/src/openssl/crypto/bn/bn_mul.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <assert.h>  | 
11  |  | #include "internal/cryptlib.h"  | 
12  |  | #include "bn_local.h"  | 
13  |  |  | 
14  |  | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)  | 
15  |  | /*  | 
16  |  |  * Here follows specialised variants of bn_add_words() and bn_sub_words().  | 
17  |  |  * They have the property performing operations on arrays of different sizes.  | 
18  |  |  * The sizes of those arrays is expressed through cl, which is the common  | 
19  |  |  * length ( basically, min(len(a),len(b)) ), and dl, which is the delta  | 
20  |  |  * between the two lengths, calculated as len(a)-len(b). All lengths are the  | 
21  |  |  * number of BN_ULONGs...  For the operations that require a result array as  | 
22  |  |  * parameter, it must have the length cl+abs(dl). These functions should  | 
23  |  |  * probably end up in bn_asm.c as soon as there are assembler counterparts  | 
24  |  |  * for the systems that use assembler files.  | 
25  |  |  */  | 
26  |  |  | 
27  |  | BN_ULONG bn_sub_part_words(BN_ULONG *r,  | 
28  |  |                            const BN_ULONG *a, const BN_ULONG *b,  | 
29  |  |                            int cl, int dl)  | 
30  | 0  | { | 
31  | 0  |     BN_ULONG c, t;  | 
32  |  | 
  | 
33  | 0  |     assert(cl >= 0);  | 
34  | 0  |     c = bn_sub_words(r, a, b, cl);  | 
35  |  | 
  | 
36  | 0  |     if (dl == 0)  | 
37  | 0  |         return c;  | 
38  |  |  | 
39  | 0  |     r += cl;  | 
40  | 0  |     a += cl;  | 
41  | 0  |     b += cl;  | 
42  |  | 
  | 
43  | 0  |     if (dl < 0) { | 
44  | 0  |         for (;;) { | 
45  | 0  |             t = b[0];  | 
46  | 0  |             r[0] = (0 - t - c) & BN_MASK2;  | 
47  | 0  |             if (t != 0)  | 
48  | 0  |                 c = 1;  | 
49  | 0  |             if (++dl >= 0)  | 
50  | 0  |                 break;  | 
51  |  |  | 
52  | 0  |             t = b[1];  | 
53  | 0  |             r[1] = (0 - t - c) & BN_MASK2;  | 
54  | 0  |             if (t != 0)  | 
55  | 0  |                 c = 1;  | 
56  | 0  |             if (++dl >= 0)  | 
57  | 0  |                 break;  | 
58  |  |  | 
59  | 0  |             t = b[2];  | 
60  | 0  |             r[2] = (0 - t - c) & BN_MASK2;  | 
61  | 0  |             if (t != 0)  | 
62  | 0  |                 c = 1;  | 
63  | 0  |             if (++dl >= 0)  | 
64  | 0  |                 break;  | 
65  |  |  | 
66  | 0  |             t = b[3];  | 
67  | 0  |             r[3] = (0 - t - c) & BN_MASK2;  | 
68  | 0  |             if (t != 0)  | 
69  | 0  |                 c = 1;  | 
70  | 0  |             if (++dl >= 0)  | 
71  | 0  |                 break;  | 
72  |  |  | 
73  | 0  |             b += 4;  | 
74  | 0  |             r += 4;  | 
75  | 0  |         }  | 
76  | 0  |     } else { | 
77  | 0  |         int save_dl = dl;  | 
78  | 0  |         while (c) { | 
79  | 0  |             t = a[0];  | 
80  | 0  |             r[0] = (t - c) & BN_MASK2;  | 
81  | 0  |             if (t != 0)  | 
82  | 0  |                 c = 0;  | 
83  | 0  |             if (--dl <= 0)  | 
84  | 0  |                 break;  | 
85  |  |  | 
86  | 0  |             t = a[1];  | 
87  | 0  |             r[1] = (t - c) & BN_MASK2;  | 
88  | 0  |             if (t != 0)  | 
89  | 0  |                 c = 0;  | 
90  | 0  |             if (--dl <= 0)  | 
91  | 0  |                 break;  | 
92  |  |  | 
93  | 0  |             t = a[2];  | 
94  | 0  |             r[2] = (t - c) & BN_MASK2;  | 
95  | 0  |             if (t != 0)  | 
96  | 0  |                 c = 0;  | 
97  | 0  |             if (--dl <= 0)  | 
