Coverage Report

Created: 2025-08-25 06:30

/src/openssl/providers/implementations/kdfs/scrypt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
11
#include <stdlib.h>
12
#include <stdarg.h>
13
#include <string.h>
14
#include <openssl/evp.h>
15
#include <openssl/kdf.h>
16
#include <openssl/err.h>
17
#include <openssl/core_names.h>
18
#include <openssl/proverr.h>
19
#include "crypto/evp.h"
20
#include "internal/common.h"
21
#include "internal/numbers.h"
22
#include "prov/implementations.h"
23
#include "prov/provider_ctx.h"
24
#include "prov/providercommon.h"
25
#include "prov/provider_util.h"
26
27
#ifndef OPENSSL_NO_SCRYPT
28
29
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
30
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
31
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
32
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
33
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
34
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
35
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
36
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
37
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
38
39
static int scrypt_alg(const char *pass, size_t passlen,
40
                      const unsigned char *salt, size_t saltlen,
41
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
42
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
43
                      OSSL_LIB_CTX *libctx, const char *propq);
44
45
typedef struct {
46
    OSSL_LIB_CTX *libctx;
47
    char *propq;
48
    unsigned char *pass;
49
    size_t pass_len;
50
    unsigned char *salt;
51
    size_t salt_len;
52
    uint64_t N;
53
    uint64_t r, p;
54
    uint64_t maxmem_bytes;
55
    EVP_MD *sha256;
56
} KDF_SCRYPT;
57
58
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
59
60
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
61
0
{
62
0
    KDF_SCRYPT *ctx;
63
64
0
    if (!ossl_prov_is_running())
65
0
        return NULL;
66
67
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
68
0
    if (ctx == NULL)
69
0
        return NULL;
70
0
    ctx->libctx = libctx;
71
0
    kdf_scrypt_init(ctx);
72
0
    return ctx;
73
0
}
74
75
static void *kdf_scrypt_new(void *provctx)
76
0
{
77
0
    return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
78
0
}
79
80
static void kdf_scrypt_free(void *vctx)
81
0
{
82
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
83
84
0
    if (ctx != NULL) {
85
0
        OPENSSL_free(ctx->propq);
86
0
        EVP_MD_free(ctx->sha256);
87
0
        kdf_scrypt_reset(ctx);
88
0
        OPENSSL_free(ctx);
89
0
    }
90
0
}
91
92
static void kdf_scrypt_reset(void *vctx)
93
0
{
94
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
95
96
0
    OPENSSL_free(ctx->salt);
97
0
    ctx->salt = NULL;
98
0
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
99
0
    ctx->pass = NULL;
100
0
    kdf_scrypt_init(ctx);
101
0
}
102
103
static void *kdf_scrypt_dup(void *vctx)
104
0
{
105
0
    const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
106
0
    KDF_SCRYPT *dest;
107
108
0
    dest = kdf_scrypt_new_inner(src->libctx);
109
0
    if (dest != NULL) {
110
0
        if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
111
0
            goto err;
112
0
        if (src->propq != NULL) {
113
0
            dest->propq = OPENSSL_strdup(src->propq);
114
0
            if (dest->propq == NULL)
115
0
                goto err;
116
0
        }
117
0
        if (!ossl_prov_memdup(src->salt, src->salt_len,
118
0
                              &dest->salt, &dest->salt_len)
119
0
                || !ossl_prov_memdup(src->pass, src->pass_len,
120
0
                                     &dest->pass , &dest->pass_len))
121
0
            goto err;
122
0
        dest->N = src->N;
123
0
        dest->r = src->r;
124
0
        dest->p = src->p;
125
0
        dest->maxmem_bytes = src->maxmem_bytes;
126
0
        dest->sha256 = src->sha256;
127
0
    }
128
0
    return dest;
129
130
0
 err:
131
0
    kdf_scrypt_free(dest);
132
0
    return NULL;
133
0
}
134
135
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
136
0
{
137
    /* Default values are the most conservative recommendation given in the
138
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
139
     * for this parameter choice (approx. 128 * r * N * p bytes).
