Coverage Report

Created: 2025-08-25 06:30

/src/openssl/providers/implementations/kem/ecx_kem.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
11
/*
12
 * The following implementation is part of RFC 9180 related to DHKEM using
13
 * ECX keys (i.e. X25519 and X448)
14
 * References to Sections in the comments below refer to RFC 9180.
15
 */
16
17
#include "internal/deprecated.h"
18
19
#include <string.h>
20
#include <openssl/crypto.h>
21
#include <openssl/evp.h>
22
#include <openssl/core_dispatch.h>
23
#include <openssl/core_names.h>
24
#include <openssl/params.h>
25
#include <openssl/kdf.h>
26
#include <openssl/err.h>
27
#include <openssl/sha.h>
28
#include <openssl/rand.h>
29
#include <openssl/proverr.h>
30
#include "internal/cryptlib.h"
31
#include "prov/provider_ctx.h"
32
#include "prov/implementations.h"
33
#include "prov/securitycheck.h"
34
#include "prov/providercommon.h"
35
#include "prov/ecx.h"
36
#include "crypto/ecx.h"
37
#include <openssl/hpke.h>
38
#include "internal/hpke_util.h"
39
#include "prov/eckem.h"
40
41
#define MAX_ECX_KEYLEN X448_KEYLEN
42
43
/* KEM identifiers from Section 7.1 "Table 2 KEM IDs" */
44
#define KEMID_X25519_HKDF_SHA256 0x20
45
#define KEMID_X448_HKDF_SHA512   0x21
46
47
/* ASCII: "KEM", in hex for EBCDIC compatibility */
48
static const char LABEL_KEM[] = "\x4b\x45\x4d";
49
50
typedef struct {
51
    ECX_KEY *recipient_key;
52
    ECX_KEY *sender_authkey;
53
    OSSL_LIB_CTX *libctx;
54
    char *propq;
55
    unsigned int mode;
56
    unsigned int op;
57
    unsigned char *ikm;
58
    size_t ikmlen;
59
    const char *kdfname;
60
    const OSSL_HPKE_KEM_INFO *info;
61
} PROV_ECX_CTX;
62
63
static OSSL_FUNC_kem_newctx_fn ecxkem_newctx;
64
static OSSL_FUNC_kem_encapsulate_init_fn ecxkem_encapsulate_init;
65
static OSSL_FUNC_kem_encapsulate_fn ecxkem_encapsulate;
66
static OSSL_FUNC_kem_decapsulate_init_fn ecxkem_decapsulate_init;
67
static OSSL_FUNC_kem_decapsulate_fn ecxkem_decapsulate;
68
static OSSL_FUNC_kem_freectx_fn ecxkem_freectx;
69
static OSSL_FUNC_kem_set_ctx_params_fn ecxkem_set_ctx_params;
70
static OSSL_FUNC_kem_auth_encapsulate_init_fn ecxkem_auth_encapsulate_init;
71
static OSSL_FUNC_kem_auth_decapsulate_init_fn ecxkem_auth_decapsulate_init;
72
73
/*
74
 * Set KEM values as specified in Section 7.1 "Table 2 KEM IDs"
75
 * There is only one set of values for X25519 and X448.
76
 * Additional values could be set via set_params if required.
77
 */
78
static const OSSL_HPKE_KEM_INFO *get_kem_info(ECX_KEY *ecx)
79
0
{
80
0
    const char *name = NULL;
81
82
0
    if (ecx->type == ECX_KEY_TYPE_X25519)
83
0
        name = SN_X25519;
84
0
    else
85
0
        name = SN_X448;
86
0
    return ossl_HPKE_KEM_INFO_find_curve(name);
87
0
}
88
89
/*
90
 * Set the recipient key, and free any existing key.
91
 * ecx can be NULL. The ecx key may have only a private or public component.
92
 */
93
static int recipient_key_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
94
0
{
95
0
    ossl_ecx_key_free(ctx->recipient_key);
96
0
    ctx->recipient_key = NULL;
97
0
    if (ecx != NULL) {
98
0
        ctx->info = get_kem_info(ecx);
99
0
        if (ctx->info == NULL)
100
0
            return -2;
101
0
        ctx->kdfname = "HKDF";
102
0
        if (!ossl_ecx_key_up_ref(ecx))
103
0
            return 0;
104
0
        ctx->recipient_key = ecx;
105
0
    }
106
0
    return 1;
107
0
}
108
109
/*
110
 * Set the senders auth key, and free any existing auth key.
