/src/openssl/crypto/threads_pthread.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* We need to use the OPENSSL_fork_*() deprecated APIs */ |
11 | | #define OPENSSL_SUPPRESS_DEPRECATED |
12 | | |
13 | | #if !defined(__GNUC__) || !defined(__ATOMIC_ACQ_REL) || \ |
14 | | defined(BROKEN_CLANG_ATOMICS) || defined(OPENSSL_NO_STDIO) |
15 | | /* |
16 | | * we only enable REPORT_RWLOCK_CONTENTION on clang/gcc when we have |
17 | | * atomics available. We do this because we need to use an atomic to track |
18 | | * when we can close the log file. We could use the CRYPTO_atomic_ api |
19 | | * but that requires lock creation which gets us into a bad recursive loop |
20 | | * when we try to initialize the file pointer |
21 | | */ |
22 | | # ifdef REPORT_RWLOCK_CONTENTION |
23 | | # warning "RWLOCK CONTENTION REPORTING NOT SUPPORTED, Disabling" |
24 | | # undef REPORT_RWLOCK_CONTENTION |
25 | | # endif |
26 | | #endif |
27 | | |
28 | | #ifdef REPORT_RWLOCK_CONTENTION |
29 | | # define _GNU_SOURCE |
30 | | # include <execinfo.h> |
31 | | # include <unistd.h> |
32 | | #endif |
33 | | |
34 | | #include <openssl/crypto.h> |
35 | | #include <crypto/cryptlib.h> |
36 | | #include <crypto/sparse_array.h> |
37 | | #include "internal/cryptlib.h" |
38 | | #include "internal/threads_common.h" |
39 | | #include "internal/rcu.h" |
40 | | #ifdef REPORT_RWLOCK_CONTENTION |
41 | | # include <fcntl.h> |
42 | | # include <stdbool.h> |
43 | | # include <sys/syscall.h> |
44 | | # include <sys/uio.h> |
45 | | # include "internal/time.h" |
46 | | #endif |
47 | | #include "rcu_internal.h" |
48 | | |
49 | | #if defined(__clang__) && defined(__has_feature) |
50 | | # if __has_feature(thread_sanitizer) |
51 | | # define __SANITIZE_THREAD__ |
52 | | # endif |
53 | | #endif |
54 | | |
55 | | #if defined(__SANITIZE_THREAD__) |
56 | | # include <sanitizer/tsan_interface.h> |
57 | | # define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \ |
58 | | __tsan_mutex_post_unlock((x), 0) |
59 | | |
60 | | # define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \ |
61 | | __tsan_mutex_post_lock((x), 0, 0) |
62 | | #else |
63 | | # define TSAN_FAKE_UNLOCK(x) |
64 | | # define TSAN_FAKE_LOCK(x) |
65 | | #endif |
66 | | |
67 | | #if defined(__sun) |
68 | | # include <atomic.h> |
69 | | #endif |
70 | | |
71 | | #if defined(__apple_build_version__) && __apple_build_version__ < 6000000 |
72 | | /* |
73 | | * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and |
74 | | * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free() |
75 | | * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))). |
76 | | * All of this makes impossible to use __atomic_is_lock_free here. |
77 | | * |
78 | | * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760 |
79 | | */ |
80 | | # define BROKEN_CLANG_ATOMICS |
81 | | #endif |
82 | | |
83 | | #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS) |
84 | | |
85 | | # if defined(OPENSSL_SYS_UNIX) |
86 | | # include <sys/types.h> |
87 | | # include <unistd.h> |
88 | | # endif |
89 | | |
90 | | # include <assert.h> |
91 | | |
92 | | /* |
93 | | * The Non-Stop KLT thread model currently seems broken in its rwlock |
94 | | * implementation |
95 | | * Likewise is there a problem with the glibc implementation on riscv. |
96 | | */ |
97 | | # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \ |
98 | | && !defined(__riscv) |
99 | | # define USE_RWLOCK |
100 | | # endif |
101 | | |
102 | | /* |
103 | | * For all GNU/clang atomic builtins, we also need fallbacks, to cover all |
104 | | * other compilers. |
105 | | |
106 | | * Unfortunately, we can't do that with some "generic type", because there's no |
107 | | * guarantee that the chosen generic type is large enough to cover all cases. |
108 | | * Therefore, we implement fallbacks for each applicable type, with composed |
109 | | * names that include the type they handle. |
110 | | * |
111 | | * (an anecdote: we previously tried to use |void *| as the generic type, with |
112 | | * the thought that the pointer itself is the largest type. However, this is |
113 | | * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large) |
114 | | * |
115 | | * All applicable ATOMIC_ macros take the intended type as first parameter, so |
116 | | * they can map to the correct fallback function. In the GNU/clang case, that |
117 | | * parameter is simply ignored. |
118 | | */ |
119 | | |
120 | | /* |
121 | | * Internal types used with the ATOMIC_ macros, to make it possible to compose |
122 | | * fallback function names. |
123 | | */ |
124 | | typedef void *pvoid; |
125 | | |
126 | | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \ |
127 | | && !defined(USE_ATOMIC_FALLBACKS) |
128 | 236k | # define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o) |
129 | 80 | # define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o) |
130 | 6.35k | # define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o) |
131 | 80 | # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o) |
132 | 0 | # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o) |
133 | | # else |
134 | | static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER; |
135 | | |
