = ossl_crypto_thread_start(ctx->libctx, &fill_segment_thr,
596
0
                                                (void *) &t_data[l]);
597
0
                if (t[l] == NULL) {
598
0
                    for (ll = 0; ll < l; ++ll) {
599
0
                        if (ossl_crypto_thread_join(t[ll], NULL) == 0)
600
0
                            goto fail;
601
0
                        if (ossl_crypto_thread_clean(t[ll]) == 0)
602
0
                            goto fail;
603
0
                        t[ll] = NULL;
604
0
                    }
605
0
                    goto fail;
606
0
                }
607
0
            }
608
0
            for (l = ctx->lanes - ctx->threads; l < ctx->lanes; ++l) {
609
0
                if (ossl_crypto_thread_join(t[l], NULL) == 0)
610
0
                    goto fail;
611
0
                if (ossl_crypto_thread_clean(t[l]) == 0)
612
0
                    goto fail;
613
0
                t[l] = NULL;
614
0
            }
615
0
        }
616
0
    }
617
618
0
    OPENSSL_free(t_data);
619
0
    OPENSSL_free(t);
620
621
0
    return 1;
622
623
0
fail:
624
0
    if (t_data != NULL)
625
0
        OPENSSL_free(t_data);
626
0
    if (t != NULL)
627
0
        OPENSSL_free(t);
628
0
    return 0;
629
0
}
630
631
# endif /* !defined(ARGON2_NO_THREADS) */
632
633
static int fill_mem_blocks_st(KDF_ARGON2 *ctx)
634
0
{
635
0
    uint32_t r, s, l;
636
637
0
    for (r = 0; r < ctx->passes; ++r)
638
0
        for (s = 0; s < ARGON2_SYNC_POINTS; ++s)
639
0
            for (l = 0; l < ctx->lanes; ++l)
640
0
                fill_segment(ctx, r, l, s);
641
0
    return 1;
642
0
}
643
644
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx)
645
0
{
646
0
# if !defined(ARGON2_NO_THREADS)
647
0
    return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : fill_mem_blocks_mt(ctx);
648
# else
649
    return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : 0;
650
# endif
651
0
}
652
653
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx)
654
0
{
655
0
    EVP_MD_CTX *mdctx;
656
0
    uint8_t value[sizeof(uint32_t)];
657
0
    unsigned int tmp;
658
0
    uint32_t args[7];
659
660
0
    if (ctx == NULL || blockhash == NULL)
661
0
        return;
662
663
0
    args[0] = ctx->lanes;
664
0
    args[1] = ctx->outlen;
665
0
    args[2] = ctx->m_cost;
666
0
    args[3] = ctx->t_cost;
667
0
    args[4] = ctx->version;
668
0
    args[5] = (uint32_t) ctx->type;
669
0
    args[6] = ctx->pwdlen;
670
671
0
    mdctx = EVP_MD_CTX_create();
672
0
    if (mdctx == NULL || EVP_DigestInit_ex(mdctx, ctx->md, NULL) != 1)
673
0
        goto fail;
674
675
0
    for (tmp = 0; tmp < sizeof(args) / sizeof(uint32_t); ++tmp) {
676
0
        store32((uint8_t *) &value, args[tmp]);
677
0
        if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
678
0
            goto fail;
679
0
    }
680
681
0
    if (ctx->pwd != NULL) {
682
0
        if (EVP_DigestUpdate(mdctx, ctx->pwd, ctx->pwdlen) != 1)
683
0
            goto fail;
684
0
        if (ctx->early_clean) {
685
0
            OPENSSL_cleanse(ctx->pwd, ctx->pwdlen);
686
0
            ctx->pwdlen = 0;
687
0
        }
688
0
    }
689
690
0
    store32((uint8_t *) &value, ctx->saltlen);
691
692
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
693
0
        goto fail;
694
695
0
    if (ctx->salt != NULL)
696
0
        if (EVP_DigestUpdate(mdctx, ctx->salt, ctx->saltlen) != 1)
697
0
            goto fail;
698
699
0
    store32((uint8_t *) &value, ctx->secretlen);
700
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
701
0
        goto fail;
702
703
0
    if (ctx->secret != NULL) {
704
0
        if (EVP_DigestUpdate(mdctx, ctx->secret, ctx->secretlen) != 1)
705
0
            goto fail;
706
0
        if (ctx->early_clean) {
707
0
            OPENSSL_cleanse(ctx->secret, ctx->secretlen);
708
0
            ctx->secretlen = 0;
709
0
        }
710
0
    }
711
712
0
    store32((uint8_t *) &value, ctx->adlen);
713
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
714
0
        goto fail;
715
716
0
    if (ctx->ad != NULL)
717
0
        if (EVP_DigestUpdate(mdctx, ctx->ad, ctx->adlen) != 1)
718
0
            goto fail;
719
720
0
    tmp = ARGON2_PREHASH_DIGEST_LENGTH;
721
0
    if (EVP_DigestFinal_ex(mdctx, blockhash, &tmp) != 1)
722
0
        goto fail;
723
724
0
fail:
725
0
    EVP_MD_CTX_destroy(mdctx);
726
0
}
727
728
static int initialize(KDF_ARGON2 *ctx)
729
0
{
730
0
    uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
731
732
0
    if (ctx == NULL)
733
0
        return 0;
734
735
0
    if (ctx->memory_blocks * sizeof(BLOCK) / sizeof(BLOCK) != ctx->memory_blocks)
736
0
        return 0;
737
738
0
    if (ctx->type != ARGON2_D)
739
0
        ctx->memory = OPENSSL_secure_calloc(ctx->memory_blocks, sizeof(BLOCK));
740
0
    else
741
0
        ctx->memory = OPENSSL_calloc(ctx->memory_blocks, sizeof(BLOCK));
742
743
0
    if (ctx->memory == NULL) {
744
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
745
0
                       "cannot allocate required memory");
746
0
        return 0;
747
0
    }
748
749
0
    initial_hash(blockhash, ctx);
750
0
    OPENSSL_cleanse(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
751
0
