/src/openssl/crypto/bn/bn_kron.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "internal/cryptlib.h"  | 
11  |  | #include "bn_local.h"  | 
12  |  |  | 
13  |  | /* least significant word */  | 
14  | 0  | #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])  | 
15  |  |  | 
16  |  | /* Returns -2 for errors because both -1 and 0 are valid results. */  | 
17  |  | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
18  | 0  | { | 
19  | 0  |     int i;  | 
20  | 0  |     int ret = -2;               /* avoid 'uninitialized' warning */  | 
21  | 0  |     int err = 0;  | 
22  | 0  |     BIGNUM *A, *B, *tmp;  | 
23  |  |     /*-  | 
24  |  |      * In 'tab', only odd-indexed entries are relevant:  | 
25  |  |      * For any odd BIGNUM n,  | 
26  |  |      *     tab[BN_lsw(n) & 7]  | 
27  |  |      * is $(-1)^{(n^2-1)/8}$ (using TeX notation). | 
28  |  |      * Note that the sign of n does not matter.  | 
29  |  |      */  | 
30  | 0  |     static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 }; | 
31  |  | 
  | 
32  | 0  |     bn_check_top(a);  | 
33  | 0  |     bn_check_top(b);  | 
34  |  | 
  | 
35  | 0  |     BN_CTX_start(ctx);  | 
36  | 0  |     A = BN_CTX_get(ctx);  | 
37  | 0  |     B = BN_CTX_get(ctx);  | 
38  | 0  |     if (B == NULL)  | 
39  | 0  |         goto end;  | 
40  |  |  | 
41  | 0  |     err = !BN_copy(A, a);  | 
42  | 0  |     if (err)  | 
43  | 0  |         goto end;  | 
44  | 0  |     err = !BN_copy(B, b);  | 
45  | 0  |     if (err)  | 
46  | 0  |         goto end;  | 
47  |  |  | 
48  |  |     /*  | 
49  |  |      * Kronecker symbol, implemented according to Henri Cohen,  | 
50  |  |      * "A Course in Computational Algebraic Number Theory"  | 
51  |  |      * (algorithm 1.4.10).  | 
52  |  |      */  | 
53  |  |  | 
54  |  |     /* Cohen's step 1: */  | 
55  |  |  | 
56  | 0  |     if (BN_is_zero(B)) { | 
57  | 0  |         ret = BN_abs_is_word(A, 1);  | 
58  | 0  |         goto end;  | 
59  | 0  |     }  | 
60  |  |  | 
61  |  |     /* Cohen's step 2: */  | 
62  |  |  | 
63  | 0  |     if (!BN_is_odd(A) && !BN_is_odd(B)) { | 
64  | 0  |         ret = 0;  | 
65  | 0  |         goto end;  | 
66  | 0  |     }  | 
67  |  |  | 
68  |  |     /* now  B  is non-zero */  | 
69  | 0  |     i = 0;  | 
70  | 0  |     while (!BN_is_bit_set(B, i))  | 
71  | 0  |         i++;  | 
72  | 0  |     err = !BN_rshift(B, B, i);  | 
73  | 0  |     if (err)  | 
74  | 0  |         goto end;  | 
75  | 0  |     if (i & 1) { | 
76  |  |         /* i is odd */  | 
77  |  |         /* (thus  B  was even, thus  A  must be odd!)  */  | 
78  |  |  | 
79  |  |         /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ | 
80  | 0  |         ret = tab[BN_lsw(A) & 7];  | 
81  | 0  |     } else { | 
82  |  |         /* i is even */  | 
83  | 0  |         ret = 1;  | 
84  | 0  |     }  | 
85  |  | 
  | 
86  | 0  |     if (B->neg) { | 
87  | 0  |         B->neg = 0;  | 
88  | 0  |         if (A->neg)  | 
89  | 0  |             ret = -ret;  | 
90  | 0  |     }  | 
91  |  |  | 
92  |  |     /*  | 
93  |  |      * now B is positive and odd, so what remains to be done is to compute  | 
94  |  |      * the Jacobi symbol (A/B) and multiply it by 'ret'  | 
95  |  |      */  | 
96  |  | 
  | 
97  | 0  |     while (1) { | 
98  |  |         /* Cohen's step 3: */  | 
99  |  |  | 
100  |  |         /*  B  is positive and odd */  | 
101  |  | 
  | 
102  | 0  |         if (BN_is_zero(A)) { | 
103  | 0  |             ret = BN_is_one(B) ? ret : 0;  | 
104  | 0  |             goto end;  | 
105  | 0  |         }  | 
106  |  |  | 
107  |  |         /* now  A  is non-zero */  | 
108  | 0  |         i = 0;  | 
109  | 0  |         while (!BN_is_bit_set(A, i))  | 
110  | 0  |             i++;  | 
111  | 0  |         err = !BN_rshift(A, A, i);  | 
112  | 0  |         if (err)  | 
113  | 0  |             goto end;  | 
114  | 0  |         if (i & 1) { | 
115  |  |             /* i is odd */  | 
116  |  |             /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */ | 
117  | 0  |             ret = ret * tab[BN_lsw(B) & 7];  | 
118  | 0  |         }  | 
119  |  |  | 
120  |  |         /* Cohen's step 4: */  | 
121  |  |         /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */ | 
122  | 0  |         if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)  | 
123  | 0  |             ret = -ret;  | 
124  |  |  | 
125  |  |         /* (A, B) := (B mod |A|, |A|) */  | 
126  | 0  |         err = !BN_nnmod(B, B, A, ctx);  | 
127  | 0  |         if (err)  | 
128  | 0  |             goto end;  | 
129  | 0  |         tmp = A;  | 
130  | 0  |         A = B;  | 
131  | 0  |         B = tmp;  | 
132  | 0  |         tmp->neg = 0;  | 
133  | 0  |     }  | 
134  | 0  |  end:  | 
135  | 0  |     BN_CTX_end(ctx);  | 
136  | 0  |     if (err)  | 
137  | 0  |         return -2;  | 
138  | 0  |     else  | 
139  | 0  |         return ret;  | 
140  | 0  | }  |