136 | | # define IMPL_fallback_atomic_load_n(t) \ |
137 | | static ossl_inline t fallback_atomic_load_n_##t(t *p) \ |
138 | | { \ |
139 | | t ret; \ |
140 | | \ |
141 | | pthread_mutex_lock(&atomic_sim_lock); \ |
142 | | ret = *p; \ |
143 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
144 | | return ret; \ |
145 | | } |
146 | | IMPL_fallback_atomic_load_n(uint32_t) |
147 | | IMPL_fallback_atomic_load_n(uint64_t) |
148 | | IMPL_fallback_atomic_load_n(pvoid) |
149 | | |
150 | | # define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p) |
151 | | |
152 | | # define IMPL_fallback_atomic_store_n(t) \ |
153 | | static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \ |
154 | | { \ |
155 | | t ret; \ |
156 | | \ |
157 | | pthread_mutex_lock(&atomic_sim_lock); \ |
158 | | ret = *p; \ |
159 | | *p = v; \ |
160 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
161 | | return ret; \ |
162 | | } |
163 | | IMPL_fallback_atomic_store_n(uint32_t) |
164 | | |
165 | | # define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v) |
166 | | |
167 | | # define IMPL_fallback_atomic_store(t) \ |
168 | | static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \ |
169 | | { \ |
170 | | pthread_mutex_lock(&atomic_sim_lock); \ |
171 | | *p = *v; \ |
172 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
173 | | } |
174 | | IMPL_fallback_atomic_store(pvoid) |
175 | | |
176 | | # define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v) |
177 | | |
178 | | /* |
179 | | * The fallbacks that follow don't need any per type implementation, as |
180 | | * they are designed for uint64_t only. If there comes a time when multiple |
181 | | * types need to be covered, it's relatively easy to refactor them the same |
182 | | * way as the fallbacks above. |
183 | | */ |
184 | | |
185 | | static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v) |
186 | | { |
187 | | uint64_t ret; |
188 | | |
189 | | pthread_mutex_lock(&atomic_sim_lock); |
190 | | *p += v; |
191 | | ret = *p; |
192 | | pthread_mutex_unlock(&atomic_sim_lock); |
193 | | return ret; |
194 | | } |
195 | | |
196 | | # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v) |
197 | | |
198 | | static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v) |
199 | | { |
200 | | uint64_t ret; |
201 | | |
202 | | pthread_mutex_lock(&atomic_sim_lock); |
203 | | *p -= v; |
204 | | ret = *p; |
205 | | pthread_mutex_unlock(&atomic_sim_lock); |
206 | | return ret; |
207 | | } |
208 | | |
209 | | # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v) |
210 | | # endif |
211 | | |
212 | | /* |
213 | | * This is the core of an rcu lock. It tracks the readers and writers for the |
214 | | * current quiescence point for a given lock. Users is the 64 bit value that |
215 | | * stores the READERS/ID as defined above |
216 | | * |
217 | | */ |
218 | | struct rcu_qp { |
219 | | uint64_t users; |
220 | | }; |
221 | | |
222 | | struct thread_qp { |
223 | | struct rcu_qp *qp; |
224 | | unsigned int depth; |
225 | | CRYPTO_RCU_LOCK *lock; |
226 | | }; |
227 | | |
228 | 0 | # define MAX_QPS 10 |
229 | | /* |
230 | | * This is the per thread tracking data |
231 | | * that is assigned to each thread participating |
232 | | * in an rcu qp |
233 | | * |
234 | | * qp points to the qp that it last acquired |
235 | | * |
236 | | */ |
237 | | struct rcu_thr_data { |
238 | | struct thread_qp thread_qps[MAX_QPS]; |
239 | | }; |
240 | | |
241 | | /* |
242 | | * This is the internal version of a CRYPTO_RCU_LOCK |
243 | | * it is cast from CRYPTO_RCU_LOCK |
244 | | */ |
245 | | struct rcu_lock_st { |
246 | | /* Callbacks to call for next ossl_synchronize_rcu */ |
247 | | struct rcu_cb_item *cb_items; |
248 | | |
249 | | /* The context we are being created against */ |
250 | | OSSL_LIB_CTX *ctx; |
251 | | |
252 | | /* Array of quiescent points for synchronization */ |
253 | | struct rcu_qp *qp_group; |
254 | | |
255 | | /* rcu generation counter for in-order retirement */ |
256 | | uint32_t id_ctr; |
257 | | |
258 | | /* Number of elements in qp_group array */ |
259 | | uint32_t group_count; |
260 | | |
261 | | /* Index of the current qp in the qp_group array */ |
262 | | uint32_t reader_idx; |
263 | | |
264 | | /* value of the next id_ctr value to be retired */ |
265 | | uint32_t next_to_retire; |
266 | | |
267 | | /* index of the next free rcu_qp in the qp_group */ |
268 | | uint32_t current_alloc_idx; |
269 | | |
270 | | /* number of qp's in qp_group array currently being retired */ |
271 | | uint32_t writers_alloced; |
272 | | |
273 | | /* lock protecting write side operations */ |
274 | | pthread_mutex_t write_lock; |
275 | | |
276 | | /* lock protecting updates to writers_alloced/current_alloc_idx */ |
277 | | pthread_mutex_t alloc_lock; |
278 | | |
279 | | /* signal to wake threads waiting on alloc_lock */ |
280 | | pthread_cond_t alloc_signal; |
281 | | |
282 | | /* lock to enforce in-order retirement */ |
283 | | pthread_mutex_t prior_lock; |
284 | | |
285 | | /* signal to wake threads waiting on prior_lock */ |
286 | | pthread_cond_t prior_signal; |
287 | | }; |
288 | | |
289 | | /* Read side acquisition of the current qp */ |