                    ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH);
752
0
    fill_first_blocks(blockhash, ctx);
753
0
    OPENSSL_cleanse(blockhash, ARGON2_PREHASH_SEED_LENGTH);
754
755
0
    return 1;
756
0
}
757
758
static void finalize(const KDF_ARGON2 *ctx, void *out)
759
0
{
760
0
    BLOCK blockhash;
761
0
    uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
762
0
    uint32_t last_block_in_lane;
763
0
    uint32_t l;
764
765
0
    if (ctx == NULL)
766
0
        return;
767
768
0
    copy_block(&blockhash, ctx->memory + ctx->lane_length - 1);
769
770
    /* XOR the last blocks */
771
0
    for (l = 1; l < ctx->lanes; ++l) {
772
0
        last_block_in_lane = l * ctx->lane_length + (ctx->lane_length - 1);
773
0
        xor_block(&blockhash, ctx->memory + last_block_in_lane);
774
0
    }
775
776
    /* Hash the result */
777
0
    store_block(blockhash_bytes, &blockhash);
778
0
    blake2b_long(ctx->md, ctx->mac, out, ctx->outlen, blockhash_bytes,
779
0
                 ARGON2_BLOCK_SIZE);
780
0
    OPENSSL_cleanse(blockhash.v, ARGON2_BLOCK_SIZE);
781
0
    OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
782
783
0
    if (ctx->type != ARGON2_D)
784
0
        OPENSSL_secure_clear_free(ctx->memory,
785
0
                                  ctx->memory_blocks * sizeof(BLOCK));
786
0
    else
787
0
        OPENSSL_clear_free(ctx->memory,
788
0
                           ctx->memory_blocks * sizeof(BLOCK));
789
0
}
790
791
static int blake2b_mac(EVP_MAC *mac, void *out, size_t outlen, const void *in,
792
                       size_t inlen, const void *key, size_t keylen)
793
0
{
794
0
    int ret = 0;
795
0
    size_t par_n = 0, out_written;
796
0
    EVP_MAC_CTX *ctx = NULL;
797
0
    OSSL_PARAM par[3];
798
799
0
    if ((ctx = EVP_MAC_CTX_new(mac)) == NULL)
800
0
        goto fail;
801
802
0
    par[par_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
803
0
                                                     (void *) key, keylen);
804
0
    par[par_n++] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &outlen);
805
0
    par[par_n++] = OSSL_PARAM_construct_end();
806
807
0
    ret = EVP_MAC_CTX_set_params(ctx, par) == 1
808
0
        && EVP_MAC_init(ctx, NULL, 0, NULL) == 1
809
0
        && EVP_MAC_update(ctx, in, inlen) == 1
810
0
        && EVP_MAC_final(ctx, out, (size_t *) &out_written, outlen) == 1;
811
812
0
fail:
813
0
    EVP_MAC_CTX_free(ctx);
814
0
    return ret;
815
0
}
816
817
static int blake2b_md(EVP_MD *md, void *out, size_t outlen, const void *in,
818
                      size_t inlen)
819
0
{
820
0
    int ret = 0;
821
0
    EVP_MD_CTX *ctx = NULL;
822
0
    OSSL_PARAM par[2];
823
824
0
    if ((ctx = EVP_MD_CTX_create()) == NULL)
825
0
        return 0;
826
827
0
    par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen);
828
0
    par[1] = OSSL_PARAM_construct_end();
829
830
0
    ret = EVP_DigestInit_ex2(ctx, md, par) == 1
831
0
        && EVP_DigestUpdate(ctx, in, inlen) == 1
832
0
        && EVP_DigestFinal_ex(ctx, out, NULL) == 1;
833
834
0
    EVP_MD_CTX_free(ctx);
835
0
    return ret;
836
0
}
837
838
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
839
                   const void *in, size_t inlen, const void *key, size_t keylen)
840
0
{
841
0
    if (out == NULL || outlen == 0)
842
0
        return 0;
843
844
0
    if (key == NULL || keylen == 0)
845
0
        return blake2b_md(md, out, outlen, in, inlen);
846
847
0
    return blake2b_mac(mac, out, outlen, in, inlen, key, keylen);
848
0
}
849
850
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
851
                        size_t outlen, const void *in, size_t inlen)
852
0
{
853
0
    int ret = 0;
854
0
    EVP_MD_CTX *ctx = NULL;
855
0
    uint32_t outlen_curr;
856
0
    uint8_t outbuf[BLAKE2B_OUTBYTES];
857
0
    uint8_t inbuf[BLAKE2B_OUTBYTES];
858
0
    uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
859
0
    OSSL_PARAM par[2];
860
0
    size_t outlen_md;
861
862
0
    if (out == NULL || outlen == 0)
863
0
        return 0;
864
865
    /* Ensure little-endian byte order */
866
0
    store32(outlen_bytes, (uint32_t)outlen);
867
868
0
    if ((ctx = EVP_MD_CTX_create()) == NULL)
869
0
        return 0;
870
871
0
    outlen_md = (outlen <= BLAKE2B_OUTBYTES) ? outlen : BLAKE2B_OUTBYTES;
872
0
    par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen_md);
873
0
    par[1] = OSSL_PARAM_construct_end();
874
875
0
    ret = EVP_DigestInit_ex2(ctx, md, par) == 1
876
0
        && EVP_DigestUpdate(ctx, outlen_bytes, sizeof(outlen_bytes)) == 1
877
0
        && EVP_DigestUpdate(ctx, in, inlen) == 1
878
0
        && EVP_DigestFinal_ex(ctx, (outlen > BLAKE2B_OUTBYTES) ? outbuf : out,
879
0
                              NULL) == 1;
880
881
0
    if (ret == 0)
882
0
        goto fail;
883
884
0
    if (outlen > BLAKE2B_OUTBYTES) {
885
0
        memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
886
0
        out += BLAKE2B_OUTBYTES / 2;
887
0
        outlen_curr = (uint32_t) outlen - BLAKE2B_OUTBYTES / 2;
888
889
0
        while (outlen_curr > BLAKE2B_OUTBYTES) {
890
0
            memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
891
0
            if (blake2b(md, mac, outbuf, BLAKE2B_OUTBYTES, inbuf,