98  | 0  |                 break;  | 
99  |  |  | 
100  | 0  |             t = a[3];  | 
101  | 0  |             r[3] = (t - c) & BN_MASK2;  | 
102  | 0  |             if (t != 0)  | 
103  | 0  |                 c = 0;  | 
104  | 0  |             if (--dl <= 0)  | 
105  | 0  |                 break;  | 
106  |  |  | 
107  | 0  |             save_dl = dl;  | 
108  | 0  |             a += 4;  | 
109  | 0  |             r += 4;  | 
110  | 0  |         }  | 
111  | 0  |         if (dl > 0) { | 
112  | 0  |             if (save_dl > dl) { | 
113  | 0  |                 switch (save_dl - dl) { | 
114  | 0  |                 case 1:  | 
115  | 0  |                     r[1] = a[1];  | 
116  | 0  |                     if (--dl <= 0)  | 
117  | 0  |                         break;  | 
118  |  |                     /* fall through */  | 
119  | 0  |                 case 2:  | 
120  | 0  |                     r[2] = a[2];  | 
121  | 0  |                     if (--dl <= 0)  | 
122  | 0  |                         break;  | 
123  |  |                     /* fall through */  | 
124  | 0  |                 case 3:  | 
125  | 0  |                     r[3] = a[3];  | 
126  | 0  |                     if (--dl <= 0)  | 
127  | 0  |                         break;  | 
128  | 0  |                 }  | 
129  | 0  |                 a += 4;  | 
130  | 0  |                 r += 4;  | 
131  | 0  |             }  | 
132  | 0  |         }  | 
133  | 0  |         if (dl > 0) { | 
134  | 0  |             for (;;) { | 
135  | 0  |                 r[0] = a[0];  | 
136  | 0  |                 if (--dl <= 0)  | 
137  | 0  |                     break;  | 
138  | 0  |                 r[1] = a[1];  | 
139  | 0  |                 if (--dl <= 0)  | 
140  | 0  |                     break;  | 
141  | 0  |                 r[2] = a[2];  | 
142  | 0  |                 if (--dl <= 0)  | 
143  | 0  |                     break;  | 
144  | 0  |                 r[3] = a[3];  | 
145  | 0  |                 if (--dl <= 0)  | 
146  | 0  |                     break;  | 
147  |  |  | 
148  | 0  |                 a += 4;  | 
149  | 0  |                 r += 4;  | 
150  | 0  |             }  | 
151  | 0  |         }  | 
152  | 0  |     }  | 
153  | 0  |     return c;  | 
154  | 0  | }  | 
155  |  | #endif  | 
156  |  |  | 
157  |  | #ifdef BN_RECURSION  | 
158  |  | /*  | 
159  |  |  * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of  | 
160  |  |  * Computer Programming, Vol. 2)  | 
161  |  |  */  | 
162  |  |  | 
163  |  | /*-  | 
164  |  |  * r is 2*n2 words in size,  | 
165  |  |  * a and b are both n2 words in size.  | 
166  |  |  * n2 must be a power of 2.  | 
167  |  |  * We multiply and return the result.  | 
168  |  |  * t must be 2*n2 words in size  | 
169  |  |  * We calculate  | 
170  |  |  * a[0]*b[0]  | 
171  |  |  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])  | 
172  |  |  * a[1]*b[1]  | 
173  |  |  */  | 
174  |  | /* dnX may not be positive, but n2/2+dnX has to be */  | 
175  |  | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,  | 
176  |  |                       int dna, int dnb, BN_ULONG *t)  | 
177  | 0  | { | 
178  | 0  |     int n = n2 / 2, c1, c2;  | 
179  | 0  |     int tna = n + dna, tnb = n + dnb;  | 
180  | 0  |     unsigned int neg, zero;  | 
181  | 0  |     BN_ULONG ln, lo, *p;  | 
182  |  | 
  | 
183  | 0  | # ifdef BN_MUL_COMBA  | 
184  |  | #  if 0  | 
185  |  |     if (n2 == 4) { | 
186  |  |         bn_mul_comba4(r, a, b);  | 
187  |  |         return;  | 
188  |  |     }  | 
189  |  | #  endif  | 
190  |  |     /*  | 
191  |  |      * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete  | 
