/src/openssl/providers/implementations/kem/rsa_kem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | |
11 | | /* |
12 | | * RSA low level APIs are deprecated for public use, but still ok for |
13 | | * internal use. |
14 | | */ |
15 | | #include "internal/deprecated.h" |
16 | | #include "internal/nelem.h" |
17 | | #include <openssl/crypto.h> |
18 | | #include <openssl/evp.h> |
19 | | #include <openssl/core_dispatch.h> |
20 | | #include <openssl/core_names.h> |
21 | | #include <openssl/rsa.h> |
22 | | #include <openssl/params.h> |
23 | | #include <openssl/err.h> |
24 | | #include <openssl/proverr.h> |
25 | | #include "crypto/rsa.h" |
26 | | #include "internal/cryptlib.h" |
27 | | #include "prov/provider_ctx.h" |
28 | | #include "prov/providercommon.h" |
29 | | #include "prov/implementations.h" |
30 | | #include "prov/securitycheck.h" |
31 | | |
32 | | static OSSL_FUNC_kem_newctx_fn rsakem_newctx; |
33 | | static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init; |
34 | | static OSSL_FUNC_kem_encapsulate_fn rsakem_generate; |
35 | | static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init; |
36 | | static OSSL_FUNC_kem_decapsulate_fn rsakem_recover; |
37 | | static OSSL_FUNC_kem_freectx_fn rsakem_freectx; |
38 | | static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx; |
39 | | static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params; |
40 | | static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params; |
41 | | static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params; |
42 | | static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params; |
43 | | |
44 | | /* |
45 | | * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented |
46 | | * currently. |
47 | | */ |
48 | | #define KEM_OP_UNDEFINED -1 |
49 | 0 | #define KEM_OP_RSASVE 0 |
50 | | |
51 | | /* |
52 | | * What's passed as an actual key is defined by the KEYMGMT interface. |
53 | | * We happen to know that our KEYMGMT simply passes RSA structures, so |
54 | | * we use that here too. |
55 | | */ |
56 | | typedef struct { |
57 | | OSSL_LIB_CTX *libctx; |
58 | | RSA *rsa; |
59 | | int op; |
60 | | OSSL_FIPS_IND_DECLARE |
61 | | } PROV_RSA_CTX; |
62 | | |
63 | | static const OSSL_ITEM rsakem_opname_id_map[] = { |
64 | | { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE }, |
65 | | }; |
66 | | |
67 | | static int name2id(const char *name, const OSSL_ITEM *map, size_t sz) |
68 | 0 | { |
69 | 0 | size_t i; |
70 | |
|
71 | 0 | if (name == NULL) |
72 | 0 | return -1; |
73 | | |
74 | 0 | for (i = 0; i < sz; ++i) { |
75 | 0 | if (OPENSSL_strcasecmp(map[i].ptr, name) == 0) |
76 | 0 | return map[i].id; |
77 | 0 | } |
78 | 0 | return -1; |
79 | 0 | } |
80 | | |
81 | | static int rsakem_opname2id(const char *name) |
82 | 0 | { |
83 | 0 | return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map)); |
84 | 0 | } |
85 | | |
86 | | static void *rsakem_newctx(void *provctx) |
87 | 0 | { |
88 | 0 | PROV_RSA_CTX *prsactx; |
89 | |
|
90 | 0 | if (!ossl_prov_is_running()) |
91 | 0 | return NULL; |
92 | | |
93 | 0 | prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX)); |
94 | 0 | if (prsactx == NULL) |
95 | 0 | return NULL; |
96 | 0 | prsactx->libctx = PROV_LIBCTX_OF(provctx); |
97 | 0 | prsactx->op = KEM_OP_RSASVE; |
98 | 0 | OSSL_FIPS_IND_INIT(prsactx) |
99 | |
|
100 | 0 | return prsactx; |
101 | 0 | } |
102 | | |
103 | | static void rsakem_freectx(void *vprsactx) |
104 | 0 | { |
105 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
106 | |
|
107 | 0 | RSA_free(prsactx->rsa); |
108 | 0 | OPENSSL_free(prsactx); |
109 | 0 | } |
110 | | |
111 | | static void *rsakem_dupctx(void *vprsactx) |
112 | 0 | { |
113 | 0 | PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx; |
114 | 0 | PROV_RSA_CTX *dstctx; |