111
 * ecx can be NULL.
112
 */
113
static int sender_authkey_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
114
0
{
115
0
    ossl_ecx_key_free(ctx->sender_authkey);
116
0
    ctx->sender_authkey = NULL;
117
118
0
    if (ecx != NULL) {
119
0
        if (!ossl_ecx_key_up_ref(ecx))
120
0
            return 0;
121
0
        ctx->sender_authkey = ecx;
122
0
    }
123
0
    return 1;
124
0
}
125
126
/*
127
 * Serialize a public key from byte array's for the encoded public keys.
128
 * ctx is used to access the key type.
129
 * Returns: The created ECX_KEY or NULL on error.
130
 */
131
static ECX_KEY *ecxkey_pubfromdata(PROV_ECX_CTX *ctx,
132
                                   const unsigned char *pubbuf, size_t pubbuflen)
133
0
{
134
0
    ECX_KEY *ecx = NULL;
135
0
    OSSL_PARAM pub;
136
137
0
    pub = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
138
0
                                            (char *)pubbuf, pubbuflen);
139
140
0
    ecx = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 1, ctx->propq);
141
0
    if (ecx == NULL)
142
0
        return NULL;
143
0
    if (ossl_ecx_key_fromdata(ecx, &pub, NULL, 0) <= 0) {
144
0
        ossl_ecx_key_free(ecx);
145
0
        ecx = NULL;
146
0
    }
147
0
    return ecx;
148
0
}
149
150
static unsigned char *ecx_pubkey(ECX_KEY *ecx)
151
0
{
152
0
    if (ecx == NULL || !ecx->haspubkey) {
153
0
        ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
154
0
        return 0;
155
0
    }
156
0
    return ecx->pubkey;
157
0
}
158
159
static void *ecxkem_newctx(void *provctx)
160
0
{
161
0
    PROV_ECX_CTX *ctx =  OPENSSL_zalloc(sizeof(PROV_ECX_CTX));
162
163
0
    if (ctx == NULL)
164
0
        return NULL;
165
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
166
0
    ctx->mode = KEM_MODE_DHKEM;
167
168
0
    return ctx;
169
0
}
170
171
static void ecxkem_freectx(void *vectx)
172
0
{
173
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vectx;
174
175
0
    OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
176
0
    recipient_key_set(ctx, NULL);
177
0
    sender_authkey_set(ctx, NULL);
178
0
    OPENSSL_free(ctx);
179
0
}
180
181
static int ecx_match_params(const ECX_KEY *key1, const ECX_KEY *key2)
182
0
{
183
0
    return (key1->type == key2->type && key1->keylen == key2->keylen);
184
0
}
185
186
static int ecx_key_check(const ECX_KEY *ecx, int requires_privatekey)
187
0
{
188
0
    if (ecx->privkey == NULL)
189
0
        return (requires_privatekey == 0);
190
0
    return 1;
191
0
}
192
193
static int ecxkem_init(void *vecxctx, int operation, void *vecx, void *vauth,
194
                       ossl_unused const OSSL_PARAM params[])
195
0
{
196
0
    int rv;
197
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vecxctx;
198
0
    ECX_KEY *ecx = vecx;
199
0
    ECX_KEY *auth = vauth;
200
201
0
    if (!ossl_prov_is_running())
202
0
        return 0;
203
204
0
    if (!ecx_key_check(ecx, operation == EVP_PKEY_OP_DECAPSULATE))
205
0
        return 0;
206
0
    rv = recipient_key_set(ctx, ecx);
207
0
    if (rv <= 0)
208
0
        return rv;
209
210
0
    if (auth != NULL) {
211
0
        if (!ecx_match_params(auth, ctx->recipient_key)
212
0
                || !ecx_key_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE)
213
0
                || !sender_authkey_set(ctx, auth))
214
0
            return 0;
215
0
    }
216
217
0
    ctx->op = operation;
218
0
    return ecxkem_set_ctx_params(vecxctx, params);
219
0
}
220
221
static int ecxkem_encapsulate_init(void *vecxctx, void *vecx,
222
                                   const OSSL_PARAM params[])
223
0
{
224
0
    return ecxkem_init(vecxctx, EVP_PKEY_OP_ENCAPSULATE, vecx, NULL, params);
225
0
}
226
227
static int ecxkem_decapsulate_init(void *vecxctx, void *vecx,
228
                                   const OSSL_PARAM params[])
229
0
{
230
0
    return ecxkem_init(vecxctx, EVP_PKEY_OP_DECAPSULATE, vecx, NULL, params);
231
0
}
232
233
static int ecxkem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv,
234
                                        const OSSL_PARAM params[])
235
0
{
236
0
    return ecxkem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params);
237
0
}
238
239
static int ecxkem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub,
240
                                        const OSSL_PARAM params[])
241
0
{
242
0
    return ecxkem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params);
243
0
}
244
245
/* Machine generated by util/perl/OpenSSL/paramnames.pm */
246
#ifndef ecxkem_set_ctx_params_list
247
static const OSSL_PARAM ecxkem_set_ctx_params_list[] = {