192  |  |      * [steve]  | 
193  |  |      */  | 
194  | 0  |     if (n2 == 8 && dna == 0 && dnb == 0) { | 
195  | 0  |         bn_mul_comba8(r, a, b);  | 
196  | 0  |         return;  | 
197  | 0  |     }  | 
198  | 0  | # endif                         /* BN_MUL_COMBA */  | 
199  |  |     /* Else do normal multiply */  | 
200  | 0  |     if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
201  | 0  |         bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);  | 
202  | 0  |         if ((dna + dnb) < 0)  | 
203  | 0  |             memset(&r[2 * n2 + dna + dnb], 0,  | 
204  | 0  |                    sizeof(BN_ULONG) * -(dna + dnb));  | 
205  | 0  |         return;  | 
206  | 0  |     }  | 
207  |  |     /* r=(a[0]-a[1])*(b[1]-b[0]) */  | 
208  | 0  |     c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);  | 
209  | 0  |     c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);  | 
210  | 0  |     zero = neg = 0;  | 
211  | 0  |     switch (c1 * 3 + c2) { | 
212  | 0  |     case -4:  | 
213  | 0  |         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */  | 
214  | 0  |         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */  | 
215  | 0  |         break;  | 
216  | 0  |     case -3:  | 
217  | 0  |         zero = 1;  | 
218  | 0  |         break;  | 
219  | 0  |     case -2:  | 
220  | 0  |         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */  | 
221  | 0  |         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */  | 
222  | 0  |         neg = 1;  | 
223  | 0  |         break;  | 
224  | 0  |     case -1:  | 
225  | 0  |     case 0:  | 
226  | 0  |     case 1:  | 
227  | 0  |         zero = 1;  | 
228  | 0  |         break;  | 
229  | 0  |     case 2:  | 
230  | 0  |         bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */  | 
231  | 0  |         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */  | 
232  | 0  |         neg = 1;  | 
233  | 0  |         break;  | 
234  | 0  |     case 3:  | 
235  | 0  |         zero = 1;  | 
236  | 0  |         break;  | 
237  | 0  |     case 4:  | 
238  | 0  |         bn_sub_part_words(t, a, &(a[n]), tna, n - tna);  | 
239  | 0  |         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  | 
240  | 0  |         break;  | 
241  | 0  |     }  | 
242  |  |  | 
243  | 0  | # ifdef BN_MUL_COMBA  | 
244  | 0  |     if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take | 
245  |  |                                            * extra args to do this well */  | 
246  | 0  |         if (!zero)  | 
247  | 0  |             bn_mul_comba4(&(t[n2]), t, &(t[n]));  | 
248  | 0  |         else  | 
249  | 0  |             memset(&t[n2], 0, sizeof(*t) * 8);  | 
250  |  | 
  | 
251  | 0  |         bn_mul_comba4(r, a, b);  | 
252  | 0  |         bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));  | 
253  | 0  |     } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could | 
254  |  |                                                   * take extra args to do  | 
255  |  |                                                   * this well */  | 
256  | 0  |         if (!zero)  | 
257  | 0  |             bn_mul_comba8(&(t[n2]), t, &(t[n]));  | 
258  | 0  |         else  | 
259  | 0  |             memset(&t[n2], 0, sizeof(*t) * 16);  | 
260  |  | 
  | 
261  | 0  |         bn_mul_comba8(r, a, b);  | 
262  | 0  |         bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));  | 
263  | 0  |     } else  | 
264  | 0  | # endif                         /* BN_MUL_COMBA */  | 
265  | 0  |     { | 
266  | 0  |         p = &(t[n2 * 2]);  | 
267  | 0  |         if (!zero)  | 
