/src/openssl/crypto/ec/ec2_smpl.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved  | 
4  |  |  *  | 
5  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
6  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
7  |  |  * in the file LICENSE in the source distribution or at  | 
8  |  |  * https://www.openssl.org/source/license.html  | 
9  |  |  */  | 
10  |  |  | 
11  |  | /*  | 
12  |  |  * ECDSA low-level APIs are deprecated for public use, but still ok for  | 
13  |  |  * internal use.  | 
14  |  |  */  | 
15  |  | #include "internal/deprecated.h"  | 
16  |  |  | 
17  |  | #include <openssl/err.h>  | 
18  |  |  | 
19  |  | #include "crypto/bn.h"  | 
20  |  | #include "ec_local.h"  | 
21  |  |  | 
22  |  | #ifndef OPENSSL_NO_EC2M  | 
23  |  |  | 
24  |  | /*  | 
25  |  |  * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members  | 
26  |  |  * are handled by EC_GROUP_new.  | 
27  |  |  */  | 
28  |  | int ossl_ec_GF2m_simple_group_init(EC_GROUP *group)  | 
29  | 0  | { | 
30  | 0  |     group->field = BN_new();  | 
31  | 0  |     group->a = BN_new();  | 
32  | 0  |     group->b = BN_new();  | 
33  |  | 
  | 
34  | 0  |     if (group->field == NULL || group->a == NULL || group->b == NULL) { | 
35  | 0  |         BN_free(group->field);  | 
36  | 0  |         BN_free(group->a);  | 
37  | 0  |         BN_free(group->b);  | 
38  | 0  |         return 0;  | 
39  | 0  |     }  | 
40  | 0  |     return 1;  | 
41  | 0  | }  | 
42  |  |  | 
43  |  | /*  | 
44  |  |  * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are  | 
45  |  |  * handled by EC_GROUP_free.  | 
46  |  |  */  | 
47  |  | void ossl_ec_GF2m_simple_group_finish(EC_GROUP *group)  | 
48  | 0  | { | 
49  | 0  |     BN_free(group->field);  | 
50  | 0  |     BN_free(group->a);  | 
51  | 0  |     BN_free(group->b);  | 
52  | 0  | }  | 
53  |  |  | 
54  |  | /*  | 
55  |  |  * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other  | 
56  |  |  * members are handled by EC_GROUP_clear_free.  | 
57  |  |  */  | 
58  |  | void ossl_ec_GF2m_simple_group_clear_finish(EC_GROUP *group)  | 
59  | 0  | { | 
60  | 0  |     BN_clear_free(group->field);  | 
61  | 0  |     BN_clear_free(group->a);  | 
62  | 0  |     BN_clear_free(group->b);  | 
63  | 0  |     group->poly[0] = 0;  | 
64  | 0  |     group->poly[1] = 0;  | 
65  | 0  |     group->poly[2] = 0;  | 
66  | 0  |     group->poly[3] = 0;  | 
67  | 0  |     group->poly[4] = 0;  | 
68  | 0  |     group->poly[5] = -1;  | 
69  | 0  | }  | 
70  |  |  | 
71  |  | /*  | 
72  |  |  * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are  | 
73  |  |  * handled by EC_GROUP_copy.  | 
74  |  |  */  | 
75  |  | int ossl_ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)  | 
76  | 0  | { | 
77  | 0  |     if (!BN_copy(dest->field, src->field))  | 
78  | 0  |         return 0;  | 
79  | 0  |     if (!BN_copy(dest->a, src->a))  | 
80  | 0  |         return 0;  | 
81  | 0  |     if (!BN_copy(dest->b, src->b))  | 
82  | 0  |         return 0;  | 
83  | 0  |     dest->poly[0] = src->poly[0];  | 
84  | 0  |     dest->poly[1] = src->poly[1];  | 
85  | 0  |     dest->poly[2] = src->poly[2];  | 
86  | 0  |     dest->poly[3] = src->poly[3];  | 
87  | 0  |     dest->poly[4] = src->poly[4];  | 
88  | 0  |     dest->poly[5] = src->poly[5];  | 
89  | 0  |     if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==  | 
90  | 0  |         NULL)  | 
91  | 0  |         return 0;  | 
92  | 0  |     if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==  | 
93  | 0  |         NULL)  | 