892
0
                        BLAKE2B_OUTBYTES, NULL, 0) != 1)
893
0
                goto fail;
894
0
            memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
895
0
            out += BLAKE2B_OUTBYTES / 2;
896
0
            outlen_curr -= BLAKE2B_OUTBYTES / 2;
897
0
        }
898
899
0
        memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
900
0
        if (blake2b(md, mac, outbuf, outlen_curr, inbuf, BLAKE2B_OUTBYTES,
901
0
                    NULL, 0) != 1)
902
0
            goto fail;
903
0
        memcpy(out, outbuf, outlen_curr);
904
0
    }
905
0
    ret = 1;
906
907
0
fail:
908
0
    EVP_MD_CTX_free(ctx);
909
0
    return ret;
910
0
}
911
912
static void kdf_argon2_init(KDF_ARGON2 *c, ARGON2_TYPE type)
913
0
{
914
0
    OSSL_LIB_CTX *libctx;
915
916
0
    libctx = c->libctx;
917
0
    memset(c, 0, sizeof(*c));
918
919
0
    c->libctx = libctx;
920
0
    c->outlen = ARGON2_DEFAULT_OUTLEN;
921
0
    c->t_cost = ARGON2_DEFAULT_T_COST;
922
0
    c->m_cost = ARGON2_DEFAULT_M_COST;
923
0
    c->lanes = ARGON2_DEFAULT_LANES;
924
0
    c->threads = ARGON2_DEFAULT_THREADS;
925
0
    c->version = ARGON2_DEFAULT_VERSION;
926
0
    c->type = type;
927
0
}
928
929
static void *kdf_argon2d_new(void *provctx)
930
0
{
931
0
    KDF_ARGON2 *ctx;
932
933
0
    if (!ossl_prov_is_running())
934
0
        return NULL;
935
936
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
937
0
    if (ctx == NULL) {
938
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
939
0
        return NULL;
940
0
    }
941
942
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
943
944
0
    kdf_argon2_init(ctx, ARGON2_D);
945
0
    return ctx;
946
0
}
947
948
static void *kdf_argon2i_new(void *provctx)
949
0
{
950
0
    KDF_ARGON2 *ctx;
951
952
0
    if (!ossl_prov_is_running())
953
0
        return NULL;
954
955
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
956
0
    if (ctx == NULL) {
957
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
958
0
        return NULL;
959
0
    }
960
961
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
962
963
0
    kdf_argon2_init(ctx, ARGON2_I);
964
0
    return ctx;
965
0
}
966
967
static void *kdf_argon2id_new(void *provctx)
968
0
{
969
0
    KDF_ARGON2 *ctx;
970
971
0
    if (!ossl_prov_is_running())
972
0
        return NULL;
973
974
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
975
0
    if (ctx == NULL) {
976
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
977
0
        return NULL;
978
0
    }
979
980
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
981
982
0
    kdf_argon2_init(ctx, ARGON2_ID);
983
0
    return ctx;
984
0
}
985
986
static void kdf_argon2_free(void *vctx)
987
0
{
988
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *)vctx;
989
990
0
    if (ctx == NULL)
991
0
        return;
992
993
0
    if (ctx->pwd != NULL)
994
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
995
996
0
    if (ctx->salt != NULL)
997
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
998
999
0
    if (ctx->secret != NULL)
1000
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1001
1002
0
    if (ctx->ad != NULL)
1003
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1004
1005
0
    EVP_MD_free(ctx->md);
1006
0
    EVP_MAC_free(ctx->mac);
1007
1008
0
    OPENSSL_free(ctx->propq);
1009
1010
0
    memset(ctx, 0, sizeof(*ctx));
1011
1012
0
    OPENSSL_free(ctx);
1013
0
}
1014
1015
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
1016
                             const OSSL_PARAM params[])
1017
0
{
1018
0
    KDF_ARGON2 *ctx;
1019
0
    uint32_t memory_blocks, segment_length;
1020
0
    OSSL_PARAM *size_param;
1021
1022
0
    ctx = (KDF_ARGON2 *)vctx;
1023
1024
0
    if (!ossl_prov_is_running()
1025
0
            || !argon2_set_ctx_params(vctx, params, &size_param))
1026
0
        return 0;
1027
1028
0
    if (ctx->mac == NULL)
1029
0
        ctx->mac = EVP_MAC_fetch(ctx->libctx, "blake2bmac", ctx->propq);
1030
0
    if (ctx->mac == NULL) {
1031
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MAC,
1032
0
                       "cannot fetch blake2bmac");
1033
0
        return 0;
1034
0
    }
1035
1036
0
    if (ctx->md == NULL)
1037
0
        ctx->md = EVP_MD_fetch(ctx->libctx, "blake2b512", ctx->propq);
1038
0
    if (ctx->md == NULL) {
1039
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST,
1040
0
                       "cannot fetch blake2b512");
1041
0
        return 0;
1042
0
    }
1043
1044
0
    if (ctx->salt == NULL || ctx->saltlen == 0) {
1045
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
1046
0
        return 0;
1047
0
    }
1048
1049
0
    if (outlen != ctx->outlen) {
1050
        /* User set a size that was too short so raise an error */
1051
0
        if (size_param != NULL) {
1052
0
            ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
1053
0
            return 0;
1054
0
        }
1055
0
        if (!kdf_argon2_ctx_set_out_length(ctx, (uint32_t) outlen))
1056
0
            return 0;
1057
0
    }
1058
1059
0
    switch (ctx->type) {
1060
0
    case ARGON2_D:
1061
0
    case ARGON2_I:
1062
0
    case ARGON2_ID:
1063
0
        break;
1064
0
    default:
1065
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE, "invalid Argon2 type");
1066
0
        return 0;
1067
0
    }
1068
1069
0
    if (ctx->threads > 1) {
1070
# ifdef ARGON2_NO_THREADS
1071
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1072
                       "requested %u threads, single-threaded mode supported only",
1073
                       ctx->threads);
1074
        return 0;
1075
# else
1076
0
        if (ctx->threads > ossl_get_avail_threads(ctx->libctx)) {
1077
0
            ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1078
0
                           "requested %u threads, available: %u",
1079
0
                           ctx->threads, ossl_get_avail_threads(ctx->libctx));
1080
0
            return 0;
1081
0
        }
1082
0
# endif
1083
0
        if (ctx->threads > ctx->lanes) {
1084
0
            ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1085
0
                           "requested more threads (%u) than lanes (%u)",
1086
0
                           ctx->threads, ctx->lanes);
1087
0
            return 0;
1088
0
        }
1089
0
    }
1090
1091
0
    if (ctx->m_cost < 8 * ctx->lanes) {
1092
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
1093
0
                       "m_cost must be greater or equal than 8 times the number of lanes");
1094
0
        return 0;
1095
0
    }
1096
1097
0
    memory_blocks = ctx->m_cost;
1098
0
    if (memory_blocks < 2 * ARGON2_SYNC_POINTS * ctx->lanes)
1099
0
        memory_blocks = 2 * ARGON2_SYNC_POINTS * ctx->lanes;
1100
1101
    /* Ensure that all segments have equal length */
1102
0
    segment_length = memory_blocks / (ctx->lanes * ARGON2_SYNC_POINTS);
1103
0
    memory_blocks = segment_length * (ctx->lanes * ARGON2_SYNC_POINTS);
1104
1105
0
    ctx->memory = NULL;
1106
0
    ctx->memory_blocks = memory_blocks;
1107
0
    ctx->segment_length = segment_length;
1108
0
    ctx->passes = ctx->t_cost;
1109
0
    ctx->lane_length = segment_length * ARGON2_SYNC_POINTS;
1110
1111
0
    if (initialize(ctx) != 1)
1112
0
        return 0;
1113
1114
0
    if (fill_memory_blocks(ctx) != 1)
1115
0
        return 0;
1116
1117
0
    finalize(ctx, out);
1118
1119
0
    return 1;
1120
0
}
1121
1122
static void kdf_argon2_reset(void *vctx)
1123
0
{
1124
0
    OSSL_LIB_CTX *libctx;
1125
0
    KDF_ARGON2 *ctx;
1126
0
    ARGON2_TYPE type;
1127
1128
0
    ctx = (KDF_ARGON2 *) vctx;
1129
0
    type = ctx->type;
1130
0
    libctx = ctx->libctx;
1131
1132
0
    EVP_MD_free(ctx->md);
1133
0
    EVP_MAC_free(ctx->mac);
1134
1135
0
    OPENSSL_free(ctx->propq);
1136
1137
0
    if (ctx->pwd != NULL)
1138
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1139
1140
0
    if (ctx->salt != NULL)
1141
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1142
1143
0
    if (ctx->secret != NULL)
1144
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1145
1146
0
    if (ctx->ad != NULL)
1147
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1148
1149
0
    memset(ctx, 0, sizeof(*ctx));
1150
0
    ctx->libctx = libctx;
1151
0
    kdf_argon2_init(ctx, type);
1152
0
}
1153
1154
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads)
1155
0
{
1156
0
    if (threads < ARGON2_MIN_THREADS) {
1157
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1158
0
                       "min threads: %u", ARGON2_MIN_THREADS);
1159
0
        return 0;
1160
0
    }
1161
1162
0
    if (threads > ARGON2_MAX_THREADS) {
1163
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1164
0
                       "max threads: %u", ARGON2_MAX_THREADS);
1165
0
        return 0;
1166
0
    }
1167
1168
0
    ctx->threads = threads;
1169
0
    return 1;
1170
0
}
1171
1172
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes)
1173
0
{
1174
0
    if (lanes > ARGON2_MAX_LANES) {
1175
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1176
0
                       "max lanes: %u", ARGON2_MAX_LANES);
1177
0
        return 0;
1178
0
    }
1179
1180
0
    if (lanes < ARGON2_MIN_LANES) {
1181
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1182
0
                       "min lanes: %u", ARGON2_MIN_LANES);
1183
0
        return 0;
1184
0
    }
1185
1186
0
    ctx->lanes = lanes;
1187
0
    return 1;
1188
0
}
1189
1190
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost)
1191
0
{
1192
    /* ARGON2_MAX_MEMORY == max m_cost value, so skip check  */
1193
1194
0
    if (t_cost < ARGON2_MIN_TIME) {
1195
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT,
1196
0
                       "min: %u", ARGON2_MIN_TIME);
1197
0
        return 0;
1198
0
    }
1199
1200
0
    ctx->t_cost = t_cost;
1201
0
    return 1;
1202
0
}
1203
1204
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost)
1205
0
{
1206
    /* ARGON2_MAX_MEMORY == max m_cost value, so skip check */
1207
1208
0
    if (m_cost < ARGON2_MIN_MEMORY) {
1209
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE, "min: %u",
1210
0
                       ARGON2_MIN_MEMORY);
1211
0
        return 0;
1212
0
    }
1213
1214
0
    ctx->m_cost = m_cost;
1215
0
    return 1;
1216
0
}
1217
1218
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen)
1219
0
{
1220
    /*
1221