268  | 0  |             bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);  | 
269  | 0  |         else  | 
270  | 0  |             memset(&t[n2], 0, sizeof(*t) * n2);  | 
271  | 0  |         bn_mul_recursive(r, a, b, n, 0, 0, p);  | 
272  | 0  |         bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);  | 
273  | 0  |     }  | 
274  |  |  | 
275  |  |     /*-  | 
276  |  |      * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign  | 
277  |  |      * r[10] holds (a[0]*b[0])  | 
278  |  |      * r[32] holds (b[1]*b[1])  | 
279  |  |      */  | 
280  |  | 
  | 
281  | 0  |     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));  | 
282  |  | 
  | 
283  | 0  |     if (neg) {                  /* if t[32] is negative */ | 
284  | 0  |         c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));  | 
285  | 0  |     } else { | 
286  |  |         /* Might have a carry */  | 
287  | 0  |         c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));  | 
288  | 0  |     }  | 
289  |  |  | 
290  |  |     /*-  | 
291  |  |      * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])  | 
292  |  |      * r[10] holds (a[0]*b[0])  | 
293  |  |      * r[32] holds (b[1]*b[1])  | 
294  |  |      * c1 holds the carry bits  | 
295  |  |      */  | 
296  | 0  |     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));  | 
297  | 0  |     if (c1) { | 
298  | 0  |         p = &(r[n + n2]);  | 
299  | 0  |         lo = *p;  | 
300  | 0  |         ln = (lo + c1) & BN_MASK2;  | 
301  | 0  |         *p = ln;  | 
302  |  |  | 
303  |  |         /*  | 
304  |  |          * The overflow will stop before we over write words we should not  | 
305  |  |          * overwrite  | 
306  |  |          */  | 
307  | 0  |         if (ln < (BN_ULONG)c1) { | 
308  | 0  |             do { | 
309  | 0  |                 p++;  | 
310  | 0  |                 lo = *p;  | 
311  | 0  |                 ln = (lo + 1) & BN_MASK2;  | 
312  | 0  |                 *p = ln;  | 
313  | 0  |             } while (ln == 0);  | 
314  | 0  |         }  | 
315  | 0  |     }  | 
316  | 0  | }  | 
317  |  |  | 
318  |  | /*  | 
319  |  |  * n+tn is the word length t needs to be n*4 is size, as does r  | 
320  |  |  */  | 
321  |  | /* tnX may not be negative but less than n */  | 
322  |  | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,  | 
323  |  |                            int tna, int tnb, BN_ULONG *t)  | 
324  | 0  | { | 
325  | 0  |     int i, j, n2 = n * 2;  | 
326  | 0  |     int c1, c2, neg;  | 
327  | 0  |     BN_ULONG ln, lo, *p;  | 
328  |  | 
  | 
329  | 0  |     if (n < 8) { | 
330  | 0  |         bn_mul_normal(r, a, n + tna, b, n + tnb);  | 
331  | 0  |         return;  | 
332  | 0  |     }  | 
333  |  |  | 
334  |  |     /* r=(a[0]-a[1])*(b[1]-b[0]) */  | 
335  | 0  |     c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);  | 
336  | 0  |     c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);  | 
337  | 0  |     neg = 0;  | 
338  | 0  |     switch (c1 * 3 + c2) { | 
339  | 0  |     case -4:  | 
340  | 0  |         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */  | 
341  | 0  |         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */  | 
342  | 0  |         break;  | 
343  | 0  |     case -3:  | 
344  | 0  |     case -2:  | 
345  | 0  |         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */  | 
346  | 0  |         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */  | 
347  | 0  |         neg = 1;  | 
348  | 0  |         break;  | 
349  | 0  |     case -1:  | 
350  | 0  |     case 0:  | 
351  | 0  |     case 1:  | 
352  | 0  |     case 2:  | 