290 | | static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock) |
291 | 0 | { |
292 | 0 | uint32_t qp_idx; |
293 | | |
294 | | /* get the current qp index */ |
295 | 0 | for (;;) { |
296 | 0 | qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED); |
297 | | |
298 | | /* |
299 | | * Notes on use of __ATOMIC_ACQUIRE |
300 | | * We need to ensure the following: |
301 | | * 1) That subsequent operations aren't optimized by hoisting them above |
302 | | * this operation. Specifically, we don't want the below re-load of |
303 | | * qp_idx to get optimized away |
304 | | * 2) We want to ensure that any updating of reader_idx on the write side |
305 | | * of the lock is flushed from a local cpu cache so that we see any |
306 | | * updates prior to the load. This is a non-issue on cache coherent |
307 | | * systems like x86, but is relevant on other arches |
308 | | */ |
309 | 0 | ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
310 | 0 | __ATOMIC_ACQUIRE); |
311 | | |
312 | | /* if the idx hasn't changed, we're good, else try again */ |
313 | 0 | if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, |
314 | 0 | __ATOMIC_ACQUIRE)) |
315 | 0 | break; |
316 | | |
317 | 0 | ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
318 | 0 | __ATOMIC_RELAXED); |
319 | 0 | } |
320 | |
|
321 | 0 | return &lock->qp_group[qp_idx]; |
322 | 0 | } |
323 | | |
324 | | static void ossl_rcu_free_local_data(void *arg) |
325 | 0 | { |
326 | 0 | OSSL_LIB_CTX *ctx = arg; |
327 | 0 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx); |
328 | |
|
329 | 0 | CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL); |
330 | 0 | OPENSSL_free(data); |
331 | 0 | } |
332 | | |
333 | | int ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock) |
334 | 0 | { |
335 | 0 | struct rcu_thr_data *data; |
336 | 0 | int i, available_qp = -1; |
337 | | |
338 | | /* |
339 | | * we're going to access current_qp here so ask the |
340 | | * processor to fetch it |
341 | | */ |
342 | 0 | data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx); |
343 | |
|
344 | 0 | if (data == NULL) { |
345 | 0 | data = OPENSSL_zalloc(sizeof(*data)); |
346 | 0 | if (data == NULL) |
347 | 0 | return 0; |
348 | | |
349 | 0 | if (!CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data)) { |
350 | 0 | OPENSSL_free(data); |
351 | 0 | return 0; |
352 | 0 | } |
353 | 0 | if (!ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data)) { |
354 | 0 | OPENSSL_free(data); |
355 | 0 | CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, NULL); |
356 | 0 | return 0; |
357 | 0 | } |
358 | 0 | } |
359 | | |
360 | 0 | for (i = 0; i < MAX_QPS; i++) { |
361 | 0 | if (data->thread_qps[i].qp == NULL && available_qp == -1) |
362 | 0 | available_qp = i; |
363 | | /* If we have a hold on this lock already, we're good */ |
364 | 0 | if (data->thread_qps[i].lock == lock) { |
365 | 0 | data->thread_qps[i].depth++; |
366 | 0 | return 1; |
367 | 0 | } |
368 | 0 | } |
369 | | |
370 | | /* |
371 | | * if we get here, then we don't have a hold on this lock yet |
372 | | */ |
373 | 0 | assert(available_qp != -1); |
374 | |
|
375 | 0 | data->thread_qps[available_qp].qp = get_hold_current_qp(lock); |
376 | 0 | data->thread_qps[available_qp].depth = 1; |
377 | 0 | data->thread_qps[available_qp].lock = lock; |
378 | 0 | return 1; |
379 | 0 | } |
380 | | |
381 | | void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock) |
382 | 0 | { |
383 | 0 | int i; |
384 | 0 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx); |
385 | 0 | uint64_t ret; |
386 | |
|
387 | 0 | assert(data != NULL); |
388 | |
|
389 | 0 | for (i = 0; i < MAX_QPS; i++) { |
390 | 0 | if (data->thread_qps[i].lock == lock) { |
391 | | /* |
392 | | * we have to use __ATOMIC_RELEASE here |
393 | | * to ensure that all preceding read instructions complete |
394 | | * before the decrement is visible to ossl_synchronize_rcu |
395 | | */ |
396 | 0 | data->thread_qps[i].depth--; |
397 | 0 | if (data->thread_qps[i].depth == 0) { |
398 | 0 | ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, |
399 | 0 | (uint64_t)1, __ATOMIC_RELEASE); |
400 | 0 | OPENSSL_assert(ret != UINT64_MAX); |
401 | 0 | data->thread_qps[i].qp = NULL; |
402 | 0 | data->thread_qps[i].lock = NULL; |
403 | 0 | } |
404 | 0 | return; |
405 | 0 | } |
406 | 0 | } |
407 | | /* |
408 | | * If we get here, we're trying to unlock a lock that we never acquired - |
409 | | * that's fatal. |
410 | | */ |
411 | 0 | assert(0); |
412 | 0 | } |
413 | | |
414 | | /* |
415 | | * Write side allocation routine to get the current qp |
416 | | * and replace it with a new one |
417 | | */ |
418 | | static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id) |
419 | 80 | { |
420 | 80 | uint32_t current_idx; |
421 | | |
422 | 80 | pthread_mutex_lock(&lock->alloc_lock); |
423 | | |
424 | | /* |
425 | | * we need at least one qp to be available with one |
426 | | * left over, so that readers can start working on |
427 | | * one that isn't yet being waited on |
428 | | */ |
429 | 80 | while (lock->group_count - lock->writers_alloced < 2) |
430 | | /* we have to wait for one to be free */ |
431 | 0 | pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock); |