     * ARGON2_MAX_OUT_LENGTH == max outlen value, so upper bounds checks
1222
     * are always satisfied; to suppress compiler if statement tautology
1223
     * warnings, these checks are skipped.
1224
     */
1225
1226
0
    if (outlen < ARGON2_MIN_OUT_LENGTH) {
1227
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH, "min: %u",
1228
0
                       ARGON2_MIN_OUT_LENGTH);
1229
0
        return 0;
1230
0
    }
1231
1232
0
    ctx->outlen = outlen;
1233
0
    return 1;
1234
0
}
1235
1236
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1237
0
{
1238
0
    size_t buflen;
1239
1240
0
    if (p->data == NULL)
1241
0
        return 0;
1242
1243
0
    if (ctx->secret != NULL) {
1244
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1245
0
        ctx->secret = NULL;
1246
0
        ctx->secretlen = 0U;
1247
0
    }
1248
1249
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->secret, 0, &buflen))
1250
0
        return 0;
1251
1252
0
    if (buflen > ARGON2_MAX_SECRET) {
1253
0
        OPENSSL_free(ctx->secret);
1254
0
        ctx->secret = NULL;
1255
0
        ctx->secretlen = 0U;
1256
0
        return 0;
1257
0
    }
1258
1259
0
    ctx->secretlen = (uint32_t) buflen;
1260
0
    return 1;
1261
0
}
1262
1263
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1264
0
{
1265
0
    size_t buflen;
1266
1267
0
    if (p->data == NULL)
1268
0
        return 0;
1269
1270
0
    if (ctx->pwd != NULL) {
1271
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1272
0
        ctx->pwd = NULL;
1273
0
        ctx->pwdlen = 0U;
1274
0
    }
1275
1276
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->pwd, 0, &buflen))
1277
0
        return 0;
1278
1279
0
    if (buflen > ARGON2_MAX_PWD_LENGTH) {
1280
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1281
0
                       ARGON2_MAX_PWD_LENGTH);
1282
0
        goto fail;
1283
0
    }
1284
1285
0
    ctx->pwdlen = (uint32_t) buflen;
1286
0
    return 1;
1287
1288
0
fail:
1289
0
    OPENSSL_free(ctx->pwd);
1290
0
    ctx->pwd = NULL;
1291
0
    ctx->pwdlen = 0U;
1292
0
    return 0;
1293
0
}
1294
1295
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1296
0
{
1297
0
    size_t buflen;
1298
1299
0
    if (p->data == NULL)
1300
0
        return 0;
1301
1302
0
    if (ctx->salt != NULL) {
1303
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1304
0
        ctx->salt = NULL;
1305
0
        ctx->saltlen = 0U;
1306
0
    }
1307
1308
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, &buflen))
1309
0
        return 0;
1310
1311
0
    if (buflen < ARGON2_MIN_SALT_LENGTH) {
1312
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "min: %u",
1313
0
                       ARGON2_MIN_SALT_LENGTH);
1314
0
        goto fail;
1315
0
    }
1316
1317
0
    if (buflen > ARGON2_MAX_SALT_LENGTH) {
1318
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1319
0
                       ARGON2_MAX_SALT_LENGTH);
1320
0
        goto fail;
1321
0
    }
1322
1323
0
    ctx->saltlen = (uint32_t) buflen;
1324
0
    return 1;
1325
1326
0
fail:
1327
0
    OPENSSL_free(ctx->salt);
1328
0
    ctx->salt = NULL;
1329
0
    ctx->saltlen = 0U;
1330
0
    return 0;
1331
0
}
1332
1333
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1334
0
{
1335
0
    size_t buflen;
1336
1337
0
    if (p->data == NULL)
1338
0
        return 0;
1339
1340
0
    if (ctx->ad != NULL) {
1341
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1342
0
        ctx->ad = NULL;
1343
0
        ctx->adlen = 0U;
1344
0
    }
1345
1346
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->ad, 0, &buflen))
1347
0
        return 0;
1348
1349
0
    if (buflen > ARGON2_MAX_AD_LENGTH) {
1350
0
        OPENSSL_free(ctx->ad);
1351
0
        ctx->ad = NULL;
1352
0
        ctx->adlen = 0U;
1353
0
        return 0;
1354
0
    }
1355
1356
0
    ctx->adlen = (uint32_t) buflen;
1357
0
    return 1;
1358
0
}
1359
1360
static void kdf_argon2_ctx_set_flag_early_clean(KDF_ARGON2 *ctx, uint32_t f)
1361
0
{
1362
0
    ctx->early_clean = !!(f);
1363
0
}
1364
1365
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version)
1366
0
{
1367
0
    switch (version) {
1368
0
    case ARGON2_VERSION_10:
1369
0
    case ARGON2_VERSION_13:
1370
0
        ctx->version = version;
1371
0
        return 1;
1372
0
    default:
1373
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE,
1374
0
                       "invalid Argon2 version");
1375
0
        return 0;
1376
0
    }
1377
0
}
1378
1379
static int set_property_query(KDF_ARGON2 *ctx, const char *propq)
1380
0
{
1381
0
    OPENSSL_free(ctx->propq);
1382
0
    ctx->propq = NULL;
1383
0
    if (propq != NULL) {
1384
0
        ctx->propq = OPENSSL_strdup(propq);
1385
0
        if (ctx->propq == NULL)
1386
0
            return 0;
1387
0
    }
1388
0
    EVP_MD_free(ctx->md);
1389
0
    ctx->md = NULL;
1390
0
    EVP_MAC_free(ctx->mac);
1391
0
    ctx->mac = NULL;
1392
0
    return 1;
1393
0
}
1394
1395
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
1396
#ifndef argon2_set_ctx_params_list
1397
static const OSSL_PARAM argon2_set_ctx_params_list[] = {
1398
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
1399
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
1400