353  | 0  |         bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */  | 
354  | 0  |         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */  | 
355  | 0  |         neg = 1;  | 
356  | 0  |         break;  | 
357  | 0  |     case 3:  | 
358  | 0  |     case 4:  | 
359  | 0  |         bn_sub_part_words(t, a, &(a[n]), tna, n - tna);  | 
360  | 0  |         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  | 
361  | 0  |         break;  | 
362  | 0  |     }  | 
363  |  |     /*  | 
364  |  |      * The zero case isn't yet implemented here. The speedup would probably  | 
365  |  |      * be negligible.  | 
366  |  |      */  | 
367  |  | # if 0  | 
368  |  |     if (n == 4) { | 
369  |  |         bn_mul_comba4(&(t[n2]), t, &(t[n]));  | 
370  |  |         bn_mul_comba4(r, a, b);  | 
371  |  |         bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);  | 
372  |  |         memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));  | 
373  |  |     } else  | 
374  |  | # endif  | 
375  | 0  |     if (n == 8) { | 
376  | 0  |         bn_mul_comba8(&(t[n2]), t, &(t[n]));  | 
377  | 0  |         bn_mul_comba8(r, a, b);  | 
378  | 0  |         bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);  | 
379  | 0  |         memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));  | 
380  | 0  |     } else { | 
381  | 0  |         p = &(t[n2 * 2]);  | 
382  | 0  |         bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);  | 
383  | 0  |         bn_mul_recursive(r, a, b, n, 0, 0, p);  | 
384  | 0  |         i = n / 2;  | 
385  |  |         /*  | 
386  |  |          * If there is only a bottom half to the number, just do it  | 
387  |  |          */  | 
388  | 0  |         if (tna > tnb)  | 
389  | 0  |             j = tna - i;  | 
390  | 0  |         else  | 
391  | 0  |             j = tnb - i;  | 
392  | 0  |         if (j == 0) { | 
393  | 0  |             bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),  | 
394  | 0  |                              i, tna - i, tnb - i, p);  | 
395  | 0  |             memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));  | 
396  | 0  |         } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */ | 
397  | 0  |             bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),  | 
398  | 0  |                                   i, tna - i, tnb - i, p);  | 
399  | 0  |             memset(&(r[n2 + tna + tnb]), 0,  | 
400  | 0  |                    sizeof(BN_ULONG) * (n2 - tna - tnb));  | 
401  | 0  |         } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | 
402  |  | 
  | 
403  | 0  |             memset(&r[n2], 0, sizeof(*r) * n2);  | 
404  | 0  |             if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL  | 
405  | 0  |                 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
406  | 0  |                 bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);  | 
407  | 0  |             } else { | 
408  | 0  |                 for (;;) { | 
409  | 0  |                     i /= 2;  | 
410  |  |                     /*  | 
411  |  |                      * these simplified conditions work exclusively because  | 
412  |  |                      * difference between tna and tnb is 1 or 0  | 
413  |  |                      */  | 
414  | 0  |                     if (i < tna || i < tnb) { | 
415  | 0  |                         bn_mul_part_recursive(&(r[n2]),  | 
416  | 0  |                                               &(a[n]), &(b[n]),  | 
417  | 0  |                                               i, tna - i, tnb - i, p);  | 
418  | 0  |                         break;  | 