432 | | |
433 | 80 | current_idx = lock->current_alloc_idx; |
434 | | |
435 | | /* Allocate the qp */ |
436 | 80 | lock->writers_alloced++; |
437 | | |
438 | | /* increment the allocation index */ |
439 | 80 | lock->current_alloc_idx = |
440 | 80 | (lock->current_alloc_idx + 1) % lock->group_count; |
441 | | |
442 | 80 | *curr_id = lock->id_ctr; |
443 | 80 | lock->id_ctr++; |
444 | | |
445 | | /* |
446 | | * make the current state of everything visible by this release |
447 | | * when get_hold_current_qp acquires the next qp |
448 | | */ |
449 | 80 | ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx, |
450 | 80 | __ATOMIC_RELEASE); |
451 | | |
452 | | /* |
453 | | * this should make sure that the new value of reader_idx is visible in |
454 | | * get_hold_current_qp, directly after incrementing the users count |
455 | | */ |
456 | 80 | ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0, |
457 | 80 | __ATOMIC_RELEASE); |
458 | | |
459 | | /* wake up any waiters */ |
460 | 80 | pthread_cond_signal(&lock->alloc_signal); |
461 | 80 | pthread_mutex_unlock(&lock->alloc_lock); |
462 | 80 | return &lock->qp_group[current_idx]; |
463 | 80 | } |
464 | | |
465 | | static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp) |
466 | 80 | { |
467 | 80 | pthread_mutex_lock(&lock->alloc_lock); |
468 | 80 | lock->writers_alloced--; |
469 | 80 | pthread_cond_signal(&lock->alloc_signal); |
470 | 80 | pthread_mutex_unlock(&lock->alloc_lock); |
471 | 80 | } |
472 | | |
473 | | static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock, |
474 | | uint32_t count) |
475 | 32 | { |
476 | 32 | struct rcu_qp *new = |
477 | 32 | OPENSSL_calloc(count, sizeof(*new)); |
478 | | |
479 | 32 | lock->group_count = count; |
480 | 32 | return new; |
481 | 32 | } |
482 | | |
483 | | void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock) |
484 | 48 | { |
485 | 48 | pthread_mutex_lock(&lock->write_lock); |
486 | 48 | TSAN_FAKE_UNLOCK(&lock->write_lock); |
487 | 48 | } |
488 | | |
489 | | void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock) |
490 | 48 | { |
491 | 48 | TSAN_FAKE_LOCK(&lock->write_lock); |
492 | 48 | pthread_mutex_unlock(&lock->write_lock); |
493 | 48 | } |
494 | | |
495 | | void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock) |
496 | 80 | { |
497 | 80 | struct rcu_qp *qp; |
498 | 80 | uint64_t count; |
499 | 80 | uint32_t curr_id; |
500 | 80 | struct rcu_cb_item *cb_items, *tmpcb; |
501 | | |
502 | 80 | pthread_mutex_lock(&lock->write_lock); |
503 | 80 | cb_items = lock->cb_items; |
504 | 80 | lock->cb_items = NULL; |
505 | 80 | pthread_mutex_unlock(&lock->write_lock); |
506 | | |
507 | 80 | qp = update_qp(lock, &curr_id); |
508 | | |
509 | | /* retire in order */ |
510 | 80 | pthread_mutex_lock(&lock->prior_lock); |
511 | 80 | while (lock->next_to_retire != curr_id) |
512 | 0 | pthread_cond_wait(&lock->prior_signal, &lock->prior_lock); |
513 | | |
514 | | /* |
515 | | * wait for the reader count to reach zero |
516 | | * Note the use of __ATOMIC_ACQUIRE here to ensure that any |
517 | | * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock |
518 | | * is visible prior to our read |
519 | | * however this is likely just necessary to silence a tsan warning |
520 | | * because the read side should not do any write operation |
521 | | * outside the atomic itself |
522 | | */ |
523 | 80 | do { |
524 | 80 | count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE); |
525 | 80 | } while (count != (uint64_t)0); |
526 | | |
527 | 80 | lock->next_to_retire++; |
528 | 80 | pthread_cond_broadcast(&lock->prior_signal); |
529 | 80 | pthread_mutex_unlock(&lock->prior_lock); |
530 | | |
531 | 80 | retire_qp(lock, qp); |
532 | | |
533 | | /* handle any callbacks that we have */ |
534 | 96 | while (cb_items != NULL) { |
535 | 16 | tmpcb = cb_items; |
536 | 16 | cb_items = cb_items->next; |
537 | 16 | tmpcb->fn(tmpcb->data); |
538 | 16 | OPENSSL_free(tmpcb); |
539 | 16 | } |
540 | 80 | } |
541 | | |
542 | | /* |
543 | | * Note: This call assumes its made under the protection of |
544 | | * ossl_rcu_write_lock |
545 | | */ |
546 | | int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data) |
547 | 16 | { |
548 | 16 | struct rcu_cb_item *new = |
549 | 16 | OPENSSL_zalloc(sizeof(*new)); |
550 | | |
551 | 16 | if (new == NULL) |
552 | 0 | return 0; |
553 | | |
554 | 16 | new->data = data; |
555 | 16 | new->fn = cb; |
556 | | |
557 | 16 | new->next = lock->cb_items; |
558 | 16 | lock->cb_items = new; |
559 | | |
560 | 16 | return 1; |
561 | 16 | } |
562 | | |
563 | | void *ossl_rcu_uptr_deref(void **p) |
564 | 236k | { |
565 | 236k | return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE); |
566 | 236k | } |
567 | | |
568 | | void ossl_rcu_assign_uptr(void **p, void **v) |
569 | 6.35k | { |
570 | 6.35k | ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE); |
571 | 6.35k | } |
572 | | |
573 | | CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx) |
574 | 32 | { |
575 | 32 | struct rcu_lock_st *new; |
576 | | |
577 | | /* |
578 | | * We need a minimum of 2 qp's |
579 | | */ |
580 | 32 | if (num_writers < 2) |
581 | 32 | num_writers = 2; |
582 | | |