115 | |
|
116 | 0 | if (!ossl_prov_is_running()) |
117 | 0 | return NULL; |
118 | | |
119 | 0 | dstctx = OPENSSL_zalloc(sizeof(*srcctx)); |
120 | 0 | if (dstctx == NULL) |
121 | 0 | return NULL; |
122 | | |
123 | 0 | *dstctx = *srcctx; |
124 | 0 | if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) { |
125 | 0 | OPENSSL_free(dstctx); |
126 | 0 | return NULL; |
127 | 0 | } |
128 | 0 | return dstctx; |
129 | 0 | } |
130 | | |
131 | | static int rsakem_init(void *vprsactx, void *vrsa, |
132 | | const OSSL_PARAM params[], int operation, |
133 | | const char *desc) |
134 | 0 | { |
135 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
136 | 0 | int protect = 0; |
137 | |
|
138 | 0 | if (!ossl_prov_is_running()) |
139 | 0 | return 0; |
140 | | |
141 | 0 | if (prsactx == NULL || vrsa == NULL) |
142 | 0 | return 0; |
143 | | |
144 | 0 | if (!ossl_rsa_key_op_get_protect(vrsa, operation, &protect)) |
145 | 0 | return 0; |
146 | 0 | if (!RSA_up_ref(vrsa)) |
147 | 0 | return 0; |
148 | 0 | RSA_free(prsactx->rsa); |
149 | 0 | prsactx->rsa = vrsa; |
150 | |
|
151 | 0 | OSSL_FIPS_IND_SET_APPROVED(prsactx) |
152 | 0 | if (!rsakem_set_ctx_params(prsactx, params)) |
153 | 0 | return 0; |
154 | | #ifdef FIPS_MODULE |
155 | | if (!ossl_fips_ind_rsa_key_check(OSSL_FIPS_IND_GET(prsactx), |
156 | | OSSL_FIPS_IND_SETTABLE0, prsactx->libctx, |
157 | | prsactx->rsa, desc, protect)) |
158 | | return 0; |
159 | | #endif |
160 | 0 | return 1; |
161 | 0 | } |
162 | | |
163 | | static int rsakem_encapsulate_init(void *vprsactx, void *vrsa, |
164 | | const OSSL_PARAM params[]) |
165 | 0 | { |
166 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE, |
167 | 0 | "RSA Encapsulate Init"); |
168 | 0 | } |
169 | | |
170 | | static int rsakem_decapsulate_init(void *vprsactx, void *vrsa, |
171 | | const OSSL_PARAM params[]) |
172 | 0 | { |
173 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE, |
174 | 0 | "RSA Decapsulate Init"); |
175 | 0 | } |
176 | | |
177 | | /* Machine generated by util/perl/OpenSSL/paramnames.pm */ |
178 | | #ifndef rsakem_get_ctx_params_list |
179 | | static const OSSL_PARAM rsakem_get_ctx_params_list[] = { |
180 | | # if defined(FIPS_MODULE) |
181 | | OSSL_PARAM_int(OSSL_KEM_PARAM_FIPS_APPROVED_INDICATOR, NULL), |
182 | | # endif |
183 | | OSSL_PARAM_END |
184 | | }; |
185 | | #endif |
186 | | |
187 | | #ifndef rsakem_get_ctx_params_st |
188 | | struct rsakem_get_ctx_params_st { |
189 | | # if defined(FIPS_MODULE) |
190 | | OSSL_PARAM *ind; |
191 | | # else |
192 | | int dummy; /* unused */ |
193 | | # endif |
194 | | }; |
195 | | #endif |
196 | | |
197 | | #ifndef rsakem_get_ctx_params_decoder |
198 | | static int rsakem_get_ctx_params_decoder |
199 | | (const OSSL_PARAM *p, struct rsakem_get_ctx_params_st *r) |
200 | 0 | { |
201 | 0 | const char *s; |
202 | |
|
203 | 0 | memset(r, 0, sizeof(*r)); |
204 | 0 | if (p != NULL) |
205 | 0 | for (; (s = p->key) != NULL; p++) |
206 | | # if defined(FIPS_MODULE) |
207 | | if (ossl_likely(strcmp("fips-indicator", s + 0) == 0)) { |
208 | | /* KEM_PARAM_FIPS_APPROVED_INDICATOR */ |
209 | | if (ossl_unlikely(r->ind != NULL)) { |
210 | | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
211 | | "param %s is repeated", s); |
212 | | return 0; |
213 | | } |
214 | | r->ind = (OSSL_PARAM *)p; |
215 | | } |
216 | | # else |
217 | 0 | ; |
218 | 0 | # endif |
219 | 0 | return 1; |
220 | 0 | } |
221 | | #endif |
222 | | /* End of machine generated */ |
223 | | |
224 | | static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params) |
225 | 0 | { |
226 | 0 | PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx; |
227 | 0 | struct rsakem_get_ctx_params_st p; |
228 | |
|
229 | 0 | if (ctx == NULL || !rsakem_get_ctx_params_decoder(params, &p)) |