248
    OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
249
    OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0),
250
    OSSL_PARAM_END
251
};
252
#endif
253
254
#ifndef ecxkem_set_ctx_params_st
255
struct ecxkem_set_ctx_params_st {
256
    OSSL_PARAM *ikme;
257
    OSSL_PARAM *op;
258
};
259
#endif
260
261
#ifndef ecxkem_set_ctx_params_decoder
262
static int ecxkem_set_ctx_params_decoder
263
    (const OSSL_PARAM *p, struct ecxkem_set_ctx_params_st *r)
264
0
{
265
0
    const char *s;
266
267
0
    memset(r, 0, sizeof(*r));
268
0
    if (p != NULL)
269
0
        for (; (s = p->key) != NULL; p++)
270
0
            switch(s[0]) {
271
0
            default:
272
0
                break;
273
0
            case 'i':
274
0
                if (ossl_likely(strcmp("kme", s + 1) == 0)) {
275
                    /* KEM_PARAM_IKME */
276
0
                    if (ossl_unlikely(r->ikme != NULL)) {
277
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
278
0
                                       "param %s is repeated", s);
279
0
                        return 0;
280
0
                    }
281
0
                    r->ikme = (OSSL_PARAM *)p;
282
0
                }
283
0
                break;
284
0
            case 'o':
285
0
                if (ossl_likely(strcmp("peration", s + 1) == 0)) {
286
                    /* KEM_PARAM_OPERATION */
287
0
                    if (ossl_unlikely(r->op != NULL)) {
288
0
                        ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER,
289
0
                                       "param %s is repeated", s);
290
0
                        return 0;
291
0
                    }
292
0
                    r->op = (OSSL_PARAM *)p;
293
0
                }
294
0
            }
295
0
    return 1;
296
0
}
297
#endif
298
/* End of machine generated */
299
300
static int ecxkem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
301
0
{
302
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
303
0
    struct ecxkem_set_ctx_params_st p;
304
0
    int mode;
305
306
0
    if (ctx == NULL || !ecxkem_set_ctx_params_decoder(params, &p))
307
0
        return 0;
308
309
0
    if (p.ikme != NULL) {
310
0
        void *tmp = NULL;
311
0
        size_t tmplen = 0;
312
313
0
        if (p.ikme->data != NULL && p.ikme->data_size != 0) {
314
0
            if (!OSSL_PARAM_get_octet_string(p.ikme, &tmp, 0, &tmplen))
315
0
                return 0;
316
0
        }
317
0
        OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
318
0
        ctx->ikm = tmp;
319
0
        ctx->ikmlen = tmplen;
320
0
    }
321
322
0
    if (p.op != NULL) {
323
0
        if (p.op->data_type != OSSL_PARAM_UTF8_STRING)
324
0
            return 0;
325
0
        mode = ossl_eckem_modename2id(p.op->data);
326
0
        if (mode == KEM_MODE_UNDEFINED)
327
0
            return 0;
328
0
        ctx->mode = mode;
329
0
    }
330
0
    return 1;
331
0
}
332
333
static const OSSL_PARAM *ecxkem_settable_ctx_params(ossl_unused void *vctx,
334
                                                   ossl_unused void *provctx)
335
0
{
336
0
    return ecxkem_set_ctx_params_list;
337
0
}
338
339
/*
340
 * See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand
341
 */
342
static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx,
343
                                    unsigned char *okm, size_t okmlen,
344
                                    uint16_t kemid,
345
                                    const unsigned char *dhkm, size_t dhkmlen,
346
                                    const unsigned char *kemctx,
347
                                    size_t kemctxlen)
348
0
{
349
0
    uint8_t suiteid[2];
350
0
    uint8_t prk[EVP_MAX_MD_SIZE];
351
0
    size_t prklen = okmlen; /* Nh */
352
0
    int ret;
353
354
0
    if (prklen > sizeof(prk))
355
0
        return 0;
356
357
0
    suiteid[0] = (kemid >> 8) &0xff;
358
0
    suiteid[1] = kemid & 0xff;
359
360
0
    ret = ossl_hpke_labeled_extract(kctx, prk, prklen,
361
0
                                    NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
362
0
                                    OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen)
363
0
          && ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen,
364
0
                                      LABEL_KEM, suiteid, sizeof(suiteid),
365
0
                                      OSSL_DHKEM_LABEL_SHARED_SECRET,
366
0
                                      kemctx, kemctxlen);
367
0
    OPENSSL_cleanse(prk, prklen);
368
0
    return ret;
369
0
}
370
371
/*
372
 * See Section 7.1.3 DeriveKeyPair.