140
     */
141
0
    ctx->N = 1 << 20;
142
0
    ctx->r = 8;
143
0
    ctx->p = 1;
144
0
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
145
0
}
146
147
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
148
                             const OSSL_PARAM *p)
149
0
{
150
0
    OPENSSL_clear_free(*buffer, *buflen);
151
0
    *buffer = NULL;
152
0
    *buflen = 0;
153
154
0
    if (p->data_size == 0) {
155
0
        if ((*buffer = OPENSSL_malloc(1)) == NULL)
156
0
            return 0;
157
0
    } else if (p->data != NULL) {
158
0
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
159
0
            return 0;
160
0
    }
161
0
    return 1;
162
0
}
163
164
static int set_digest(KDF_SCRYPT *ctx)
165
0
{
166
0
    EVP_MD_free(ctx->sha256);
167
0
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
168
0
    if (ctx->sha256 == NULL) {
169
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
170
0
        return 0;
171
0
    }
172
0
    return 1;
173
0
}
174
175
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
176
0
{
177
0
    OPENSSL_free(ctx->propq);
178
0
    ctx->propq = NULL;
179
0
    if (propq != NULL) {
180
0
        ctx->propq = OPENSSL_strdup(propq);
181
0
        if (ctx->propq == NULL)
182
0
            return 0;
183
0
    }
184
0
    return 1;
185
0
}
186
187
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
188
                             const OSSL_PARAM params[])
189
0
{
190
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
191
192
0
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
193
0
        return 0;
194
195
0
    if (ctx->pass == NULL) {
196
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
197
0
        return 0;
198
0
    }
199
200
0
    if (ctx->salt == NULL) {
201
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
202
0
        return 0;
203
0
    }
204
205
0
    if (ctx->sha256 == NULL && !set_digest(ctx))
206
0
        return 0;
207
208
0
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
209
0
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
210
0
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
211
0
                      ctx->libctx, ctx->propq);
212
0
}
213
214
static int is_power_of_two(uint64_t value)
215
0
{
216
0
    return (value != 0) && ((value & (value - 1)) == 0);
217
0
}
218
219
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
220
#ifndef scrypt_set_ctx_params_list
221
static const OSSL_PARAM scrypt_set_ctx_params_list[] = {
222
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
223
    OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
224
    OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
225
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
226
    OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
227
    OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
228
    OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
229
    OSSL_PARAM_END
230
};
231
#endif
232
233
#ifndef scrypt_set_ctx_params_st
234
struct scrypt_set_ctx_params_st {
235
    OSSL_PARAM *maxmem;
236
    OSSL_PARAM *n;
237
    OSSL_PARAM *p;
238
    OSSL_PARAM *propq;
239
    OSSL_PARAM *pw;
240
    OSSL_PARAM *r;
241
    OSSL_PARAM *salt;
242
};
243
#endif
244
245
#ifndef scrypt_set_ctx_params_decoder
246
static int scrypt_set_ctx_params_decoder
247
    (const OSSL_PARAM *p, struct scrypt_set_ctx_params_st *r)
248
0
{
249
0
    const char *s;
250
251
0
    memset(r, 0, sizeof(*r));
252
0
    if (p != NULL)
253
0
        for (; (s = p->key) != NULL; p++)
254
0
            switch(s[0]) {
255
0
            default:
256
0
                break;
257
0
            case 'm':
258
0
                if (ossl_likely(strcmp("axmem_bytes", s + 1) == 0)) {
259
                    /* KDF_PARAM_SCRYPT_MAXMEM */
260
0
                    if (ossl_unlikely(r->maxmem != NULL)) {
261
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
262
0
                                       "param %s is repeated", s);
263
0
                        return 0;
264
0
                    }
265
0
                    r->maxmem = (OSSL_PARAM *)p;
266
0
                }
267
0
                break;
268
0
            case 'n':
269
0
                switch(s[1]) {
270
0
                default:
271
0
                    break;
272
0
                case '\0':
273
0
                    if (ossl_unlikely(r->n != NULL)) {
274
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
275
0
                                       "param %s is repeated", s);
276
0
                        return 0;
277
0
                    }
278
0
                    r->n = (OSSL_PARAM *)p;
279
0
                }
280
0
                break;
281
0
            case 'p':
282
0
                switch(s[1]) {
283
0
                default:
284
0
                    break;
285
0
                case 'a':
286
0
                    if (ossl_likely(strcmp("ss", s + 2) == 0)) {
287
                        /* KDF_PARAM_PASSWORD */
288
0
                        if (ossl_unlikely(r->pw != NULL)) {
289
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
290
0
                                           "param %s is repeated", s);
291
0