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
1401
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_ARGON2_AD, NULL, 0),
1402
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_SIZE, NULL),
1403
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_ITER, NULL),
1404
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_THREADS, NULL),
1405
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_LANES, NULL),
1406
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_MEMCOST, NULL),
1407
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_EARLY_CLEAN, NULL),
1408
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_VERSION, NULL),
1409
    OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
1410
    OSSL_PARAM_END
1411
};
1412
#endif
1413
1414
#ifndef argon2_set_ctx_params_st
1415
struct argon2_set_ctx_params_st {
1416
    OSSL_PARAM *ad;
1417
    OSSL_PARAM *eclean;
1418
    OSSL_PARAM *iter;
1419
    OSSL_PARAM *lanes;
1420
    OSSL_PARAM *mem;
1421
    OSSL_PARAM *propq;
1422
    OSSL_PARAM *pw;
1423
    OSSL_PARAM *salt;
1424
    OSSL_PARAM *secret;
1425
    OSSL_PARAM *size;
1426
    OSSL_PARAM *thrds;
1427
    OSSL_PARAM *vers;
1428
};
1429
#endif
1430
1431
#ifndef argon2_set_ctx_params_decoder
1432
static int argon2_set_ctx_params_decoder
1433
    (const OSSL_PARAM *p, struct argon2_set_ctx_params_st *r)
1434
0
{
1435
0
    const char *s;
1436
1437
0
    memset(r, 0, sizeof(*r));
1438
0
    if (p != NULL)
1439
0
        for (; (s = p->key) != NULL; p++)
1440
0
            switch(s[0]) {
1441
0
            default:
1442
0
                break;
1443
0
            case 'a':
1444
0
                if (ossl_likely(strcmp("d", s + 1) == 0)) {
1445
                    /* KDF_PARAM_ARGON2_AD */
1446
0
                    if (ossl_unlikely(r->ad != NULL)) {
1447
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1448
0
                                       "param %s is repeated", s);
1449
0
                        return 0;
1450
0
                    }
1451
0
                    r->ad = (OSSL_PARAM *)p;
1452
0
                }
1453
0
                break;
1454
0
            case 'e':
1455
0
                if (ossl_likely(strcmp("arly_clean", s + 1) == 0)) {
1456
                    /* KDF_PARAM_EARLY_CLEAN */
1457
0
                    if (ossl_unlikely(r->eclean != NULL)) {
1458
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1459
0
                                       "param %s is repeated", s);
1460
0
                        return 0;
1461
0
                    }
1462
0
                    r->eclean = (OSSL_PARAM *)p;
1463
0
                }
1464
0
                break;
1465
0
            case 'i':
1466
0
                if (ossl_likely(strcmp("ter", s + 1) == 0)) {
1467
                    /* KDF_PARAM_ITER */
1468
0
                    if (ossl_unlikely(r->iter != NULL)) {
1469
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1470
0
                                       "param %s is repeated", s);
1471
0
                        return 0;
1472
0
                    }
1473
0
                    r->iter = (OSSL_PARAM *)p;
1474
0
                }
1475
0
                break;
1476
0
            case 'l':
1477
0
                if (ossl_likely(strcmp("anes", s + 1) == 0)) {
1478
                    /* KDF_PARAM_ARGON2_LANES */
1479
0
                    if (ossl_unlikely(r->lanes != NULL)) {
1480
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1481
0
                                       "param %s is repeated", s);
1482
0
                        return 0;
1483
0
                    }
1484
0
                    r->lanes = (OSSL_PARAM *)p;
1485
0
                }
1486
0
                break;
1487
0
            case 'm':
1488
0
                if (ossl_likely(strcmp("emcost", s + 1) == 0)) {
1489
                    /* KDF_PARAM_ARGON2_MEMCOST */
1490
0
                    if (ossl_unlikely(r->mem != NULL)) {
1491
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1492
0
                                       "param %s is repeated", s);
1493
0
                        return 0;
1494
0
                    }
1495
0
                    r->mem = (OSSL_PARAM *)p;
1496
0
                }
1497
0
                break;
1498
0
            case 'p':
1499
0
                switch(s[1]) {
1500
0
                default:
1501
0
                    break;
1502
0
                case 'a':
1503
0
                    if (ossl_likely(strcmp("ss", s + 2) == 0)) {
1504
                        /* KDF_PARAM_PASSWORD */
1505
0
                        if (ossl_unlikely(r->pw != NULL)) {
1506
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1507
0
                                           "param %s is repeated", s);
1508
0
                            return 0;
1509
0
                        }
1510
0
                        r->pw = (OSSL_PARAM *)p;
1511
0
                    }
1512
0
                    break;
1513
0
                case 'r':
1514
0
                    if (ossl_likely(strcmp("operties", s + 2) == 0)) {
1515
                        /* KDF_PARAM_PROPERTIES */
1516
0
                        if (ossl_unlikely(r->propq != NULL)) {
1517
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1518