583 | 32 | ctx = ossl_lib_ctx_get_concrete(ctx); |
584 | 32 | if (ctx == NULL) |
585 | 0 | return 0; |
586 | | |
587 | 32 | new = OPENSSL_zalloc(sizeof(*new)); |
588 | 32 | if (new == NULL) |
589 | 0 | return NULL; |
590 | | |
591 | 32 | new->ctx = ctx; |
592 | 32 | pthread_mutex_init(&new->write_lock, NULL); |
593 | 32 | pthread_mutex_init(&new->prior_lock, NULL); |
594 | 32 | pthread_mutex_init(&new->alloc_lock, NULL); |
595 | 32 | pthread_cond_init(&new->prior_signal, NULL); |
596 | 32 | pthread_cond_init(&new->alloc_signal, NULL); |
597 | | |
598 | 32 | new->qp_group = allocate_new_qp_group(new, num_writers); |
599 | 32 | if (new->qp_group == NULL) { |
600 | 0 | OPENSSL_free(new); |
601 | 0 | new = NULL; |
602 | 0 | } |
603 | | |
604 | 32 | return new; |
605 | 32 | } |
606 | | |
607 | | void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock) |
608 | 32 | { |
609 | 32 | struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock; |
610 | | |
611 | 32 | if (lock == NULL) |
612 | 0 | return; |
613 | | |
614 | | /* make sure we're synchronized */ |
615 | 32 | ossl_synchronize_rcu(rlock); |
616 | | |
617 | 32 | OPENSSL_free(rlock->qp_group); |
618 | | /* There should only be a single qp left now */ |
619 | 32 | OPENSSL_free(rlock); |
620 | 32 | } |
621 | | |
622 | | # ifdef REPORT_RWLOCK_CONTENTION |
623 | | /* |
624 | | * Normally we would use a BIO here to do this, but we create locks during |
625 | | * library initialization, and creating a bio too early, creates a recursive set |
626 | | * of stack calls that leads us to call CRYPTO_thread_run_once while currently |
627 | | * executing the init routine for various run_once functions, which leads to |
628 | | * deadlock. Avoid that by just using a FILE pointer. Also note that we |
629 | | * directly use a pthread_mutex_t to protect access from multiple threads |
630 | | * to the contention log file. We do this because we want to avoid use |
631 | | * of the CRYPTO_THREAD api so as to prevent recursive blocking reports. |
632 | | */ |
633 | | static CRYPTO_ONCE init_contention_data_flag = CRYPTO_ONCE_STATIC_INIT; |
634 | | pthread_mutex_t log_lock = PTHREAD_MUTEX_INITIALIZER; |
635 | | CRYPTO_THREAD_LOCAL thread_contention_data; |
636 | | |
637 | | struct stack_info { |
638 | | unsigned int nptrs; |
639 | | int write; |
640 | | OSSL_TIME start; |
641 | | OSSL_TIME duration; |
642 | | char **strings; |
643 | | }; |
644 | | |
645 | | # define STACKS_COUNT 32 |
646 | | # define BT_BUF_SIZE 1024 |
647 | | struct stack_traces { |
648 | | int fd; |
649 | | int lock_depth; |
650 | | size_t idx; |
651 | | struct stack_info stacks[STACKS_COUNT]; |
652 | | }; |
653 | | |
654 | | /* The glibc gettid() definition presents only since 2.30. */ |
655 | | static ossl_inline pid_t get_tid(void) |
656 | | { |
657 | | return syscall(SYS_gettid); |
658 | | } |
659 | | |
660 | | # ifdef FIPS_MODULE |
661 | | # define FIPS_SFX "-fips" |
662 | | # else |
663 | | # define FIPS_SFX "" |
664 | | # endif |
665 | | static void *init_contention_data(void) |
666 | | { |
667 | | struct stack_traces *traces; |
668 | | char fname_fmt[] = "lock-contention-log" FIPS_SFX ".%d.txt"; |
669 | | char fname[sizeof(fname_fmt) + sizeof(int) * 3]; |
670 | | |
671 | | traces = OPENSSL_zalloc(sizeof(struct stack_traces)); |
672 | | |
673 | | snprintf(fname, sizeof(fname), fname_fmt, get_tid()); |
674 | | |
675 | | traces->fd = open(fname, O_WRONLY | O_APPEND | O_CLOEXEC | O_CREAT, 0600); |
676 | | |
677 | | return traces; |
678 | | } |
679 | | |
680 | | static void destroy_contention_data(void *data) |
681 | | { |
682 | | struct stack_traces *st = data; |
683 | | |
684 | | close(st->fd); |
685 | | OPENSSL_free(data); |
686 | | } |
687 | | |
688 | | static void init_contention_data_once(void) |
689 | | { |
690 | | /* |
691 | | * Create a thread local key here to store our list of stack traces |
692 | | * to be printed when we unlock the lock we are holding |
693 | | */ |
694 | | CRYPTO_THREAD_init_local(&thread_contention_data, destroy_contention_data); |
695 | | return; |
696 | | } |
697 | | |
698 | | static struct stack_traces *get_stack_traces(bool init) |
699 | | { |
700 | | struct stack_traces *traces = CRYPTO_THREAD_get_local(&thread_contention_data); |
701 | | |
702 | | if (!traces && init) { |
703 | | traces = init_contention_data(); |
704 | | CRYPTO_THREAD_set_local(&thread_contention_data, traces); |
705 | | } |
706 | | |
707 | | return traces; |
708 | | } |
709 | | |
710 | | static void print_stack_traces(struct stack_traces *traces) |
711 | | { |
712 | | unsigned int j; |
713 | | struct iovec *iov; |
714 | | int iovcnt; |
715 | | |
716 | | while (traces != NULL && traces->idx >= 1) { |
717 | | traces->idx--; |
718 | | dprintf(traces->fd, |
719 | | "lock blocked on %s for %zu usec at time %zu tid %d\n", |
720 | | traces->stacks[traces->idx].write == 1 ? "WRITE" : "READ", |
721 | | ossl_time2us(traces->stacks[traces->idx].duration), |
722 | | ossl_time2us(traces->stacks[traces->idx].start), |
723 | | get_tid()); |
724 | | if (traces->stacks[traces->idx].strings != NULL) { |
725 | | static const char lf = '\n'; |
726 | | |
727 | | iovcnt = traces->stacks[traces->idx].nptrs * 2 + 1; |
