/src/openssl/crypto/stack/stack.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include "internal/safe_math.h" |
14 | | #include <openssl/stack.h> |
15 | | #include <errno.h> |
16 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
17 | | |
18 | | OSSL_SAFE_MATH_SIGNED(int, int) |
19 | | |
20 | | /* |
21 | | * The initial number of nodes in the array. |
22 | | */ |
23 | | static const int min_nodes = 4; |
24 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
25 | | ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; |
26 | | |
27 | | struct stack_st { |
28 | | int num; |
29 | | const void **data; |
30 | | int sorted; |
31 | | int num_alloc; |
32 | | OPENSSL_sk_compfunc comp; |
33 | | OPENSSL_sk_freefunc_thunk free_thunk; |
34 | | }; |
35 | | |
36 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
37 | | OPENSSL_sk_compfunc c) |
38 | 0 | { |
39 | 0 | OPENSSL_sk_compfunc old = sk->comp; |
40 | |
|
41 | 0 | if (sk->comp != c && sk->num > 1) |
42 | 0 | sk->sorted = 0; |
43 | 0 | sk->comp = c; |
44 | |
|
45 | 0 | return old; |
46 | 0 | } |
47 | | |
48 | | static OPENSSL_STACK *internal_copy(const OPENSSL_STACK *sk, |
49 | | OPENSSL_sk_copyfunc copy_func, |
50 | | OPENSSL_sk_freefunc free_func) |
51 | 2.59k | { |
52 | 2.59k | OPENSSL_STACK *ret; |
53 | 2.59k | int i; |
54 | | |
55 | 2.59k | if ((ret = OPENSSL_sk_new_null()) == NULL) |
56 | 0 | goto err; |
57 | | |
58 | 2.59k | if (sk == NULL) |
59 | 32 | goto done; |
60 | | |
61 | | /* direct structure assignment */ |
62 | 2.56k | *ret = *sk; |
63 | 2.56k | ret->data = NULL; |
64 | 2.56k | ret->num_alloc = 0; |
65 | | |
66 | 2.56k | if (ret->num == 0) |
67 | 0 | goto done; /* nothing to copy */ |
68 | | |
69 | 2.56k | ret->num_alloc = ret->num > min_nodes ? ret->num : min_nodes; |
70 | 2.56k | ret->data = OPENSSL_calloc(ret->num_alloc, sizeof(*ret->data)); |
71 | 2.56k | if (ret->data == NULL) |
72 | 0 | goto err; |
73 | 2.56k | if (copy_func == NULL) { |
74 | 2.56k | memcpy(ret->data, sk->data, sizeof(*ret->data) * ret->num); |
75 | 2.56k | } else { |
76 | 0 | for (i = 0; i < ret->num; ++i) { |
77 | 0 | if (sk->data[i] == NULL) |
78 | 0 | continue; |
79 | 0 | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
80 | 0 | while (--i >= 0) |
81 | 0 | if (ret->data[i] != NULL) |
82 | 0 | free_func((void *)ret->data[i]); |
83 | 0 | goto err; |
84 | 0 | } |
85 | 0 | } |
86 | 0 | } |
87 | | |
88 | 2.59k | done: |
89 | 2.59k | return ret; |
90 | | |
91 | 0 | err: |
92 | 0 | OPENSSL_sk_free(ret); |
93 | 0 | return NULL; |
94 | 2.56k | } |
95 | | |
96 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
97 | | OPENSSL_sk_copyfunc copy_func, |
98 | | OPENSSL_sk_freefunc free_func) |
99 | 16 | { |
100 | 16 | return internal_copy(sk, copy_func, free_func); |
101 | 16 | } |
102 | | |
103 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
104 | 2.58k | { |
105 | 2.58k | return internal_copy(sk, NULL, NULL); |
106 | 2.58k | } |
107 | | |
108 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
109 | 8.32k | { |
110 | 8.32k | return OPENSSL_sk_new_reserve(NULL, 0); |
111 | 8.32k | } |
112 | | |
113 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
114 | 133 | { |
115 | 133 | return OPENSSL_sk_new_reserve(c, 0); |
116 | 133 | } |
117 | | |
118 | | /* |
119 | | * Calculate the array growth based on the target size. |
120 | | * |
121 | | * The growth factor is a rational number and is defined by a numerator |
122 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
123 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
124 | | * than the golden ratio (1.618...). |
125 | | * |
126 | | * Considering only the Fibonacci ratios less than the golden ratio, the |
127 | | * number of steps from the minimum allocation to integer overflow is: |
128 | | * factor decimal growths |