0
                                           "param %s is repeated", s);
1519
0
                            return 0;
1520
0
                        }
1521
0
                        r->propq = (OSSL_PARAM *)p;
1522
0
                    }
1523
0
                }
1524
0
                break;
1525
0
            case 's':
1526
0
                switch(s[1]) {
1527
0
                default:
1528
0
                    break;
1529
0
                case 'a':
1530
0
                    if (ossl_likely(strcmp("lt", s + 2) == 0)) {
1531
                        /* KDF_PARAM_SALT */
1532
0
                        if (ossl_unlikely(r->salt != NULL)) {
1533
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1534
0
                                           "param %s is repeated", s);
1535
0
                            return 0;
1536
0
                        }
1537
0
                        r->salt = (OSSL_PARAM *)p;
1538
0
                    }
1539
0
                    break;
1540
0
                case 'e':
1541
0
                    if (ossl_likely(strcmp("cret", s + 2) == 0)) {
1542
                        /* KDF_PARAM_SECRET */
1543
0
                        if (ossl_unlikely(r->secret != NULL)) {
1544
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1545
0
                                           "param %s is repeated", s);
1546
0
                            return 0;
1547
0
                        }
1548
0
                        r->secret = (OSSL_PARAM *)p;
1549
0
                    }
1550
0
                    break;
1551
0
                case 'i':
1552
0
                    if (ossl_likely(strcmp("ze", s + 2) == 0)) {
1553
                        /* KDF_PARAM_SIZE */
1554
0
                        if (ossl_unlikely(r->size != NULL)) {
1555
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1556
0
                                           "param %s is repeated", s);
1557
0
                            return 0;
1558
0
                        }
1559
0
                        r->size = (OSSL_PARAM *)p;
1560
0
                    }
1561
0
                }
1562
0
                break;
1563
0
            case 't':
1564
0
                if (ossl_likely(strcmp("hreads", s + 1) == 0)) {
1565
                    /* KDF_PARAM_THREADS */
1566
0
                    if (ossl_unlikely(r->thrds != NULL)) {
1567
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1568
0
                                       "param %s is repeated", s);
1569
0
                        return 0;
1570
0
                    }
1571
0
                    r->thrds = (OSSL_PARAM *)p;
1572
0
                }
1573
0
                break;
1574
0
            case 'v':
1575
0
                if (ossl_likely(strcmp("ersion", s + 1) == 0)) {
1576
                    /* KDF_PARAM_ARGON2_VERSION */
1577
0
                    if (ossl_unlikely(r->vers != NULL)) {
1578
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1579
0
                                       "param %s is repeated", s);
1580
0
                        return 0;
1581
0
                    }
1582
0
                    r->vers = (OSSL_PARAM *)p;
1583
0
                }
1584
0
            }
1585
0
    return 1;
1586
0
}
1587
#endif
1588
/* End of machine generated */
1589
1590
static int argon2_set_ctx_params(KDF_ARGON2 *ctx, const OSSL_PARAM params[],
1591
                                 OSSL_PARAM **size_param_ptr)
1592
0
{
1593
0
    struct argon2_set_ctx_params_st p;
1594
0
    uint32_t u32_value;
1595
1596
0
    if (ctx == NULL || !argon2_set_ctx_params_decoder(params, &p))
1597
0
        return 0;
1598
1599
0
    if (p.pw != NULL && !kdf_argon2_ctx_set_pwd(ctx, p.pw))
1600
0
        return 0;
1601
1602
0
    if (p.salt != NULL && !kdf_argon2_ctx_set_salt(ctx, p.salt))
1603
0
        return 0;
1604
1605
0
    if (p.secret != NULL && !kdf_argon2_ctx_set_secret(ctx, p.secret))
1606
0
        return 0;
1607
1608
0
    if (p.ad != NULL && !kdf_argon2_ctx_set_ad(ctx, p.ad))
1609
0
        return 0;
1610
1611
0
    if ((*size_param_ptr = p.size) != NULL) {
1612
0
        if (!OSSL_PARAM_get_uint32(p.size, &u32_value))
1613
0
            return 0;
1614
0
        if (!kdf_argon2_ctx_set_out_length(ctx, u32_value))
1615
0
            return 0;
1616
0
    }
1617
1618
0
    if (p.iter != NULL) {
1619
0
        if (!OSSL_PARAM_get_uint32(p.iter, &u32_value))
1620
0
            return 0;
1621
0
        if (!kdf_argon2_ctx_set_t_cost(ctx, u32_value))
1622
0
            return 0;
1623
0
    }
1624
1625
0
    if (p.thrds != NULL) {
1626
0
        if (!OSSL_PARAM_get_uint32(p.thrds, &u32_value))
1627
0
            return 0;
1628
0
        if (!kdf_argon2_ctx_set_threads(ctx, u32_value))
1629
0
            return 0;
1630
0
    }
1631
1632
0
    if (p.lanes != NULL) {
1633
0
        if (!OSSL_PARAM_get_uint32(p.lanes, &u32_value))
1634
0
            return 0;
1635
0
        if (!kdf_argon2_ctx_set_lanes(ctx, u32_value))
1636
0
            return 0;
1637
0
    }
1638
1639
0
    if (p.mem != NULL) {
1640
0
        if (!OSSL_PARAM_get_uint32(p.mem, &u32_value))
1641
0
            return 0;
1642
0
        if (!kdf_argon2_ctx_set_m_cost(ctx, u32_value))