373
 *
374
 * This function is used by ecx keygen.
375
 * (For this reason it does not use any of the state stored in PROV_ECX_CTX).
376
 *
377
 * Params:
378
 *     ecx An initialized ecx key.
379
 *     privout The buffer to store the generated private key into (it is assumed
380
 *             this is of length ecx->keylen).
381
 *     ikm buffer containing the input key material (seed). This must be non NULL.
382
 *     ikmlen size of the ikm buffer in bytes
383
 * Returns:
384
 *     1 if successful or 0 otherwise.
385
 */
386
int ossl_ecx_dhkem_derive_private(ECX_KEY *ecx, unsigned char *privout,
387
                                  const unsigned char *ikm, size_t ikmlen)
388
0
{
389
0
    int ret = 0;
390
0
    EVP_KDF_CTX *kdfctx = NULL;
391
0
    unsigned char prk[EVP_MAX_MD_SIZE];
392
0
    uint8_t suiteid[2];
393
0
    const OSSL_HPKE_KEM_INFO *info = get_kem_info(ecx);
394
395
    /* ikmlen should have a length of at least Nsk */
396
0
    if (ikmlen < info->Nsk) {
397
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH,
398
0
                       "ikm length is :%zu, should be at least %zu",
399
0
                       ikmlen, info->Nsk);
400
0
        goto err;
401
0
    }
402
403
0
    kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname, ecx->libctx, ecx->propq);
404
0
    if (kdfctx == NULL)
405
0
        return 0;
406
407
0
    suiteid[0] = info->kem_id / 256;
408
0
    suiteid[1] = info->kem_id % 256;
409
410
0
    if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret,
411
0
                                   NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
412
0
                                   OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen))
413
0
        goto err;
414
415
0
    if (!ossl_hpke_labeled_expand(kdfctx, privout, info->Nsk, prk, info->Nsecret,
416
0
                                  LABEL_KEM, suiteid, sizeof(suiteid),
417
0
                                  OSSL_DHKEM_LABEL_SK, NULL, 0))
418
0
        goto err;
419
0
    ret = 1;
420
0
err:
421
0
    OPENSSL_cleanse(prk, sizeof(prk));
422
0
    EVP_KDF_CTX_free(kdfctx);
423
0
    return ret;
424
0
}
425
426
/*
427
 * Do a keygen operation without having to use EVP_PKEY.
428
 * Params:
429
 *     ctx Context object
430
 *     ikm The seed material - if this is NULL, then a random seed is used.
431
 * Returns:
432
 *     The generated ECX key, or NULL on failure.