129 | | * 3/2 1.5 51 |
130 | | * 8/5 1.6 45 |
131 | | * 21/13 1.615... 44 |
132 | | * |
133 | | * All larger factors have the same number of growths. |
134 | | * |
135 | | * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. |
136 | | */ |
137 | | static ossl_inline int compute_growth(int target, int current) |
138 | 224 | { |
139 | 224 | int err = 0; |
140 | | |
141 | 448 | while (current < target) { |
142 | 224 | if (current >= max_nodes) |
143 | 0 | return 0; |
144 | | |
145 | 224 | current = safe_muldiv_int(current, 8, 5, &err); |
146 | 224 | if (err != 0) |
147 | 0 | return 0; |
148 | 224 | if (current >= max_nodes) |
149 | 0 | current = max_nodes; |
150 | 224 | } |
151 | 224 | return current; |
152 | 224 | } |
153 | | |
154 | | /* internal STACK storage allocation */ |
155 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
156 | 12.1k | { |
157 | 12.1k | const void **tmpdata; |
158 | 12.1k | int num_alloc; |
159 | | |
160 | | /* Check to see the reservation isn't exceeding the hard limit */ |
161 | 12.1k | if (n > max_nodes - st->num) { |
162 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
163 | 0 | return 0; |
164 | 0 | } |
165 | | |
166 | | /* Figure out the new size */ |
167 | 12.1k | num_alloc = st->num + n; |
168 | 12.1k | if (num_alloc < min_nodes) |
169 | 8.67k | num_alloc = min_nodes; |
170 | | |
171 | | /* If |st->data| allocation was postponed */ |
172 | 12.1k | if (st->data == NULL) { |
173 | | /* |
174 | | * At this point, |st->num_alloc| and |st->num| are 0; |
175 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
176 | | */ |
177 | 5.72k | if ((st->data = OPENSSL_calloc(num_alloc, sizeof(void *))) == NULL) |
178 | 0 | return 0; |
179 | 5.72k | st->num_alloc = num_alloc; |
180 | 5.72k | return 1; |
181 | 5.72k | } |
182 | | |
183 | 6.40k | if (!exact) { |
184 | 6.40k | if (num_alloc <= st->num_alloc) |
185 | 6.17k | return 1; |
186 | 224 | num_alloc = compute_growth(num_alloc, st->num_alloc); |
187 | 224 | if (num_alloc == 0) { |
188 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
189 | 0 | return 0; |
190 | 0 | } |
191 | 224 | } else if (num_alloc == st->num_alloc) { |
192 | 0 | return 1; |
193 | 0 | } |
194 | | |
195 | 224 | tmpdata = OPENSSL_realloc_array((void *)st->data, num_alloc, sizeof(void *)); |
196 | 224 | if (tmpdata == NULL) |
197 | 0 | return 0; |
198 | | |
199 | 224 | st->data = tmpdata; |
200 | 224 | st->num_alloc = num_alloc; |
201 | 224 | return 1; |
202 | 224 | } |
203 | | |
204 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
205 | 8.45k | { |
206 | 8.45k | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
207 | | |
208 | 8.45k | if (st == NULL) |
209 | 0 | return NULL; |
210 | | |
211 | 8.45k | st->comp = c; |
212 | 8.45k | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
213 | | |
214 | 8.45k | if (n <= 0) |
215 | 8.45k | return st; |
216 | | |
217 | 0 | if (!sk_reserve(st, n, 1)) { |
218 | 0 | OPENSSL_sk_free(st); |
219 | 0 | return NULL; |
220 | 0 | } |
221 | | |
222 | 0 | return st; |
223 | 0 | } |
224 | | |
225 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
226 | 0 | { |
227 | 0 | if (st == NULL) { |
228 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
229 | 0 | return 0; |
230 | 0 | } |
231 | | |
232 | 0 | if (n < 0) |
233 | 0 | return 1; |
234 | 0 | return sk_reserve(st, n, 1); |
235 | 0 | } |
236 | | |
237 | | OPENSSL_STACK *OPENSSL_sk_set_thunks(OPENSSL_STACK *st, OPENSSL_sk_freefunc_thunk f_thunk) |
238 | 61.5k | { |
239 | 61.5k | if (st != NULL) |
240 | 2.89k | st->free_thunk = f_thunk; |
241 | | |
242 | 61.5k | return st; |
243 | 61.5k | } |
244 | | |
245 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
246 | 12.1k | { |
247 | 12.1k | if (st == NULL) { |
248 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