728 | | iov = alloca(iovcnt * sizeof(*iov)); |
729 | | for (j = 0; j < traces->stacks[traces->idx].nptrs; j++) { |
730 | | iov[2 * j].iov_base = traces->stacks[traces->idx].strings[j]; |
731 | | iov[2 * j].iov_len = strlen(traces->stacks[traces->idx].strings[j]); |
732 | | iov[2 * j + 1].iov_base = (char *) &lf; |
733 | | iov[2 * j + 1].iov_len = 1; |
734 | | } |
735 | | iov[traces->stacks[traces->idx].nptrs * 2].iov_base = (char *) &lf; |
736 | | iov[traces->stacks[traces->idx].nptrs * 2].iov_len = 1; |
737 | | } else { |
738 | | static const char no_bt[] = "No stack trace available\n\n"; |
739 | | |
740 | | iovcnt = 1; |
741 | | iov = alloca(iovcnt * sizeof(*iov)); |
742 | | iov[0].iov_base = (char *) no_bt; |
743 | | iov[0].iov_len = sizeof(no_bt) - 1; |
744 | | } |
745 | | writev(traces->fd, iov, iovcnt); |
746 | | free(traces->stacks[traces->idx].strings); |
747 | | } |
748 | | } |
749 | | |
750 | | static ossl_inline void ossl_init_rwlock_contention_data(void) |
751 | | { |
752 | | CRYPTO_THREAD_run_once(&init_contention_data_flag, init_contention_data_once); |
753 | | } |
754 | | |
755 | | static int record_lock_contention(pthread_rwlock_t *lock, |
756 | | struct stack_traces *traces, bool write) |
757 | | { |
758 | | void *buffer[BT_BUF_SIZE]; |
759 | | OSSL_TIME start, end; |
760 | | int ret; |
761 | | |
762 | | start = ossl_time_now(); |
763 | | ret = (write ? pthread_rwlock_wrlock : pthread_rwlock_rdlock)(lock); |
764 | | if (ret) |
765 | | return ret; |
766 | | end = ossl_time_now(); |
767 | | traces->stacks[traces->idx].nptrs = backtrace(buffer, BT_BUF_SIZE); |
768 | | traces->stacks[traces->idx].strings = backtrace_symbols(buffer, |
769 | | traces->stacks[traces->idx].nptrs); |
770 | | traces->stacks[traces->idx].duration = ossl_time_subtract(end, start); |
771 | | traces->stacks[traces->idx].start = start; |
772 | | traces->stacks[traces->idx].write = write; |
773 | | traces->idx++; |
774 | | if (traces->idx >= STACKS_COUNT) { |
775 | | fprintf(stderr, "STACK RECORD OVERFLOW!\n"); |
776 | | print_stack_traces(traces); |
777 | | } |
778 | | |
779 | | return 0; |
780 | | } |
781 | | |
782 | | static ossl_inline int ossl_rwlock_rdlock(pthread_rwlock_t *lock) |
783 | | { |
784 | | struct stack_traces *traces = get_stack_traces(true); |
785 | | |
786 | | if (ossl_unlikely(traces == NULL)) |
787 | | return ENOMEM; |
788 | | |
789 | | traces->lock_depth++; |
790 | | if (pthread_rwlock_tryrdlock(lock)) { |
791 | | int ret = record_lock_contention(lock, traces, false); |
792 | | |
793 | | if (ret) |
794 | | traces->lock_depth--; |
795 | | |
796 | | return ret; |
797 | | } |
798 | | |
799 | | return 0; |
800 | | } |
801 | | |
802 | | static ossl_inline int ossl_rwlock_wrlock(pthread_rwlock_t *lock) |
803 | | { |
804 | | struct stack_traces *traces = get_stack_traces(true); |
805 | | |
806 | | if (ossl_unlikely(traces == NULL)) |
807 | | return ENOMEM; |
808 | | |
809 | | traces->lock_depth++; |
810 | | if (pthread_rwlock_trywrlock(lock)) { |
811 | | int ret = record_lock_contention(lock, traces, true); |
812 | | |
813 | | if (ret) |
814 | | traces->lock_depth--; |
815 | | |
816 | | return ret; |
817 | | } |
818 | | |
819 | | return 0; |
820 | | } |
821 | | |
822 | | static ossl_inline int ossl_rwlock_unlock(pthread_rwlock_t *lock) |
823 | | { |
824 | | int ret; |
825 | | |
826 | | ret = pthread_rwlock_unlock(lock); |
827 | | if (ret) |
828 | | return ret; |
829 | | |
830 | | { |
831 | | struct stack_traces *traces = get_stack_traces(false); |
832 | | |
833 | | if (traces != NULL) { |
834 | | traces->lock_depth--; |
835 | | assert(traces->lock_depth >= 0); |
836 | | if (traces->lock_depth == 0) |
837 | | print_stack_traces(traces); |
838 | | } |
839 | | } |
840 | | |
841 | | return 0; |
842 | | } |
843 | | |
844 | | # else /* !REPORT_RWLOCK_CONTENTION */ |
845 | | |
846 | | static ossl_inline void ossl_init_rwlock_contention_data(void) |
847 | 58.8k | { |
848 | 58.8k | } |
849 | | |
850 | | static ossl_inline int ossl_rwlock_rdlock(pthread_rwlock_t *rwlock) |
851 | 323k | { |
852 | 323k | return pthread_rwlock_rdlock(rwlock); |
853 | 323k | } |
854 | | |
855 | | static ossl_inline int ossl_rwlock_wrlock(pthread_rwlock_t *rwlock) |
856 | 28.6k | { |
857 | 28.6k | return pthread_rwlock_wrlock(rwlock); |
858 | 28.6k | } |
859 | | |
860 | | static ossl_inline int ossl_rwlock_unlock(pthread_rwlock_t *rwlock) |
861 | 352k | { |
862 | 352k | return pthread_rwlock_unlock(rwlock); |
863 | 352k | } |
864 | | # endif /* REPORT_RWLOCK_CONTENTION */ |
865 | | |
866 | | CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) |
867 | 58.8k | { |
868 | 58.8k | # ifdef USE_RWLOCK |
869 | 58.8k | CRYPTO_RWLOCK *lock; |
870 | | |
871 | 58.8k | ossl_init_rwlock_contention_data(); |
872 | | |
873 | 58.8k | if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) |
874 | | /* Don't set error, to avoid recursion blowup. */ |
875 | 0 | return NULL; |
876 | | |
877 | 58.8k | if (pthread_rwlock_init(lock, NULL) != 0) { |
878 | 0 | OPENSSL_free(lock); |
879 | 0 | return NULL; |
880 | 0 | } |
881 | | # else |
882 | | pthread_mutexattr_t attr; |
883 | | CRYPTO_RWLOCK *lock; |