                            return 0;
292
0
                        }
293
0
                        r->pw = (OSSL_PARAM *)p;
294
0
                    }
295
0
                    break;
296
0
                case 'r':
297
0
                    if (ossl_likely(strcmp("operties", s + 2) == 0)) {
298
                        /* KDF_PARAM_PROPERTIES */
299
0
                        if (ossl_unlikely(r->propq != NULL)) {
300
0
                            ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
301
0
                                           "param %s is repeated", s);
302
0
                            return 0;
303
0
                        }
304
0
                        r->propq = (OSSL_PARAM *)p;
305
0
                    }
306
0
                    break;
307
0
                case '\0':
308
0
                    if (ossl_unlikely(r->p != NULL)) {
309
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
310
0
                                       "param %s is repeated", s);
311
0
                        return 0;
312
0
                    }
313
0
                    r->p = (OSSL_PARAM *)p;
314
0
                }
315
0
                break;
316
0
            case 'r':
317
0
                switch(s[1]) {
318
0
                default:
319
0
                    break;
320
0
                case '\0':
321
0
                    if (ossl_unlikely(r->r != NULL)) {
322
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
323
0
                                       "param %s is repeated", s);
324
0
                        return 0;
325
0
                    }
326
0
                    r->r = (OSSL_PARAM *)p;
327
0
                }
328
0
                break;
329
0
            case 's':
330
0
                if (ossl_likely(strcmp("alt", s + 1) == 0)) {
331
                    /* KDF_PARAM_SALT */
332
0
                    if (ossl_unlikely(r->salt != NULL)) {
333
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
334
0
                                       "param %s is repeated", s);
335
0
                        return 0;
336
0
                    }
337
0
                    r->salt = (OSSL_PARAM *)p;
338
0
                }
339
0
            }
340
0
    return 1;
341
0
}
342
#endif
343
/* End of machine generated */
344
345
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
346
0
{
347
0
    struct scrypt_set_ctx_params_st p;
348
0
    KDF_SCRYPT *ctx = vctx;
349
0
    uint64_t u64_value;
350
351
0
    if (ctx == NULL || !scrypt_set_ctx_params_decoder(params, &p))
352
0
        return 0;
353
354
0
    if (p.pw != NULL && !scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p.pw))
355
0
        return 0;
356
357
0
    if (p.salt != NULL && !scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p.salt))
358
0
        return 0;
359
360
0
    if (p.n != NULL) {
361
0
        if (!OSSL_PARAM_get_uint64(p.n, &u64_value)
362
0
            || u64_value <= 1
363
0
            || !is_power_of_two(u64_value))
364
0
            return 0;
365
0
        ctx->N = u64_value;
366
0
    }
367
368
0
    if (p.r != NULL) {
369
0
        if (!OSSL_PARAM_get_uint64(p.r, &u64_value) || u64_value < 1)
370
0
            return 0;
371
0
        ctx->r = u64_value;
372
0
    }
373
374
0
    if (p.p != NULL) {
375
0
        if (!OSSL_PARAM_get_uint64(p.p, &u64_value) || u64_value < 1)
376
0
            return 0;
377
0
        ctx->p = u64_value;
378
0
    }
379
380
0
    if (p.maxmem != NULL) {
381
0
        if (!OSSL_PARAM_get_uint64(p.maxmem, &u64_value) || u64_value < 1)
382
0
            return 0;
383
0
        ctx->maxmem_bytes = u64_value;
384
0
    }
385
386
0
    if (p.propq != NULL) {
387
0
        if (p.propq->data_type != OSSL_PARAM_UTF8_STRING
388
0
            || !set_property_query(ctx, p.propq->data)
389
0
            || !set_digest(ctx))
390
0
            return 0;
391
0
    }
392
0
    return 1;
393
0
}
394
395
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
396
                                                        ossl_unused void *p_ctx)
397
0
{
398
0
    return scrypt_set_ctx_params_list;
399
0
}
400
401
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
402
#ifndef scrypt_get_ctx_params_list
403
static const OSSL_PARAM scrypt_get_ctx_params_list[] = {
404
    OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
405
    OSSL_PARAM_END
406
};
407
#endif
408
409
#ifndef scrypt_get_ctx_params_st
410
struct scrypt_get_ctx_params_st {
411
    OSSL_PARAM *size;
412
};
413
#endif
414
415
#ifndef scrypt_get_ctx_params_decoder
416
static int scrypt_get_ctx_params_decoder
417
    (const OSSL_PARAM *p, struct scrypt_get_ctx_params_st *r)
418
0
{
419
0
    const char *s;
420
421
0
    memset(r, 0, sizeof(*r));
422
0
    if (p != NULL)
423
0
        for (; (s = p->key) != NULL; p++)
424
0
            if (ossl_likely(strcmp("size", s + 0) == 0)) {
425
                /* KDF_PARAM_SIZE */
426
0
                if (ossl_unlikely(r->size != NULL)) {
427
0
                    ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
428
0
                                   "param %s is repeated", s);
429
0
                    return 0;
430
0