1643
0
            return 0;
1644
0
    }
1645
1646
0
    if (p.eclean != NULL) {
1647
0
        if (!OSSL_PARAM_get_uint32(p.eclean, &u32_value))
1648
0
            return 0;
1649
0
        kdf_argon2_ctx_set_flag_early_clean(ctx, u32_value);
1650
0
    }
1651
1652
0
    if (p.vers != NULL) {
1653
0
        if (!OSSL_PARAM_get_uint32(p.vers, &u32_value))
1654
0
            return 0;
1655
0
        if (!kdf_argon2_ctx_set_version(ctx, u32_value))
1656
0
            return 0;
1657
0
    }
1658
1659
0
    if (p.propq != NULL) {
1660
0
        if (p.propq->data_type != OSSL_PARAM_UTF8_STRING
1661
0
            || !set_property_query(ctx, p.propq->data))
1662
0
            return 0;
1663
0
    }
1664
1665
0
    return 1;
1666
0
}
1667
1668
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
1669
0
{
1670
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *) vctx;
1671
0
    OSSL_PARAM *size_param;
1672
1673
0
    return argon2_set_ctx_params(ctx, params, &size_param);
1674
0
}
1675
1676
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
1677
                                                        ossl_unused void *p_ctx)
1678
0
{
1679
0
    return argon2_set_ctx_params_list;
1680
0
}
1681
1682
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
1683
#ifndef argon2_get_ctx_params_list
1684
static const OSSL_PARAM argon2_get_ctx_params_list[] = {
1685
    OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
1686
    OSSL_PARAM_END
1687
};
1688
#endif
1689
1690
#ifndef argon2_get_ctx_params_st
1691
struct argon2_get_ctx_params_st {
1692
    OSSL_PARAM *size;
1693
};
1694
#endif
1695
1696
#ifndef argon2_get_ctx_params_decoder
1697
static int argon2_get_ctx_params_decoder
1698
    (const OSSL_PARAM *p, struct argon2_get_ctx_params_st *r)
1699
0
{
1700
0
    const char *s;
1701
1702
0
    memset(r, 0, sizeof(*r));
1703
0
    if (p != NULL)
1704
0
        for (; (s = p->key) != NULL; p++)
1705
0
            if (ossl_likely(strcmp("size", s + 0) == 0)) {
1706
                /* KDF_PARAM_SIZE */
1707
0
                if (ossl_unlikely(r->size != NULL)) {
1708
0
                    ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
1709
0
                                   "param %s is repeated", s);
1710
0
                    return 0;
1711
0
                }
1712
0
                r->size = (OSSL_PARAM *)p;
1713
0
            }
1714
0
    return 1;
1715
0
}
1716
#endif
1717
/* End of machine generated */
1718
1719
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[])
1720
0
{
1721
0
    struct argon2_get_ctx_params_st p;
1722
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *) vctx;
1723
1724
0
    if (ctx == NULL || !argon2_get_ctx_params_decoder(params, &p))
1725
0
        return 0;
1726
1727
0
    if (p.size != NULL && !OSSL_PARAM_set_size_t(p.size, SIZE_MAX))
1728
0
        return 0;
1729
1730
0
    return -2;
1731
0
}
1732
1733
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
1734
                                                        ossl_unused void *p_ctx)
1735
0
{
1736
0
    return argon2_get_ctx_params_list;
1737
0
}
1738
1739
const OSSL_DISPATCH ossl_kdf_argon2i_functions[] = {
1740
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2i_new },
1741
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1742
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1743
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1744
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1745
      (void(*)(void))kdf_argon2_settable_ctx_params },
1746
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1747
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1748
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1749
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1750
    OSSL_DISPATCH_END
1751
};
1752
1753
const OSSL_DISPATCH ossl_kdf_argon2d_functions[] = {
1754
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2d_new },
1755
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1756
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1757
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1758
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1759
      (void(*)(void))kdf_argon2_settable_ctx_params },
1760
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1761
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1762
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1763
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1764
    OSSL_DISPATCH_END
1765
};
1766
1767
const OSSL_DISPATCH ossl_kdf_argon2id_functions[] = {
1768
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2id_new },
1769
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1770
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1771
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1772
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1773
      (void(*)(void))kdf_argon2_settable_ctx_params },
1774
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1775
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1776
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1777
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1778
    OSSL_DISPATCH_END
1779
};
1780
1781
#endif