249 | 0 | return 0; |
250 | 0 | } |
251 | 12.1k | if (st->num == max_nodes) { |
252 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
253 | 0 | return 0; |
254 | 0 | } |
255 | | |
256 | 12.1k | if (!sk_reserve(st, 1, 0)) |
257 | 0 | return 0; |
258 | | |
259 | 12.1k | if ((loc >= st->num) || (loc < 0)) { |
260 | 12.1k | loc = st->num; |
261 | 12.1k | st->data[loc] = data; |
262 | 12.1k | } else { |
263 | 0 | memmove(&st->data[loc + 1], &st->data[loc], |
264 | 0 | sizeof(st->data[0]) * (st->num - loc)); |
265 | 0 | st->data[loc] = data; |
266 | 0 | } |
267 | 12.1k | st->num++; |
268 | 12.1k | if (st->sorted && st->num > 1) { |
269 | 2.12k | if (st->comp != NULL) { |
270 | 0 | if (loc > 0 && (st->comp(&st->data[loc - 1], &st->data[loc]) > 0)) |
271 | 0 | st->sorted = 0; |
272 | 0 | if (loc < st->num - 1 |
273 | 0 | && (st->comp(&st->data[loc + 1], &st->data[loc]) < 0)) |
274 | 0 | st->sorted = 0; |
275 | 2.12k | } else { |
276 | 2.12k | st->sorted = 0; |
277 | 2.12k | } |
278 | 2.12k | } |
279 | 12.1k | return st->num; |
280 | 12.1k | } |
281 | | |
282 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
283 | 16 | { |
284 | 16 | const void *ret = st->data[loc]; |
285 | | |
286 | 16 | if (loc != st->num - 1) |
287 | 0 | memmove(&st->data[loc], &st->data[loc + 1], |
288 | 0 | sizeof(st->data[0]) * (st->num - loc - 1)); |
289 | 16 | st->num--; |
290 | 16 | st->sorted = st->sorted || st->num <= 1; |
291 | | |
292 | 16 | return (void *)ret; |
293 | 16 | } |
294 | | |
295 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
296 | 0 | { |
297 | 0 | int i; |
298 | |
|
299 | 0 | if (st == NULL) |
300 | 0 | return NULL; |
301 | | |
302 | 0 | for (i = 0; i < st->num; i++) |
303 | 0 | if (st->data[i] == p) |
304 | 0 | return internal_delete(st, i); |
305 | 0 | return NULL; |
306 | 0 | } |
307 | | |
308 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
309 | 16 | { |
310 | 16 | if (st == NULL || loc < 0 || loc >= st->num) |
311 | 0 | return NULL; |
312 | | |
313 | 16 | return internal_delete(st, loc); |
314 | 16 | } |
315 | | |
316 | | static int internal_find(const OPENSSL_STACK *st, const void *data, |
317 | | int ret_val_options, int *pnum_matched) |
318 | 32 | { |
319 | 32 | const void *r; |
320 | 32 | int i, count = 0; |
321 | 32 | int *pnum = pnum_matched; |
322 | | |
323 | 32 | if (st == NULL || st->num == 0) |
324 | 0 | return -1; |
325 | | |
326 | 32 | if (pnum == NULL) |
327 | 32 | pnum = &count; |
328 | | |
329 | 32 | if (st->comp == NULL) { |
330 | 0 | for (i = 0; i < st->num; i++) |
331 | 0 | if (st->data[i] == data) { |
332 | 0 | *pnum = 1; |
333 | 0 | return i; |
334 | 0 | } |
335 | 0 | *pnum = 0; |
336 | 0 | return -1; |
337 | 0 | } |
338 | | |
339 | 32 | if (data == NULL) |
340 | 0 | return -1; |
341 | | |
342 | 32 | if (!st->sorted) { |
343 | 0 | int res = -1; |
344 | |
|
345 | 0 | for (i = 0; i < st->num; i++) |
346 | 0 | if (st->comp(&data, st->data + i) == 0) { |
347 | 0 | if (res == -1) |
348 | 0 | res = i; |
349 | 0 | ++*pnum; |
350 | | /* Check if only one result is wanted and exit if so */ |
351 | 0 | if (pnum_matched == NULL) |
352 | 0 | return i; |
353 | 0 | } |
354 | 0 | if (res == -1) |
355 | 0 | *pnum = 0; |
356 | 0 | return res; |
357 | 0 | } |
358 | | |
359 | 32 | if (pnum_matched != NULL) |
360 | 0 | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
361 | 32 | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
362 | 32 | ret_val_options); |
363 | | |
364 | 32 | if (pnum_matched != NULL) { |
365 | 0 | *pnum = 0; |
366 | 0 | if (r != NULL) { |
367 | 0 | const void **p = (const void **)r; |
368 | |
|
369 | 0 | while (p < st->data + st->num) { |
370 | 0 | if (st->comp(&data, p) != 0) |
371 | 0 | break; |
372 | 0 | ++*pnum; |
373 | 0 | ++p; |
374 | 0 | } |
375 | 0 | } |
376 | 0 | } |
377 | | |