433
 */
434
static ECX_KEY *derivekey(PROV_ECX_CTX *ctx,
435
                          const unsigned char *ikm, size_t ikmlen)
436
0
{
437
0
    int ok = 0;
438
0
    ECX_KEY *key;
439
0
    unsigned char *privkey;
440
0
    unsigned char *seed = (unsigned char *)ikm;
441
0
    size_t seedlen = ikmlen;
442
0
    unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE];
443
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
444
445
0
    key = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 0, ctx->propq);
446
0
    if (key == NULL)
447
0
        return NULL;
448
0
    privkey = ossl_ecx_key_allocate_privkey(key);
449
0
    if (privkey == NULL)
450
0
        goto err;
451
452
    /* Generate a random seed if there is no input ikm */
453
0
    if (seed == NULL || seedlen == 0) {
454
0
        if (info->Nsk > sizeof(tmpbuf))
455
0
            goto err;
456
0
        if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, info->Nsk, 0) <= 0)
457
0
            goto err;
458
0
        seed = tmpbuf;
459
0
        seedlen = info->Nsk;
460
0
    }
461
0
    if (!ossl_ecx_dhkem_derive_private(key, privkey, seed, seedlen))
462
0
        goto err;
463
0
    if (!ossl_ecx_public_from_private(key))
464
0
        goto err;
465
0
    key->haspubkey = 1;
466
0
    ok = 1;
467
0
err:
468
0
    if (!ok) {
469
0
        ossl_ecx_key_free(key);
470
0
        key = NULL;
471
0
    }
472
0
    if (seed != ikm)
473
0
        OPENSSL_cleanse(seed, seedlen);
474
0
    return key;
475
0
}
476
477
/*
478
 * Do an ecxdh key exchange.
479
 * dhkm = DH(sender, peer)
480
 *
481
 * NOTE: Instead of using EVP_PKEY_derive() API's, we use ECX_KEY operations
482
 *       to avoid messy conversions back to EVP_PKEY.
483
 *
484
 * Returns the size of the secret if successful, or 0 otherwise,
485
 */
486
static int generate_ecxdhkm(const ECX_KEY *sender, const ECX_KEY *peer,
487
                           unsigned char *out,  size_t maxout,
488
                           unsigned int secretsz)
489
0
{
490
0
    size_t len = 0;
491
492
    /* NOTE: ossl_ecx_compute_key checks for shared secret being all zeros */
493
0
    return ossl_ecx_compute_key((ECX_KEY *)peer, (ECX_KEY *)sender,
494
0
                                 sender->keylen, out, &len, maxout);
495
0
}
496
497
/*
498
 * Derive a secret using ECXDH (code is shared by the encap and decap)
499
 *
500
 * dhkm = Concat(ecxdh(privkey1, peerkey1), ecdh(privkey2, peerkey2)
501
 * kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey)
502
 * secret = dhkem_extract_and_expand(kemid, dhkm, kemctx);
503
 *
504
 * Params:
505
 *     ctx Object that contains algorithm state and constants.
506
 *     secret The returned secret (with a length ctx->alg->secretlen bytes).
507
 *     privkey1 A private key used for ECXDH key derivation.
508
 *     peerkey1 A public key used for ECXDH key derivation with privkey1
509
 *     privkey2 A optional private key used for a second ECXDH key derivation.
510
 *              It can be NULL.
511
 *     peerkey2 A optional public key used for a second ECXDH key derivation
512
 *              with privkey2,. It can be NULL.
513
 *     sender_pub The senders public key in encoded form.
514
 *     recipient_pub The recipients public key in encoded form.
515
 * Notes:
516
 *     The second ecdh() is only used for the HPKE auth modes when both privkey2
517
 *     and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL).
