Coverage Report

Created: 2025-10-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/asn1/a_time_posix.c
Line
Count
Source
1
/*
2
 * Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Time conversion to/from POSIX time_t and struct tm, with no support
12
 * for time zones other than UTC
13
 */
14
15
#include <inttypes.h>
16
#include <limits.h>
17
#include <stdint.h>
18
#include <string.h>
19
#include <time.h>
20
21
#include <openssl/asn1.h>
22
#include <openssl/posix_time.h>
23
24
#include "asn1_local.h"
25
26
0
#define SECS_PER_HOUR (int64_t)(60 * 60)
27
0
#define SECS_PER_DAY (int64_t)(24 * SECS_PER_HOUR)
28
29
/*
30
 * Is a year/month/day combination valid, in the range from year 0000
31
 * to 9999?
32
 */
33
static int is_valid_date(int64_t year, int64_t month, int64_t day)
34
0
{
35
0
    int days_in_month;
36
37
0
    if (day < 1 || year < 0 || year > 9999)
38
0
        return 0;
39
0
    switch (month) {
40
0
    case 1:
41
0
    case 3:
42
0
    case 5:
43
0
    case 7:
44
0
    case 8:
45
0
    case 10:
46
0
    case 12:
47
0
        days_in_month = 31;
48
0
        break;
49
0
    case 4:
50
0
    case 6:
51
0
    case 9:
52
0
    case 11:
53
0
        days_in_month = 30;
54
0
        break;
55
0
    case 2:
56
0
        if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
57
0
            days_in_month = 29;
58
0
        else
59
0
            days_in_month = 28;
60
0
        break;
61
0
    default:
62
0
        return 0;
63
0
    }
64
0
    return day <= days_in_month;
65
0
}
66
67
/*
68
 * Is a time valid? Leap seconds of 60 are not considered valid, as
69
 * the POSIX time in seconds does not include them.
70
 */
71
static int is_valid_time(int64_t hours, int64_t minutes, int64_t seconds)
72
0
{
73
0
    return hours >= 0 && minutes >= 0 && seconds >= 0 && hours <= 23 &&
74
0
        minutes <= 59 && seconds <= 59;
75
0
}
76
77
/* 0000-01-01 00:00:00 UTC */
78
0
#define MIN_POSIX_TIME INT64_C(-62167219200)
79
/* 9999-12-31 23:59:59 UTC */
80
0
#define MAX_POSIX_TIME INT64_C(253402300799)
81
82
/* Is a int64 time representing a time within our expected range? */
83
static int is_valid_posix_time(int64_t time)
84
0
{
85
0
    return MIN_POSIX_TIME <= time && time <= MAX_POSIX_TIME;
86
0
}
87
88
/*
89
 * Inspired by algorithms presented in
90
 * https://howardhinnant.github.io/date_algorithms.html
91
 * (Public Domain)
92
 */
93
static int posix_time_from_utc(int64_t year, int64_t month, int64_t day,
94
                               int64_t hours, int64_t minutes, int64_t seconds,
95
                               int64_t *out_time)
96
0
{
97
0
    int64_t era, year_of_era, day_of_year, day_of_era, posix_days;
98
99
0
    if (!is_valid_date(year, month, day) ||
100
0
        !is_valid_time(hours, minutes, seconds))
101
0
        return 0;
102
0
    if (month <= 2)
103
0
        year--;  /* Start years on Mar 1, so leap days end a year. */
104
105
    /* At this point year will be in the range -1 and 9999. */
106
0
    era = (year >= 0 ? year : year - 399) / 400;
107
0
    year_of_era = year - era * 400;
108
0
    day_of_year = (153 * (month > 2 ? month - 3 : month + 9) + 2) /
109
0
        5 + day - 1;
110
0
    day_of_era = year_of_era * 365 + year_of_era / 4 - year_of_era /
111
0
        100 + day_of_year;
112
0
    posix_days = era * 146097 + day_of_era - 719468;
113
0
    *out_time = posix_days * SECS_PER_DAY + hours * SECS_PER_HOUR +
114
0
        minutes * 60 + seconds;
115
116
0
    return 1;
117
0
}
118
119
/*
120
 * Inspired by algorithms presented in
121
 * https://howardhinnant.github.io/date_algorithms.html
122
 * (Public Domain)
123
 */
124
static int utc_from_posix_time(int64_t time, int *out_year, int *out_month,
125
                               int *out_day, int *out_hours, int *out_minutes,
126
                               int *out_seconds)
127
0
{
128
0
    int64_t days, leftover_seconds, era, day_of_era, year_of_era, day_of_year;
129
0
    int64_t month_of_year;
130
131
0
    if (!is_valid_posix_time(time))
132
0
        return 0;
133
134
0
    days = time / SECS_PER_DAY;
135
0
    leftover_seconds = time % SECS_PER_DAY;
136
0
    if (leftover_seconds < 0) {
137
0
        days--;
138
0
        leftover_seconds += SECS_PER_DAY;
139
0
    }
140
0
    days += 719468;  /*  Shift to starting epoch of Mar 1 0000. */
141
142
    /* At this point, days will be in the range -61 and 3652364. */
143
0
    era = (days > 0 ? days : days - 146096) / 146097;
144
0
    day_of_era = days - era * 146097;
145
0
    year_of_era = (day_of_era - day_of_era / 1460 + day_of_era / 36524 -
146