884 | | |
885 | | if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) |
886 | | /* Don't set error, to avoid recursion blowup. */ |
887 | | return NULL; |
888 | | |
889 | | /* |
890 | | * We don't use recursive mutexes, but try to catch errors if we do. |
891 | | */ |
892 | | pthread_mutexattr_init(&attr); |
893 | | # if !defined (__TANDEM) && !defined (_SPT_MODEL_) |
894 | | # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK) |
895 | | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); |
896 | | # endif |
897 | | # else |
898 | | /* The SPT Thread Library does not define MUTEX attributes. */ |
899 | | # endif |
900 | | |
901 | | if (pthread_mutex_init(lock, &attr) != 0) { |
902 | | pthread_mutexattr_destroy(&attr); |
903 | | OPENSSL_free(lock); |
904 | | return NULL; |
905 | | } |
906 | | |
907 | | pthread_mutexattr_destroy(&attr); |
908 | | # endif |
909 | | |
910 | 58.8k | return lock; |
911 | 58.8k | } |
912 | | |
913 | | __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) |
914 | 323k | { |
915 | 323k | # ifdef USE_RWLOCK |
916 | 323k | if (!ossl_assert(ossl_rwlock_rdlock(lock) == 0)) |
917 | 0 | return 0; |
918 | | # else |
919 | | if (pthread_mutex_lock(lock) != 0) { |
920 | | assert(errno != EDEADLK && errno != EBUSY); |
921 | | return 0; |
922 | | } |
923 | | # endif |
924 | | |
925 | 323k | return 1; |
926 | 323k | } |
927 | | |
928 | | __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) |
929 | 28.6k | { |
930 | 28.6k | # ifdef USE_RWLOCK |
931 | 28.6k | if (!ossl_assert(ossl_rwlock_wrlock(lock) == 0)) |
932 | 0 | return 0; |
933 | | # else |
934 | | if (pthread_mutex_lock(lock) != 0) { |
935 | | assert(errno != EDEADLK && errno != EBUSY); |
936 | | return 0; |
937 | | } |
938 | | # endif |
939 | | |
940 | 28.6k | return 1; |
941 | 28.6k | } |
942 | | |
943 | | int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) |
944 | 352k | { |
945 | 352k | # ifdef USE_RWLOCK |
946 | 352k | if (ossl_rwlock_unlock(lock) != 0) |
947 | 0 | return 0; |
948 | | # else |
949 | | if (pthread_mutex_unlock(lock) != 0) { |
950 | | assert(errno != EPERM); |
951 | | return 0; |
952 | | } |
953 | | # endif |
954 | | |
955 | 352k | return 1; |
956 | 352k | } |
957 | | |
958 | | void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) |
959 | 58.9k | { |
960 | 58.9k | if (lock == NULL) |
961 | 128 | return; |
962 | | |
963 | 58.8k | # ifdef USE_RWLOCK |
964 | 58.8k | pthread_rwlock_destroy(lock); |
965 | | # else |
966 | | pthread_mutex_destroy(lock); |
967 | | # endif |
968 | 58.8k | OPENSSL_free(lock); |
969 | | |
970 | 58.8k | return; |
971 | 58.9k | } |
972 | | |
973 | | int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) |
974 | 870k | { |
975 | 870k | if (ossl_unlikely(pthread_once(once, init) != 0)) |
976 | 0 | return 0; |
977 | | |
978 | 870k | return 1; |
979 | 870k | } |
980 | | |
981 | | int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) |
982 | 64 | { |
983 | 64 | if (pthread_key_create(key, cleanup) != 0) |
984 | 0 | return 0; |
985 | | |
986 | 64 | return 1; |
987 | 64 | } |
988 | | |
989 | | void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) |
990 | 526k | { |
991 | 526k | return pthread_getspecific(*key); |
992 | 526k | } |
993 | | |
994 | | int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) |
995 | 64 | { |
996 | 64 | if (pthread_setspecific(*key, val) != 0) |
997 | 0 | return 0; |
998 | | |
999 | 64 | return 1; |
1000 | 64 | } |
1001 | | |
1002 | | int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) |
1003 | 48 | { |
1004 | 48 | if (pthread_key_delete(*key) != 0) |
1005 | 0 | return 0; |
1006 | | |
1007 | 48 | return 1; |
1008 | 48 | } |
1009 | | |
1010 | | CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) |
1011 | 0 | { |
1012 | 0 | return pthread_self(); |
1013 | 0 | } |
1014 | | |
1015 | | int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) |
1016 | 0 | { |
1017 | 0 | return pthread_equal(a, b); |
1018 | 0 | } |
1019 | | |
1020 | | int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) |
1021 | 138 | { |
1022 | 138 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1023 | 138 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1024 | 138 | *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL); |
1025 | 138 | return 1; |
1026 | 138 | } |
1027 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1028 | | /* This will work for all future Solaris versions. */ |
1029 | | if (ret != NULL) { |
1030 | | *ret = atomic_add_int_nv((volatile unsigned int *)val, amount); |
1031 | | return 1; |
1032 | | } |
1033 | | # endif |
1034 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
1035 | 0 | return 0; |
1036 | | |
1037 | 0 | *val += amount; |
1038 | 0 | *ret = *val; |
1039 | |
|
1040 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1041 | 0 | return 0; |
1042 | | |
1043 | 0 | return 1; |
1044 | 0 | } |
1045 | | |
1046 | | int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret, |
1047 | | CRYPTO_RWLOCK *lock) |
1048 | 0 | { |
1049 | 0 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1050 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1051 | 0 | *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL); |