94  | 0  |         return 0;  | 
95  | 0  |     bn_set_all_zero(dest->a);  | 
96  | 0  |     bn_set_all_zero(dest->b);  | 
97  | 0  |     return 1;  | 
98  | 0  | }  | 
99  |  |  | 
100  |  | /* Set the curve parameters of an EC_GROUP structure. */  | 
101  |  | int ossl_ec_GF2m_simple_group_set_curve(EC_GROUP *group,  | 
102  |  |                                         const BIGNUM *p, const BIGNUM *a,  | 
103  |  |                                         const BIGNUM *b, BN_CTX *ctx)  | 
104  | 0  | { | 
105  | 0  |     int ret = 0, i;  | 
106  |  |  | 
107  |  |     /* group->field */  | 
108  | 0  |     if (!BN_copy(group->field, p))  | 
109  | 0  |         goto err;  | 
110  | 0  |     i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;  | 
111  | 0  |     if ((i != 5) && (i != 3)) { | 
112  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_UNSUPPORTED_FIELD);  | 
113  | 0  |         goto err;  | 
114  | 0  |     }  | 
115  |  |  | 
116  |  |     /* group->a */  | 
117  | 0  |     if (!BN_GF2m_mod_arr(group->a, a, group->poly))  | 
118  | 0  |         goto err;  | 
119  | 0  |     if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)  | 
120  | 0  |         == NULL)  | 
121  | 0  |         goto err;  | 
122  | 0  |     bn_set_all_zero(group->a);  | 
123  |  |  | 
124  |  |     /* group->b */  | 
125  | 0  |     if (!BN_GF2m_mod_arr(group->b, b, group->poly))  | 
126  | 0  |         goto err;  | 
127  | 0  |     if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)  | 
128  | 0  |         == NULL)  | 
129  | 0  |         goto err;  | 
130  | 0  |     bn_set_all_zero(group->b);  | 
131  |  | 
  | 
132  | 0  |     ret = 1;  | 
133  | 0  |  err:  | 
134  | 0  |     return ret;  | 
135  | 0  | }  | 
136  |  |  | 
137  |  | /*  | 
138  |  |  * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL  | 
139  |  |  * then there values will not be set but the method will return with success.  | 
140  |  |  */  | 
141  |  | int ossl_ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,  | 
142  |  |                                         BIGNUM *a, BIGNUM *b, BN_CTX *ctx)  | 
143  | 0  | { | 
144  | 0  |     int ret = 0;  | 
145  |  | 
  | 
146  | 0  |     if (p != NULL) { | 
147  | 0  |         if (!BN_copy(p, group->field))  | 
148  | 0  |             return 0;  | 
149  | 0  |     }  | 
150  |  |  | 
151  | 0  |     if (a != NULL) { | 
152  | 0  |         if (!BN_copy(a, group->a))  | 
153  | 0  |             goto err;  | 
154  | 0  |     }  | 
155  |  |  | 
156  | 0  |     if (b != NULL) { | 
157  | 0  |         if (!BN_copy(b, group->b))  | 
158  | 0  |             goto err;  | 
159  | 0  |     }  | 
160  |  |  | 
161  | 0  |     ret = 1;  | 
162  |  | 
  | 
163  | 0  |  err:  | 
164  | 0  |     return ret;  | 
165  | 0  | }  | 
166  |  |  | 
167  |  | /*  | 
168  |  |  * Gets the degree of the field.  For a curve over GF(2^m) this is the value  | 
169  |  |  * m.  | 
170  |  |  */  | 
171  |  | int ossl_ec_GF2m_simple_group_get_degree(const EC_GROUP *group)  | 
172  | 0  | { | 
173  | 0  |     return BN_num_bits(group->field) - 1;  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | /*  | 
177  |  |  * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an  | 
178  |  |  * elliptic curve <=> b != 0 (mod p)  | 
179  |  |  */  | 
180  |  | int ossl_ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,  | 
181  |  |                                                  BN_CTX *ctx)  | 
182  | 0  | { | 
183  | 0  |     int ret = 0;  | 
184  | 0  |     BIGNUM *b;  | 