0
                   day_of_era / 146096) / 365;
147
0
    *out_year = (int) (year_of_era + era * 400);  /* Year starts on Mar 1 */
148
0
    day_of_year = day_of_era - (365 * year_of_era + year_of_era / 4 -
149
0
                                year_of_era / 100);
150
0
    month_of_year = (5 * day_of_year + 2) / 153;
151
0
    *out_month = (int) (month_of_year < 10 ? month_of_year + 3 :
152
0
                        month_of_year - 9);
153
0
    if (*out_month <= 2)
154
0
        (*out_year)++;  /* Adjust year back to Jan 1 start of year. */
155
156
0
    *out_day = (int) (day_of_year - (153 * month_of_year + 2) / 5 + 1);
157
0
    *out_hours = (int) leftover_seconds / SECS_PER_HOUR;
158
0
    leftover_seconds %= SECS_PER_HOUR;
159
0
    *out_minutes = (int) leftover_seconds / 60;
160
0
    *out_seconds = (int) leftover_seconds % 60;
161
162
0
    return 1;
163
0
}
164
165
int OPENSSL_tm_to_posix(const struct tm *tm, int64_t *out)
166
0
{
167
0
    return posix_time_from_utc(tm->tm_year + (int64_t)1900,
168
0
                               tm->tm_mon + (int64_t)1, tm->tm_mday,
169
0
                               tm->tm_hour, tm->tm_min, tm->tm_sec, out);
170
0
}
171
172
int OPENSSL_posix_to_tm(int64_t time, struct tm *out_tm)
173
0
{
174
0
    struct tm tmp_tm = {0};
175
176
0
    memset(out_tm, 0, sizeof(*out_tm));
177
178
0
    if (!utc_from_posix_time(time, &tmp_tm.tm_year, &tmp_tm.tm_mon,
179
0
                             &tmp_tm.tm_mday, &tmp_tm.tm_hour,
180
0
                             &tmp_tm.tm_min, &tmp_tm.tm_sec))
181
0
        return 0;
182
183
0
    tmp_tm.tm_year -= 1900;
184
0
    tmp_tm.tm_mon -= 1;
185
186
0
    *out_tm = tmp_tm;
187
188
0
    return 1;
189
0
}
190
191
int ossl_asn1_time_tm_to_time_t(const struct tm *tm, time_t *out)
192
0
{
193
0
    int64_t posix_time;
194
0
    time_t test_t = -1;
195
0
    int bad_idea_bears = (test_t > 0); /* time_t is unsigned */
196
197
0
    if (!OPENSSL_tm_to_posix(tm, &posix_time))
198
0
        return 0;
199
200
0
    if (sizeof(time_t) == sizeof(int32_t)
201
0
        && ((!bad_idea_bears && (posix_time > INT32_MAX
202
0
                                     || posix_time < INT32_MIN))
203
0
            || (bad_idea_bears && (posix_time > UINT32_MAX
204
0
                                   || posix_time < 0))))
205
0
        return 0;
206
207
0
    *out = posix_time;
208
0
    return 1;
209
0
}
210
211
int ossl_asn1_time_time_t_to_tm(const time_t *time, struct tm *out_tm)
212
0
{
213
0
    int64_t posix_time = *time;
214
215
0
    return OPENSSL_posix_to_tm(posix_time, out_tm);
216
0
}
217
218
int OPENSSL_timegm(const struct tm *tm, time_t *out)
219
0
{
220
0
    return ossl_asn1_time_tm_to_time_t(tm, out);
221
0
}
222
223
struct tm * OPENSSL_gmtime(const time_t *time, struct tm *out_tm)
224
0
{
225
0
    if (!ossl_asn1_time_time_t_to_tm(time, out_tm))
226
0
        return NULL;
227
0
    return out_tm;
228
0
}
229
230
/* LibreSSL and BoringSSL use int64_t instead of long. */
231
int OPENSSL_gmtime_adj(struct tm *tm, int offset_day, long offset_sec)
232
0
{
233
0
    int64_t posix_time;
234
235
0
    if (!OPENSSL_tm_to_posix(tm, &posix_time))
236
0
        return 0;
237
238
0
    OPENSSL_assert(INT_MAX <= INT64_MAX / SECS_PER_DAY);
239
0
    OPENSSL_assert(MAX_POSIX_TIME <= INT64_MAX - INT_MAX * SECS_PER_DAY);
240
0
    OPENSSL_assert(MIN_POSIX_TIME >= INT64_MIN - INT_MIN * SECS_PER_DAY);
241
242
0
    posix_time += offset_day * SECS_PER_DAY;
243
244
0
    if (posix_time > 0 && offset_sec > INT64_MAX - posix_time)
245
0
        return 0;
246
0
    if (posix_time < 0 && offset_sec < INT64_MIN - posix_time)
247
0
        return 0;
248
0
    posix_time += offset_sec;
249
250
0
    if (!OPENSSL_posix_to_tm(posix_time, tm))
251
0
        return 0;
252
253
0
    return 1;
254
0
}
255
256
int OPENSSL_gmtime_diff(int *out_days, int *out_secs, const struct tm *from,
257
                        const struct tm *to)
258
0
{
259
0
    int64_t time_to, time_from, timediff, daydiff;
260
261
0
    if (!OPENSSL_tm_to_posix(to, &time_to) ||
262
0
        !OPENSSL_tm_to_posix(from, &time_from))
263
0
        return 0;
264
265
    /* Times are in range, so these calculations cannot overflow. */
266
0
    OPENSSL_assert(SECS_PER_DAY <= INT_MAX);
267
0
    OPENSSL_assert((MAX_POSIX_TIME - MIN_POSIX_TIME) / SECS_PER_DAY <= INT_MAX);
268
269
0
    timediff = time_to - time_from;
270
0
    daydiff = timediff / SECS_PER_DAY;
271
0
    timediff %= SECS_PER_DAY;
272
273
0
    *out_secs = (int) timediff;
274
0
    *out_days = (int) daydiff;
275
276
0
    return 1;
277
0
}