1052 | 0 | return 1; |
1053 | 0 | } |
1054 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1055 | | /* This will work for all future Solaris versions. */ |
1056 | | if (ret != NULL) { |
1057 | | *ret = atomic_add_64_nv(val, op); |
1058 | | return 1; |
1059 | | } |
1060 | | # endif |
1061 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
1062 | 0 | return 0; |
1063 | 0 | *val += op; |
1064 | 0 | *ret = *val; |
1065 | |
|
1066 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1067 | 0 | return 0; |
1068 | | |
1069 | 0 | return 1; |
1070 | 0 | } |
1071 | | |
1072 | | int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret, |
1073 | | CRYPTO_RWLOCK *lock) |
1074 | 0 | { |
1075 | 0 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1076 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1077 | 0 | *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL); |
1078 | 0 | return 1; |
1079 | 0 | } |
1080 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1081 | | /* This will work for all future Solaris versions. */ |
1082 | | if (ret != NULL) { |
1083 | | *ret = atomic_and_64_nv(val, op); |
1084 | | return 1; |
1085 | | } |
1086 | | # endif |
1087 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
1088 | 0 | return 0; |
1089 | 0 | *val &= op; |
1090 | 0 | *ret = *val; |
1091 | |
|
1092 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1093 | 0 | return 0; |
1094 | | |
1095 | 0 | return 1; |
1096 | 0 | } |
1097 | | |
1098 | | int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, |
1099 | | CRYPTO_RWLOCK *lock) |
1100 | 32 | { |
1101 | 32 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1102 | 32 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1103 | 32 | *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL); |
1104 | 32 | return 1; |
1105 | 32 | } |
1106 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1107 | | /* This will work for all future Solaris versions. */ |
1108 | | if (ret != NULL) { |
1109 | | *ret = atomic_or_64_nv(val, op); |
1110 | | return 1; |
1111 | | } |
1112 | | # endif |
1113 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
1114 | 0 | return 0; |
1115 | 0 | *val |= op; |
1116 | 0 | *ret = *val; |
1117 | |
|
1118 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1119 | 0 | return 0; |
1120 | | |
1121 | 0 | return 1; |
1122 | 0 | } |
1123 | | |
1124 | | int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) |
1125 | 491k | { |
1126 | 491k | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1127 | 491k | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1128 | 491k | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
1129 | 491k | return 1; |
1130 | 491k | } |
1131 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1132 | | /* This will work for all future Solaris versions. */ |
1133 | | if (ret != NULL) { |
1134 | | *ret = atomic_or_64_nv(val, 0); |
1135 | | return 1; |
1136 | | } |
1137 | | # endif |
1138 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
1139 | 0 | return 0; |
1140 | 0 | *ret = *val; |
1141 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1142 | 0 | return 0; |
1143 | | |
1144 | 0 | return 1; |
1145 | 0 | } |
1146 | | |
1147 | | int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock) |
1148 | 6.30k | { |
1149 | 6.30k | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1150 | 6.30k | if (__atomic_is_lock_free(sizeof(*dst), dst)) { |
1151 | 6.30k | __atomic_store(dst, &val, __ATOMIC_RELEASE); |
1152 | 6.30k | return 1; |
1153 | 6.30k | } |
1154 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1155 | | /* This will work for all future Solaris versions. */ |
1156 | | if (dst != NULL) { |
1157 | | atomic_swap_64(dst, val); |
1158 | | return 1; |
1159 | | } |
1160 | | # endif |
1161 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
1162 | 0 | return 0; |
1163 | 0 | *dst = val; |
1164 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1165 | 0 | return 0; |
1166 | | |
1167 | 0 | return 1; |
1168 | 0 | } |
1169 | | |
1170 | | int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock) |
1171 | 0 | { |
1172 | 0 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
1173 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
1174 | 0 | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
1175 | 0 | return 1; |
1176 | 0 | } |
1177 | | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
1178 | | /* This will work for all future Solaris versions. */ |
1179 | | if (ret != NULL) { |
1180 | | *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0); |
1181 | | return 1; |
1182 | | } |
1183 | | # endif |
1184 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
1185 | 0 | return 0; |
1186 | 0 | *ret = *val; |
1187 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
1188 | 0 | return 0; |
1189 | | |
1190 | 0 | return 1; |
1191 | 0 | } |
1192 | | |
1193 | | # ifndef FIPS_MODULE |
1194 | | int openssl_init_fork_handlers(void) |
1195 | 0 | { |
1196 | 0 | return 1; |
1197 | 0 | } |
1198 | | # endif /* FIPS_MODULE */ |
1199 | | |
1200 | | int openssl_get_fork_id(void) |
1201 | 96 | { |
1202 | 96 | return getpid(); |
1203 | 96 | } |
1204 | | #endif |