378 | 32 | return r == NULL ? -1 : (int)((const void **)r - st->data); |
379 | 32 | } |
380 | | |
381 | | int OPENSSL_sk_find(const OPENSSL_STACK *st, const void *data) |
382 | 32 | { |
383 | 32 | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
384 | 32 | } |
385 | | |
386 | | int OPENSSL_sk_find_ex(const OPENSSL_STACK *st, const void *data) |
387 | 0 | { |
388 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
389 | 0 | } |
390 | | |
391 | | int OPENSSL_sk_find_all(const OPENSSL_STACK *st, const void *data, int *pnum) |
392 | 0 | { |
393 | 0 | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
394 | 0 | } |
395 | | |
396 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
397 | 12.1k | { |
398 | 12.1k | if (st == NULL) |
399 | 0 | return 0; |
400 | 12.1k | return OPENSSL_sk_insert(st, data, st->num); |
401 | 12.1k | } |
402 | | |
403 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
404 | 0 | { |
405 | 0 | return OPENSSL_sk_insert(st, data, 0); |
406 | 0 | } |
407 | | |
408 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
409 | 0 | { |
410 | 0 | if (st == NULL || st->num == 0) |
411 | 0 | return NULL; |
412 | 0 | return internal_delete(st, 0); |
413 | 0 | } |
414 | | |
415 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
416 | 0 | { |
417 | 0 | if (st == NULL || st->num == 0) |
418 | 0 | return NULL; |
419 | 0 | return internal_delete(st, st->num - 1); |
420 | 0 | } |
421 | | |
422 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
423 | 0 | { |
424 | 0 | if (st == NULL || st->num == 0) |
425 | 0 | return; |
426 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
427 | 0 | st->num = 0; |
428 | 0 | } |
429 | | |
430 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
431 | 64.5k | { |
432 | 64.5k | int i; |
433 | | |
434 | 64.5k | if (st == NULL) |
435 | 58.7k | return; |
436 | | |
437 | 17.7k | for (i = 0; i < st->num; i++) { |
438 | 11.9k | if (st->data[i] != NULL) { |
439 | 11.9k | if (st->free_thunk != NULL) |
440 | 5.66k | st->free_thunk(func, (void *)st->data[i]); |
441 | 6.30k | else |
442 | 6.30k | func((void *)st->data[i]); |
443 | 11.9k | } |
444 | 11.9k | } |
445 | 5.82k | OPENSSL_sk_free(st); |
446 | 5.82k | } |
447 | | |
448 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
449 | 66.8k | { |
450 | 66.8k | if (st == NULL) |
451 | 58.4k | return; |
452 | 8.45k | OPENSSL_free(st->data); |
453 | 8.45k | OPENSSL_free(st); |
454 | 8.45k | } |
455 | | |
456 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
457 | 191k | { |
458 | 191k | return st == NULL ? -1 : st->num; |
459 | 191k | } |
460 | | |
461 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
462 | 11.1k | { |
463 | 11.1k | if (st == NULL || i < 0 || i >= st->num) |
464 | 0 | return NULL; |
465 | 11.1k | return (void *)st->data[i]; |
466 | 11.1k | } |
467 | | |
468 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
469 | 0 | { |
470 | 0 | if (st == NULL) { |
471 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
472 | 0 | return NULL; |
473 | 0 | } |
474 | 0 | if (i < 0 || i >= st->num) { |
475 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
476 | 0 | "i=%d", i); |
477 | 0 | return NULL; |
478 | 0 | } |
479 | 0 | st->data[i] = data; |
480 | 0 | st->sorted = st->num <= 1; |
481 | 0 | return (void *)st->data[i]; |
482 | 0 | } |
483 | | |
484 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
485 | 133 | { |
486 | 133 | if (st != NULL && !st->sorted && st->comp != NULL) { |
487 | 0 | if (st->num > 1) |
488 | 0 | qsort(st->data, st->num, sizeof(void *), st->comp); |
489 | 0 | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
490 | 0 | } |
491 | 133 | } |
492 | | |
493 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
494 | 0 | { |
495 | 0 | return st == NULL ? 1 : st->sorted; |
496 | 0 | } |