230 | 0 | return 0; |
231 | | |
232 | 0 | if (!OSSL_FIPS_IND_GET_CTX_FROM_PARAM(ctx, p.ind)) |
233 | 0 | return 0; |
234 | 0 | return 1; |
235 | 0 | } |
236 | | |
237 | | static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx, |
238 | | ossl_unused void *provctx) |
239 | 0 | { |
240 | 0 | return rsakem_get_ctx_params_list; |
241 | 0 | } |
242 | | |
243 | | /* Machine generated by util/perl/OpenSSL/paramnames.pm */ |
244 | | #ifndef rsakem_set_ctx_params_list |
245 | | static const OSSL_PARAM rsakem_set_ctx_params_list[] = { |
246 | | OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0), |
247 | | # if defined(FIPS_MODULE) |
248 | | OSSL_PARAM_int(OSSL_KEM_PARAM_FIPS_KEY_CHECK, NULL), |
249 | | # endif |
250 | | OSSL_PARAM_END |
251 | | }; |
252 | | #endif |
253 | | |
254 | | #ifndef rsakem_set_ctx_params_st |
255 | | struct rsakem_set_ctx_params_st { |
256 | | # if defined(FIPS_MODULE) |
257 | | OSSL_PARAM *ind_k; |
258 | | # endif |
259 | | OSSL_PARAM *op; |
260 | | }; |
261 | | #endif |
262 | | |
263 | | #ifndef rsakem_set_ctx_params_decoder |
264 | | static int rsakem_set_ctx_params_decoder |
265 | | (const OSSL_PARAM *p, struct rsakem_set_ctx_params_st *r) |
266 | 0 | { |
267 | 0 | const char *s; |
268 | |
|
269 | 0 | memset(r, 0, sizeof(*r)); |
270 | 0 | if (p != NULL) |
271 | 0 | for (; (s = p->key) != NULL; p++) |
272 | 0 | switch(s[0]) { |
273 | 0 | default: |
274 | 0 | break; |
275 | 0 | case 'k': |
276 | | # if defined(FIPS_MODULE) |
277 | | if (ossl_likely(strcmp("ey-check", s + 1) == 0)) { |
278 | | /* KEM_PARAM_FIPS_KEY_CHECK */ |
279 | | if (ossl_unlikely(r->ind_k != NULL)) { |
280 | | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
281 | | "param %s is repeated", s); |
282 | | return 0; |
283 | | } |
284 | | r->ind_k = (OSSL_PARAM *)p; |
285 | | } |
286 | | # endif |
287 | 0 | break; |
288 | 0 | case 'o': |
289 | 0 | if (ossl_likely(strcmp("peration", s + 1) == 0)) { |
290 | | /* KEM_PARAM_OPERATION */ |
291 | 0 | if (ossl_unlikely(r->op != NULL)) { |
292 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
293 | 0 | "param %s is repeated", s); |
294 | 0 | return 0; |
295 | 0 | } |
296 | 0 | r->op = (OSSL_PARAM *)p; |
297 | 0 | } |
298 | 0 | } |
299 | 0 | return 1; |
300 | 0 | } |
301 | | #endif |
302 | | /* End of machine generated */ |
303 | | |
304 | | static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[]) |
305 | 0 | { |
306 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
307 | 0 | struct rsakem_set_ctx_params_st p; |
308 | 0 | int op; |
309 | |
|
310 | 0 | if (prsactx == NULL || !rsakem_set_ctx_params_decoder(params, &p)) |
311 | 0 | return 0; |
312 | | |
313 | 0 | if (!OSSL_FIPS_IND_SET_CTX_FROM_PARAM(prsactx, OSSL_FIPS_IND_SETTABLE0, |
314 | 0 | p.ind_k)) |
315 | 0 | return 0; |
316 | | |
317 | 0 | if (p.op != NULL) { |
318 | 0 | if (p.op->data_type != OSSL_PARAM_UTF8_STRING) |
319 | 0 | return 0; |
320 | 0 | op = rsakem_opname2id(p.op->data); |
321 | 0 | if (op < 0) |
322 | 0 | return 0; |
323 | 0 | prsactx->op = op; |
324 | 0 | } |
325 | 0 | return 1; |
326 | 0 | } |
327 | | |
328 | | static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx, |
329 | | ossl_unused void *provctx) |
330 | 0 | { |
331 | 0 | return rsakem_set_ctx_params_list; |
332 | 0 | } |
333 | | |
334 | | /* |
335 | | * NIST.SP.800-56Br2 |
336 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
337 | | * |
338 | | * Generate a random in the range 1 < z < (n – 1) |
339 | | */ |
340 | | static int rsasve_gen_rand_bytes(RSA *rsa_pub, |
341 | | unsigned char *out, int outlen) |
342 | 0 | { |
343 | 0 | int ret = 0; |
344 | 0 | BN_CTX *bnctx; |
345 | 0 | BIGNUM *z, *nminus3; |
346 | |
|
347 | 0 | bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub)); |
348 | 0 | if (bnctx == NULL) |