419  | 0  |                     } else if (i == tna || i == tnb) { | 
420  | 0  |                         bn_mul_recursive(&(r[n2]),  | 
421  | 0  |                                          &(a[n]), &(b[n]),  | 
422  | 0  |                                          i, tna - i, tnb - i, p);  | 
423  | 0  |                         break;  | 
424  | 0  |                     }  | 
425  | 0  |                 }  | 
426  | 0  |             }  | 
427  | 0  |         }  | 
428  | 0  |     }  | 
429  |  |  | 
430  |  |     /*-  | 
431  |  |      * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign  | 
432  |  |      * r[10] holds (a[0]*b[0])  | 
433  |  |      * r[32] holds (b[1]*b[1])  | 
434  |  |      */  | 
435  |  | 
  | 
436  | 0  |     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));  | 
437  |  | 
  | 
438  | 0  |     if (neg) {                  /* if t[32] is negative */ | 
439  | 0  |         c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));  | 
440  | 0  |     } else { | 
441  |  |         /* Might have a carry */  | 
442  | 0  |         c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));  | 
443  | 0  |     }  | 
444  |  |  | 
445  |  |     /*-  | 
446  |  |      * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])  | 
447  |  |      * r[10] holds (a[0]*b[0])  | 
448  |  |      * r[32] holds (b[1]*b[1])  | 
449  |  |      * c1 holds the carry bits  | 
450  |  |      */  | 
451  | 0  |     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));  | 
452  | 0  |     if (c1) { | 
453  | 0  |         p = &(r[n + n2]);  | 
454  | 0  |         lo = *p;  | 
455  | 0  |         ln = (lo + c1) & BN_MASK2;  | 
456  | 0  |         *p = ln;  | 
457  |  |  | 
458  |  |         /*  | 
459  |  |          * The overflow will stop before we over write words we should not  | 
460  |  |          * overwrite  | 
461  |  |          */  | 
462  | 0  |         if (ln < (BN_ULONG)c1) { | 
463  | 0  |             do { | 
464  | 0  |                 p++;  | 
465  | 0  |                 lo = *p;  | 
466  | 0  |                 ln = (lo + 1) & BN_MASK2;  | 
467  | 0  |                 *p = ln;  | 
468  | 0  |             } while (ln == 0);  | 
469  | 0  |         }  | 
470  | 0  |     }  | 
471  | 0  | }  | 
472  |  |  | 
473  |  | /*-  | 
474  |  |  * a and b must be the same size, which is n2.  | 
475  |  |  * r needs to be n2 words and t needs to be n2*2  | 
476  |  |  */  | 
477  |  | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,  | 
478  |  |                           BN_ULONG *t)  | 
479  | 0  | { | 
480  | 0  |     int n = n2 / 2;  | 
481  |  | 
  | 
482  | 0  |     bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));  | 
483  | 0  |     if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { | 
484  | 0  |         bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));  | 
485  | 0  |         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);  | 
486  | 0  |         bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));  | 
487  | 0  |         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);  | 
488  | 0  |     } else { | 
489  | 0  |         bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);  | 
490  | 0  |         bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);  | 
491  | 0  |         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);  | 
492  | 0  |         bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);  | 
493  | 0  |     }  | 
494  | 0  | }  | 
495  |  | #endif                          /* BN_RECURSION */  | 
496  |  |  | 
497  |  | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
498  | 0  | { | 
499  | 0  |     int ret = bn_mul_fixed_top(r, a, b, ctx);  | 