518
 */
519
static int derive_secret(PROV_ECX_CTX *ctx, unsigned char *secret,
520
                         const ECX_KEY *privkey1, const ECX_KEY *peerkey1,
521
                         const ECX_KEY *privkey2, const ECX_KEY *peerkey2,
522
                         const unsigned char *sender_pub,
523
                         const unsigned char *recipient_pub)
524
0
{
525
0
    int ret = 0;
526
0
    EVP_KDF_CTX *kdfctx = NULL;
527
0
    unsigned char *sender_authpub = NULL;
528
0
    unsigned char dhkm[MAX_ECX_KEYLEN * 2];
529
0
    unsigned char kemctx[MAX_ECX_KEYLEN * 3];
530
0
    size_t kemctxlen = 0, dhkmlen = 0;
531
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
532
0
    int auth = ctx->sender_authkey != NULL;
533
0
    size_t encodedkeylen = info->Npk;
534
535
0
    if (!generate_ecxdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm),
536
0
                          (unsigned int)encodedkeylen))
537
0
        goto err;
538
0
    dhkmlen = encodedkeylen;
539
540
    /* Concat the optional second ECXDH (used for Auth) */
541
0
    if (auth) {
542
0
        if (!generate_ecxdhkm(privkey2, peerkey2,
543
0
                              dhkm + dhkmlen, sizeof(dhkm) - dhkmlen,
544
0
                              (unsigned int)encodedkeylen))
545
0
            goto err;
546
        /* Get the public key of the auth sender in encoded form */
547
0
        sender_authpub = ecx_pubkey(ctx->sender_authkey);
548
0
        if (sender_authpub == NULL)
549
0
            goto err;
550
0
        dhkmlen += encodedkeylen;
551
0
    }
552
0
    kemctxlen = encodedkeylen + dhkmlen;
553
0
    if (kemctxlen > sizeof(kemctx))
554
0
        goto err;
555
556
    /* kemctx is the concat of both sides encoded public key */
557
0
    memcpy(kemctx, sender_pub, encodedkeylen);
558
0
    memcpy(kemctx + encodedkeylen, recipient_pub, encodedkeylen);
559
0
    if (auth)
560
0
        memcpy(kemctx + 2 * encodedkeylen, sender_authpub, encodedkeylen);
561
0
    kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname,
562
0
                                 ctx->libctx, ctx->propq);
563
0
    if (kdfctx == NULL)
564
0
        goto err;
565
0
    if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret,
566
0
                                  info->kem_id, dhkm, dhkmlen,
567
0
                                  kemctx, kemctxlen))
568
0
        goto err;
569
0
    ret = 1;
570
0
err:
571
0
    OPENSSL_cleanse(dhkm, dhkmlen);
572
0
    EVP_KDF_CTX_free(kdfctx);
573
0
    return ret;
574
0
}
575
576
/*
577
 * Do a DHKEM encapsulate operation.
578
 *
579
 * See Section 4.1 Encap() and AuthEncap()
580
 *
581
 * Params:
582
 *     ctx A context object holding the recipients public key and the
583
 *         optional senders auth private key.
584
 *     enc A buffer to return the senders ephemeral public key.
585
 *         Setting this to NULL allows the enclen and secretlen to return
586
 *         values, without calculating the secret.
587
 *     enclen Passes in the max size of the enc buffer and returns the
588
 *            encoded public key length.
589
 *     secret A buffer to return the calculated shared secret.
590
 *     secretlen Passes in the max size of the secret buffer and returns the
591
 *               secret length.
592
 * Returns: 1 on success or 0 otherwise.
593
 */
594
static int dhkem_encap(PROV_ECX_CTX *ctx,
595
                       unsigned char *enc, size_t *enclen,
596
                       unsigned char *secret, size_t *secretlen)
597
0
{
598
0
    int ret = 0;
599
0
    ECX_KEY *sender_ephemkey = NULL;
600
0
    unsigned char *sender_ephempub, *recipient_pub;
601
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
602
603
0
    if (enc == NULL) {
604
0
        if (enclen == NULL && secretlen == NULL)
605
0
            return 0;
606
0
        if (enclen != NULL)
607
0
            *enclen = info->Nenc;
608
0
        if (secretlen != NULL)
609
0
            *secretlen = info->Nsecret;
610
0
       return 1;
611
0
    }
612
613
0
    if (*secretlen < info->Nsecret) {
614
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
615
0
        return 0;
616
0
    }
617
0
    if (*enclen < info->Nenc) {
618
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small");
619
0
        return 0;
620
0
    }
621
622
    /* Create an ephemeral key */
623
0
    sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen);
624
625
0
    sender_ephempub = ecx_pubkey(sender_ephemkey);
626
0
    recipient_pub = ecx_pubkey(ctx->recipient_key);
627
0
    if (sender_ephempub == NULL || recipient_pub == NULL)
628
0
        goto err;
629
630
0
    if (!derive_secret(ctx, secret,
631
0
                       sender_ephemkey, ctx->recipient_key,
632
0
                       ctx->sender_authkey, ctx->recipient_key,
633
0
                       sender_ephempub, recipient_pub))
634
0
        goto err;
635
636
    /* Return the public part of the ephemeral key */
637
0
    memcpy(enc, sender_ephempub, info->Nenc);
638
0
    *enclen = info->Nenc;
639
0
    *secretlen = info->Nsecret;
640
0
    ret = 1;
641
0
err:
642
0
    ossl_ecx_key_free(sender_ephemkey);
643
0
    return ret;
644
0
}
645
646
/*
647
 * Do a DHKEM decapsulate operation.