                }
431
0
                r->size = (OSSL_PARAM *)p;
432
0
            }
433
0
    return 1;
434
0
}
435
#endif
436
/* End of machine generated */
437
438
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
439
0
{
440
0
    struct scrypt_get_ctx_params_st p;
441
0
    KDF_SCRYPT *ctx = vctx;
442
443
0
    if (ctx == NULL || !scrypt_get_ctx_params_decoder(params, &p))
444
0
        return 0;
445
446
0
    if (p.size != NULL && !OSSL_PARAM_set_size_t(p.size, SIZE_MAX))
447
0
            return 0;
448
0
    return 1;
449
0
}
450
451
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
452
                                                        ossl_unused void *p_ctx)
453
0
{
454
0
    return scrypt_get_ctx_params_list;
455
0
}
456
457
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
458
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
459
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
460
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
461
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
462
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
463
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
464
      (void(*)(void))kdf_scrypt_settable_ctx_params },
465
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
466
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
467
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
468
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
469
    OSSL_DISPATCH_END
470
};
471
472
0
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
473
static void salsa208_word_specification(uint32_t inout[16])
474
0
{
475
0
    int i;
476
0
    uint32_t x[16];
477
478
0
    memcpy(x, inout, sizeof(x));
479
0
    for (i = 8; i > 0; i -= 2) {
480
0
        x[4] ^= R(x[0] + x[12], 7);
481
0
        x[8] ^= R(x[4] + x[0], 9);
482
0
        x[12] ^= R(x[8] + x[4], 13);
483
0
        x[0] ^= R(x[12] + x[8], 18);
484
0
        x[9] ^= R(x[5] + x[1], 7);
485
0
        x[13] ^= R(x[9] + x[5], 9);
486
0
        x[1] ^= R(x[13] + x[9], 13);
487
0
        x[5] ^= R(x[1] + x[13], 18);
488
0
        x[14] ^= R(x[10] + x[6], 7);
489
0
        x[2] ^= R(x[14] + x[10], 9);
490
0
        x[6] ^= R(x[2] + x[14], 13);
491
0
        x[10] ^= R(x[6] + x[2], 18);
492
0
        x[3] ^= R(x[15] + x[11], 7);
493
0
        x[7] ^= R(x[3] + x[15], 9);
494
0
        x[11] ^= R(x[7] + x[3], 13);
495
0
        x[15] ^= R(x[11] + x[7], 18);
496
0
        x[1] ^= R(x[0] + x[3], 7);
497
0
        x[2] ^= R(x[1] + x[0], 9);
498
0
        x[3] ^= R(x[2] + x[1], 13);
499
0
        x[0] ^= R(x[3] + x[2], 18);
500
0
        x[6] ^= R(x[5] + x[4], 7);
501
0
        x[7] ^= R(x[6] + x[5], 9);
502
0
        x[4] ^= R(x[7] + x[6], 13);
503
0
        x[5] ^= R(x[4] + x[7], 18);
504
0
        x[11] ^= R(x[10] + x[9], 7);
505
0
        x[8] ^= R(x[11] + x[10], 9);
506
0
        x[9] ^= R(x[8] + x[11], 13);
507
0
        x[10] ^= R(x[9] + x[8], 18);
508
0
        x[12] ^= R(x[15] + x[14], 7);
509
0
        x[13] ^= R(x[12] + x[15], 9);
510
0
        x[14] ^= R(x[13] + x[12], 13);
511
0
        x[15] ^= R(x[14] + x[13], 18);
512
0
    }
513
0
    for (i = 0; i < 16; ++i)
514
0
        inout[i] += x[i];
515
0
    OPENSSL_cleanse(x, sizeof(x));
516
0
}
517
518
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
519
0
{
520
0
    uint64_t i, j;
521
0
    uint32_t X[16], *pB;
522
523
0
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
524
0
    pB = B;
525
0
    for (i = 0; i < r * 2; i++) {
526
0
        for (j = 0; j < 16; j++)
527
0
            X[j] ^= *pB++;
528
0
        salsa208_word_specification(X);
529
0
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
530
0
    }
531
0
    OPENSSL_cleanse(X, sizeof(X));
532
0
}
533
534
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
535
                        uint32_t *X, uint32_t *T, uint32_t *V)
536
0
{
537
0
    unsigned char *pB;
538
0
    uint32_t *pV;
539
0
    uint64_t i, k;
540
541
    /* Convert from little endian input */
542
0
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
543
0
        *pV = *pB++;
544
0
        *pV |= *pB++ << 8;
545
0
        *pV |= *pB++ << 16;
546
0
        *pV |= (uint32_t)*pB++ << 24;
547
0
    }
548
549
0
    for (i = 1; i < N; i++, pV += 32 * r)
550
0
        scryptBlockMix(pV, pV - 32 * r, r);
551
552
0
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
553
554
0
    for (i = 0; i < N; i++) {
555
0
        uint32_t j;
556
0
        j = X[16 * (2 * r - 1)] % N;
557
0
        pV = V + 32 * r * j;
558
0
        for (k = 0; k < 32 * r; k++)
559
0
            T[k] = X[k] ^ *pV++;
560
0
        scryptBlockMix(X, T, r);
561
0
    }
562
    /* Convert output to little endian */
563
0
    for (i = 0, pB = B; i < 32 * r; i++) {
564
0
        uint32_t xtmp = X[i];
565
0
        *pB++ = xtmp & 0xff;
566
0
        *pB++ = (xtmp >> 8) & 0xff;
567
0
        *pB++ = (xtmp >> 16) & 0xff;
568
0
        *pB++ = (xtmp >> 24) & 0xff;
569
0
    }
570
0
}
571
572
#ifndef SIZE_MAX
573
# define SIZE_MAX    ((size_t)-1)
574
#endif
575
576
/*
577
 * Maximum power of two that will fit in uint64_t: this should work on
578
 * most (all?) platforms.