500  |  | 
  | 
501  | 0  |     bn_correct_top(r);  | 
502  | 0  |     bn_check_top(r);  | 
503  |  | 
  | 
504  | 0  |     return ret;  | 
505  | 0  | }  | 
506  |  |  | 
507  |  | int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
508  | 0  | { | 
509  | 0  |     int ret = 0;  | 
510  | 0  |     int top, al, bl;  | 
511  | 0  |     BIGNUM *rr;  | 
512  | 0  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)  | 
513  | 0  |     int i;  | 
514  | 0  | #endif  | 
515  | 0  | #ifdef BN_RECURSION  | 
516  | 0  |     BIGNUM *t = NULL;  | 
517  | 0  |     int j = 0, k;  | 
518  | 0  | #endif  | 
519  |  | 
  | 
520  | 0  |     bn_check_top(a);  | 
521  | 0  |     bn_check_top(b);  | 
522  | 0  |     bn_check_top(r);  | 
523  |  | 
  | 
524  | 0  |     al = a->top;  | 
525  | 0  |     bl = b->top;  | 
526  |  | 
  | 
527  | 0  |     if ((al == 0) || (bl == 0)) { | 
528  | 0  |         BN_zero(r);  | 
529  | 0  |         return 1;  | 
530  | 0  |     }  | 
531  | 0  |     top = al + bl;  | 
532  |  | 
  | 
533  | 0  |     BN_CTX_start(ctx);  | 
534  | 0  |     if ((r == a) || (r == b)) { | 
535  | 0  |         if ((rr = BN_CTX_get(ctx)) == NULL)  | 
536  | 0  |             goto err;  | 
537  | 0  |     } else  | 
538  | 0  |         rr = r;  | 
539  |  |  | 
540  | 0  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)  | 
541  | 0  |     i = al - bl;  | 
542  | 0  | #endif  | 
543  | 0  | #ifdef BN_MUL_COMBA  | 
544  | 0  |     if (i == 0) { | 
545  |  | # if 0  | 
546  |  |         if (al == 4) { | 
547  |  |             if (bn_wexpand(rr, 8) == NULL)  | 
548  |  |                 goto err;  | 
549  |  |             rr->top = 8;  | 
550  |  |             bn_mul_comba4(rr->d, a->d, b->d);  | 
551  |  |             goto end;  | 
552  |  |         }  | 
553  |  | # endif  | 
554  | 0  |         if (al == 8) { | 
555  | 0  |             if (bn_wexpand(rr, 16) == NULL)  | 
556  | 0  |                 goto err;  | 
557  | 0  |             rr->top = 16;  | 
558  | 0  |             bn_mul_comba8(rr->d, a->d, b->d);  | 
559  | 0  |             goto end;  | 
560  | 0  |         }  | 
561  | 0  |     }  | 
562  | 0  | #endif                          /* BN_MUL_COMBA */  | 
563  | 0  | #ifdef BN_RECURSION  | 
564  | 0  |     if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | 
565  | 0  |         if (i >= -1 && i <= 1) { | 
566  |  |             /*  | 
567  |  |              * Find out the power of two lower or equal to the longest of the  | 
568  |  |              * two numbers  | 
569  |  |              */  | 
570  | 0  |             if (i >= 0) { | 
571  | 0  |                 j = BN_num_bits_word((BN_ULONG)al);  | 
572  | 0  |             }  | 
573  | 0  |             if (i == -1) { | 
574  | 0  |                 j = BN_num_bits_word((BN_ULONG)bl);  | 
575  | 0  |             }  | 
576  | 0  |             j = 1 << (j - 1);  | 
577  | 0  |             assert(j <= al || j <= bl);  | 
578  | 0  |             k = j + j;  | 
579  | 0  |             t = BN_CTX_get(ctx);  | 
580  | 0  |             if (t == NULL)  | 
581  | 0  |                 goto err;  | 
582  | 0  |             if (al > j || bl > j) { | 
583  | 0  |                 if (bn_wexpand(t, k * 4) == NULL)  | 
584  | 0  |                     goto err;  | 
585  | 0  |                 if (bn_wexpand(rr, k * 4) == NULL)  | 
586  | 0  |                     goto err;  | 
587  | 0  |                 bn_mul_part_recursive(rr->d, a->d, b->d,  | 
588  | 0  |                                       j, al - j, bl - j, t->d);  | 
589  | 0  |             } else {            /* al <= j || bl <= j */ | 
590  |  | 