648
 * See Section 4.1 Decap() and Auth Decap()
649
 *
650
 * Params:
651
 *     ctx A context object holding the recipients private key and the
652
 *         optional senders auth public key.
653
 *     secret A buffer to return the calculated shared secret. Setting this to
654
 *            NULL can be used to return the secretlen.
655
 *     secretlen Passes in the max size of the secret buffer and returns the
656
 *               secret length.
657
 *     enc A buffer containing the senders ephemeral public key that was returned
658
 *         from dhkem_encap().
659
 *     enclen The length in bytes of enc.
660
 * Returns: 1 If the shared secret is returned or 0 on error.
661
 */
662
static int dhkem_decap(PROV_ECX_CTX *ctx,
663
                       unsigned char *secret, size_t *secretlen,
664
                       const unsigned char *enc, size_t enclen)
665
0
{
666
0
    int ret = 0;
667
0
    ECX_KEY *recipient_privkey = ctx->recipient_key;
668
0
    ECX_KEY *sender_ephempubkey = NULL;
669
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
670
0
    unsigned char *recipient_pub;
671
672
0
    if (secret == NULL) {
673
0
        *secretlen = info->Nsecret;
674
0
        return 1;
675
0
    }
676
0
    if (*secretlen < info->Nsecret) {
677
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
678
0
        return 0;
679
0
    }
680
0
    if (enclen != info->Nenc) {
681
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key");
682
0
        return 0;
683
0
    }
684
685
    /* Get the public part of the ephemeral key created by encap */
686
0
    sender_ephempubkey = ecxkey_pubfromdata(ctx, enc, enclen);
687
0
    if (sender_ephempubkey == NULL)
688
0
        goto err;
689
690
0
    recipient_pub = ecx_pubkey(recipient_privkey);
691
0
    if (recipient_pub == NULL)
692
0
        goto err;
693
694
0
    if (!derive_secret(ctx, secret,
695
0
                       ctx->recipient_key, sender_ephempubkey,
696
0
                       ctx->recipient_key, ctx->sender_authkey,
697
0
                       enc, recipient_pub))
698
0
        goto err;
699
700
0
    *secretlen = info->Nsecret;
701
0
    ret = 1;
702
0
err:
703
0
    ossl_ecx_key_free(sender_ephempubkey);
704
0
    return ret;
705
0
}
706
707
static int ecxkem_encapsulate(void *vctx, unsigned char *out, size_t *outlen,
708
                              unsigned char *secret, size_t *secretlen)
709
0
{
710
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
711
712
0
    switch (ctx->mode) {
713
0
        case KEM_MODE_DHKEM:
714
0
            return dhkem_encap(ctx, out, outlen, secret, secretlen);
715
0
        default:
716
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
717
0
            return -2;
718
0
    }
719
0
}
720
721
static int ecxkem_decapsulate(void *vctx, unsigned char *out, size_t *outlen,
722
                              const unsigned char *in, size_t inlen)
723
0
{
724
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
725
726
0
    switch (ctx->mode) {
727
0
        case KEM_MODE_DHKEM:
728
0
            return dhkem_decap(vctx, out, outlen, in, inlen);
729
0
        default:
730
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
731
0
            return -2;
732
0
    }
733
0
}
734
735
const OSSL_DISPATCH ossl_ecx_asym_kem_functions[] = {
736
    { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))ecxkem_newctx },
737
    { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
738
      (void (*)(void))ecxkem_encapsulate_init },
739
    { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))ecxkem_encapsulate },
740
    { OSSL_FUNC_KEM_DECAPSULATE_INIT,
741
      (void (*)(void))ecxkem_decapsulate_init },
742
    { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))ecxkem_decapsulate },
743
    { OSSL_FUNC_KEM_FREECTX, (void (*)(void))ecxkem_freectx },
744
    { OSSL_FUNC_KEM_SET_CTX_PARAMS,
745
      (void (*)(void))ecxkem_set_ctx_params },
746
    { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
747
      (void (*)(void))ecxkem_settable_ctx_params },
748
    { OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT,
749
      (void (*)(void))ecxkem_auth_encapsulate_init },
750
    { OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT,
751
      (void (*)(void))ecxkem_auth_decapsulate_init },
752
    OSSL_DISPATCH_END
753
};