349 | 0 | return 0; |
350 | | |
351 | | /* |
352 | | * Generate a random in the range 1 < z < (n – 1). |
353 | | * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max |
354 | | * We can achieve this by adding 2.. but then we need to subtract 3 from |
355 | | * the upper bound i.e: 2 + (0 <= r < (n - 3)) |
356 | | */ |
357 | 0 | BN_CTX_start(bnctx); |
358 | 0 | nminus3 = BN_CTX_get(bnctx); |
359 | 0 | z = BN_CTX_get(bnctx); |
360 | 0 | ret = (z != NULL |
361 | 0 | && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL) |
362 | 0 | && BN_sub_word(nminus3, 3) |
363 | 0 | && BN_priv_rand_range_ex(z, nminus3, 0, bnctx) |
364 | 0 | && BN_add_word(z, 2) |
365 | 0 | && (BN_bn2binpad(z, out, outlen) == outlen)); |
366 | 0 | BN_CTX_end(bnctx); |
367 | 0 | BN_CTX_free(bnctx); |
368 | 0 | return ret; |
369 | 0 | } |
370 | | |
371 | | /* |
372 | | * NIST.SP.800-56Br2 |
373 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
374 | | */ |
375 | | static int rsasve_generate(PROV_RSA_CTX *prsactx, |
376 | | unsigned char *out, size_t *outlen, |
377 | | unsigned char *secret, size_t *secretlen) |
378 | 0 | { |
379 | 0 | int ret; |
380 | 0 | size_t nlen; |
381 | | |
382 | | /* Step (1): nlen = Ceil(len(n)/8) */ |
383 | 0 | nlen = RSA_size(prsactx->rsa); |
384 | |
|
385 | 0 | if (out == NULL) { |
386 | 0 | if (nlen == 0) { |
387 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
388 | 0 | return 0; |
389 | 0 | } |
390 | 0 | if (outlen == NULL && secretlen == NULL) |
391 | 0 | return 0; |
392 | 0 | if (outlen != NULL) |
393 | 0 | *outlen = nlen; |
394 | 0 | if (secretlen != NULL) |
395 | 0 | *secretlen = nlen; |
396 | 0 | return 1; |
397 | 0 | } |
398 | | |
399 | | /* |
400 | | * If outlen is specified, then it must report the length |
401 | | * of the out buffer on input so that we can confirm |
402 | | * its size is sufficent for encapsulation |
403 | | */ |
404 | 0 | if (outlen != NULL && *outlen < nlen) { |
405 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
406 | 0 | return 0; |
407 | 0 | } |
408 | | |
409 | | /* |
410 | | * Step (2): Generate a random byte string z of nlen bytes where |
411 | | * 1 < z < n - 1 |
412 | | */ |
413 | 0 | if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, (int)nlen)) |
414 | 0 | return 0; |
415 | | |
416 | | /* Step(3): out = RSAEP((n,e), z) */ |
417 | 0 | ret = RSA_public_encrypt((int)nlen, secret, out, prsactx->rsa, |
418 | 0 | RSA_NO_PADDING); |
419 | 0 | if (ret) { |
420 | 0 | ret = 1; |
421 | 0 | if (outlen != NULL) |
422 | 0 | *outlen = nlen; |
423 | 0 | if (secretlen != NULL) |
424 | 0 | *secretlen = nlen; |
425 | 0 | } else { |
426 | 0 | OPENSSL_cleanse(secret, nlen); |
427 | 0 | } |
428 | 0 | return ret; |
429 | 0 | } |
430 | | |
431 | | /** |
432 | | * rsasve_recover - Recovers a secret value from ciphertext using an RSA |
433 | | * private key. Once, recovered, the secret value is considered to be a |
434 | | * shared secret. Algorithm is preformed as per |
435 | | * NIST SP 800-56B Rev 2 |
436 | | * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER). |
437 | | * |
438 | | * This function performs RSA decryption using the private key from the |
439 | | * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts |
440 | | * it, and writes the decrypted message to the output buffer. |
441 | | * |
442 | | * @prsactx: The RSA context containing the private key. |
443 | | * @out: The output buffer to store the decrypted message. |
444 | | * @outlen: On input, the size of the output buffer. On successful |
445 | | * completion, the actual length of the decrypted message. |
446 | | * @in: The input buffer containing the ciphertext to be decrypted. |
447 | | * @inlen: The length of the input ciphertext in bytes. |
448 | | * |