  | 
591  | 0  |                 if (bn_wexpand(t, k * 2) == NULL)  | 
592  | 0  |                     goto err;  | 
593  | 0  |                 if (bn_wexpand(rr, k * 2) == NULL)  | 
594  | 0  |                     goto err;  | 
595  | 0  |                 bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);  | 
596  | 0  |             }  | 
597  | 0  |             rr->top = top;  | 
598  | 0  |             goto end;  | 
599  | 0  |         }  | 
600  | 0  |     }  | 
601  | 0  | #endif                          /* BN_RECURSION */  | 
602  | 0  |     if (bn_wexpand(rr, top) == NULL)  | 
603  | 0  |         goto err;  | 
604  | 0  |     rr->top = top;  | 
605  | 0  |     bn_mul_normal(rr->d, a->d, al, b->d, bl);  | 
606  |  | 
  | 
607  | 0  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)  | 
608  | 0  |  end:  | 
609  | 0  | #endif  | 
610  | 0  |     rr->neg = a->neg ^ b->neg;  | 
611  | 0  |     rr->flags |= BN_FLG_FIXED_TOP;  | 
612  | 0  |     if (r != rr && BN_copy(r, rr) == NULL)  | 
613  | 0  |         goto err;  | 
614  |  |  | 
615  | 0  |     ret = 1;  | 
616  | 0  |  err:  | 
617  | 0  |     bn_check_top(r);  | 
618  | 0  |     BN_CTX_end(ctx);  | 
619  | 0  |     return ret;  | 
620  | 0  | }  | 
621  |  |  | 
622  |  | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)  | 
623  | 0  | { | 
624  | 0  |     BN_ULONG *rr;  | 
625  |  | 
  | 
626  | 0  |     if (na < nb) { | 
627  | 0  |         int itmp;  | 
628  | 0  |         BN_ULONG *ltmp;  | 
629  |  | 
  | 
630  | 0  |         itmp = na;  | 
631  | 0  |         na = nb;  | 
632  | 0  |         nb = itmp;  | 
633  | 0  |         ltmp = a;  | 
634  | 0  |         a = b;  | 
635  | 0  |         b = ltmp;  | 
636  |  | 
  | 
637  | 0  |     }  | 
638  | 0  |     rr = &(r[na]);  | 
639  | 0  |     if (nb <= 0) { | 
640  | 0  |         (void)bn_mul_words(r, a, na, 0);  | 
641  | 0  |         return;  | 
642  | 0  |     } else  | 
643  | 0  |         rr[0] = bn_mul_words(r, a, na, b[0]);  | 
644  |  |  | 
645  | 0  |     for (;;) { | 
646  | 0  |         if (--nb <= 0)  | 
647  | 0  |             return;  | 
648  | 0  |         rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);  | 
649  | 0  |         if (--nb <= 0)  | 
650  | 0  |             return;  | 
651  | 0  |         rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);  | 
652  | 0  |         if (--nb <= 0)  | 
653  | 0  |             return;  | 
654  | 0  |         rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);  | 
655  | 0  |         if (--nb <= 0)  | 
656  | 0  |             return;  | 
657  | 0  |         rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);  | 
658  | 0  |         rr += 4;  | 
659  | 0  |         r += 4;  | 
660  | 0  |         b += 4;  | 
661  | 0  |     }  | 
662  | 0  | }  | 
663  |  |  | 
664  |  | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)  | 
665  | 0  | { | 
666  | 0  |     bn_mul_words(r, a, n, b[0]);  | 
667  |  | 
  | 
668  | 0  |     for (;;) { | 
669  | 0  |         if (--n <= 0)  | 
670  | 0  |             return;  | 
671  | 0  |         bn_mul_add_words(&(r[1]), a, n, b[1]);  | 
672  | 0  |         if (--n <= 0)  | 
673  | 0  |             return;  | 
674  | 0  |         bn_mul_add_words(&(r[2]), a, n, b[2]);  | 
675  | 0  |         if (--n <= 0)  | 
676  | 0  |             return;  | 
677  | 0  |         bn_mul_add_words(&(r[3]), a, n, b[3]);  | 
678  | 0  |         if (--n <= 0)  | 
679  | 0  |             return;  | 
680  | 0  |         bn_mul_add_words(&(r[4]), a, n, b[4]);  | 
681  | 0  |         r += 4;  | 
682  | 0  |         b += 4;  | 
683  | 0  |     }  | 
684  | 0  | }  |