579
 */
580
581
0
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
582
583
/*
584
 * Maximum value of p * r:
585
 * p <= ((2^32-1) * hLen) / MFLen =>
586
 * p <= ((2^32-1) * 32) / (128 * r) =>
587
 * p * r <= (2^30-1)
588
 */
589
590
0
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
591
592
static int scrypt_alg(const char *pass, size_t passlen,
593
                      const unsigned char *salt, size_t saltlen,
594
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
595
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
596
                      OSSL_LIB_CTX *libctx, const char *propq)
597
0
{
598
0
    int rv = 0;
599
0
    unsigned char *B;
600
0
    uint32_t *X, *V, *T;
601
0
    uint64_t i, Blen, Vlen;
602
603
    /* Sanity check parameters */
604
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
605
0
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
606
0
        return 0;
607
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
608
0
    if (p > SCRYPT_PR_MAX / r) {
609
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
610
0
        return 0;
611
0
    }
612
613
    /*
614
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
615
     * automatically satisfied since N <= UINT64_MAX.
616
     */
617
618
0
    if (16 * r <= LOG2_UINT64_MAX) {
619
0
        if (N >= (((uint64_t)1) << (16 * r))) {
620
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
621
0
            return 0;
622
0
        }
623
0
    }
624
625
    /* Memory checks: check total allocated buffer size fits in uint64_t */
626
627
    /*
628
     * B size in section 5 step 1.S
629
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
630
     * p * r < SCRYPT_PR_MAX
631
     */
632
0
    Blen = p * 128 * r;
633
    /*
634
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
635
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
636
     */
637
0
    if (Blen > INT_MAX) {
638
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
639
0
        return 0;
640
0
    }
641
642
    /*
643
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
644
     * This is combined size V, X and T (section 4)
645
     */
646
0
    i = UINT64_MAX / (32 * sizeof(uint32_t));
647
0
    if (N + 2 > i / r) {
648
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
649
0
        return 0;
650
0
    }
651
0
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
652
653
    /* check total allocated size fits in uint64_t */
654
0
    if (Blen > UINT64_MAX - Vlen) {
655
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
656
0
        return 0;
657
0
    }
658
659
    /* Check that the maximum memory doesn't exceed a size_t limits */
660
0
    if (maxmem > SIZE_MAX)
661
0
        maxmem = SIZE_MAX;
662
663
0
    if (Blen + Vlen > maxmem) {
664
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
665
0
        return 0;
666
0
    }
667
668
    /* If no key return to indicate parameters are OK */
669
0
    if (key == NULL)
670
0
        return 1;
671
672
0
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
673
0
    if (B == NULL)
674
0
        return 0;
675
0
    X = (uint32_t *)(B + Blen);
676
0
    T = X + 32 * r;
677
0
    V = T + 32 * r;
678
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, (int)passlen, salt, (int)saltlen, 1,
679
0
                                  sha256, (int)Blen, B, libctx, propq) == 0)
680
0
        goto err;
681
682
0
    for (i = 0; i < p; i++)
683
0
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
684
685
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, (int)passlen, B, (int)Blen, 1, sha256,
686
0
                                  (int)keylen, key, libctx, propq) == 0)
687
0
        goto err;
688
0
    rv = 1;
689
0
 err:
690
0
    if (rv == 0)
691
0
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
692
693
0
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
694
0
    return rv;
695
0
}
696
697
#endif