449 | | * Returns 1 on success, or 0 on error. In case of error, appropriate |
450 | | * error messages are raised using the ERR_raise function. |
451 | | */ |
452 | | static int rsasve_recover(PROV_RSA_CTX *prsactx, |
453 | | unsigned char *out, size_t *outlen, |
454 | | const unsigned char *in, size_t inlen) |
455 | 0 | { |
456 | 0 | size_t nlen; |
457 | 0 | int ret; |
458 | | |
459 | | /* Step (1): get the byte length of n */ |
460 | 0 | nlen = RSA_size(prsactx->rsa); |
461 | |
|
462 | 0 | if (out == NULL) { |
463 | 0 | if (nlen == 0) { |
464 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
465 | 0 | return 0; |
466 | 0 | } |
467 | 0 | *outlen = nlen; |
468 | 0 | return 1; |
469 | 0 | } |
470 | | |
471 | | /* |
472 | | * Step (2): check the input ciphertext 'inlen' matches the nlen |
473 | | * and that outlen is at least nlen bytes |
474 | | */ |
475 | 0 | if (inlen != nlen) { |
476 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH); |
477 | 0 | return 0; |
478 | 0 | } |
479 | | |
480 | | /* |
481 | | * If outlen is specified, then it must report the length |
482 | | * of the out buffer, so that we can confirm that it is of |
483 | | * sufficient size to hold the output of decapsulation |
484 | | */ |
485 | 0 | if (outlen != NULL && *outlen < nlen) { |
486 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
487 | 0 | return 0; |
488 | 0 | } |
489 | | |
490 | | /* Step (3): out = RSADP((n,d), in) */ |
491 | 0 | ret = RSA_private_decrypt((int)inlen, in, out, prsactx->rsa, RSA_NO_PADDING); |
492 | 0 | if (ret > 0 && outlen != NULL) |
493 | 0 | *outlen = ret; |
494 | 0 | return ret > 0; |
495 | 0 | } |
496 | | |
497 | | static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen, |
498 | | unsigned char *secret, size_t *secretlen) |
499 | 0 | { |
500 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
501 | |
|
502 | 0 | if (!ossl_prov_is_running()) |
503 | 0 | return 0; |
504 | | |
505 | 0 | switch (prsactx->op) { |
506 | 0 | case KEM_OP_RSASVE: |
507 | 0 | return rsasve_generate(prsactx, out, outlen, secret, secretlen); |
508 | 0 | default: |
509 | 0 | return -2; |
510 | 0 | } |
511 | 0 | } |
512 | | |
513 | | static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen, |
514 | | const unsigned char *in, size_t inlen) |
515 | 0 | { |
516 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
517 | |
|
518 | 0 | if (!ossl_prov_is_running()) |
519 | 0 | return 0; |
520 | | |
521 | 0 | switch (prsactx->op) { |
522 | 0 | case KEM_OP_RSASVE: |
523 | 0 | return rsasve_recover(prsactx, out, outlen, in, inlen); |
524 | 0 | default: |
525 | 0 | return -2; |
526 | 0 | } |
527 | 0 | } |
528 | | |
529 | | const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = { |
530 | | { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx }, |
531 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, |
532 | | (void (*)(void))rsakem_encapsulate_init }, |
533 | | { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate }, |
534 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, |
535 | | (void (*)(void))rsakem_decapsulate_init }, |
536 | | { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover }, |
537 | | { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx }, |
538 | | { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx }, |
539 | | { OSSL_FUNC_KEM_GET_CTX_PARAMS, |
540 | | (void (*)(void))rsakem_get_ctx_params }, |
541 | | { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS, |
542 | | (void (*)(void))rsakem_gettable_ctx_params }, |
543 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, |
544 | | (void (*)(void))rsakem_set_ctx_params }, |
545 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, |
546 | | (void (*)(void))rsakem_settable_ctx_params }, |
547 | | OSSL_DISPATCH_END |
548 | | }; |