185  | 0  | #ifndef FIPS_MODULE  | 
186  | 0  |     BN_CTX *new_ctx = NULL;  | 
187  |  | 
  | 
188  | 0  |     if (ctx == NULL) { | 
189  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
190  | 0  |         if (ctx == NULL) { | 
191  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
192  | 0  |             goto err;  | 
193  | 0  |         }  | 
194  | 0  |     }  | 
195  | 0  | #endif  | 
196  | 0  |     BN_CTX_start(ctx);  | 
197  | 0  |     b = BN_CTX_get(ctx);  | 
198  | 0  |     if (b == NULL)  | 
199  | 0  |         goto err;  | 
200  |  |  | 
201  | 0  |     if (!BN_GF2m_mod_arr(b, group->b, group->poly))  | 
202  | 0  |         goto err;  | 
203  |  |  | 
204  |  |     /*  | 
205  |  |      * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic  | 
206  |  |      * curve <=> b != 0 (mod p)  | 
207  |  |      */  | 
208  | 0  |     if (BN_is_zero(b))  | 
209  | 0  |         goto err;  | 
210  |  |  | 
211  | 0  |     ret = 1;  | 
212  |  | 
  | 
213  | 0  |  err:  | 
214  | 0  |     BN_CTX_end(ctx);  | 
215  | 0  | #ifndef FIPS_MODULE  | 
216  | 0  |     BN_CTX_free(new_ctx);  | 
217  | 0  | #endif  | 
218  | 0  |     return ret;  | 
219  | 0  | }  | 
220  |  |  | 
221  |  | /* Initializes an EC_POINT. */  | 
222  |  | int ossl_ec_GF2m_simple_point_init(EC_POINT *point)  | 
223  | 0  | { | 
224  | 0  |     point->X = BN_new();  | 
225  | 0  |     point->Y = BN_new();  | 
226  | 0  |     point->Z = BN_new();  | 
227  |  | 
  | 
228  | 0  |     if (point->X == NULL || point->Y == NULL || point->Z == NULL) { | 
229  | 0  |         BN_free(point->X);  | 
230  | 0  |         BN_free(point->Y);  | 
231  | 0  |         BN_free(point->Z);  | 
232  | 0  |         return 0;  | 
233  | 0  |     }  | 
234  | 0  |     return 1;  | 
235  | 0  | }  | 
236  |  |  | 
237  |  | /* Frees an EC_POINT. */  | 
238  |  | void ossl_ec_GF2m_simple_point_finish(EC_POINT *point)  | 
239  | 0  | { | 
240  | 0  |     BN_free(point->X);  | 
241  | 0  |     BN_free(point->Y);  | 
242  | 0  |     BN_free(point->Z);  | 
243  | 0  | }  | 
244  |  |  | 
245  |  | /* Clears and frees an EC_POINT. */  | 
246  |  | void ossl_ec_GF2m_simple_point_clear_finish(EC_POINT *point)  | 
247  | 0  | { | 
248  | 0  |     BN_clear_free(point->X);  | 
249  | 0  |     BN_clear_free(point->Y);  | 
250  | 0  |     BN_clear_free(point->Z);  | 
251  | 0  |     point->Z_is_one = 0;  | 
252  | 0  | }  | 
253  |  |  | 
254  |  | /*  | 
255  |  |  * Copy the contents of one EC_POINT into another.  Assumes dest is  | 
256  |  |  * initialized.  | 
257  |  |  */  | 
258  |  | int ossl_ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)  | 
259  | 0  | { | 
260  | 0  |     if (!BN_copy(dest->X, src->X))  | 
261  | 0  |         return 0;  | 
262  | 0  |     if (!BN_copy(dest->Y, src->Y))  | 
263  | 0  |         return 0;  | 
264  | 0  |     if (!BN_copy(dest->Z, src->Z))  | 
265  | 0  |         return 0;  | 
266  | 0  |     dest->Z_is_one = src->Z_is_one;  | 
267  | 0  |     dest->curve_name = src->curve_name;  | 
268  |  | 
  | 
269  | 0  |     return 1;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | /*  | 
273  |  |  * Set an EC_POINT to the point at infinity. A point at infinity is  | 
274  |  |  * represented by having Z=0.  | 
275  |  |  */  | 
276  |  | int ossl_ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,  | 
277  |  |                                               EC_POINT *point)  | 
278  | 0  | { | 
279  | 0  |     point->Z_is_one = 0;  | 
280  | 0  |     BN_zero(point->Z);  | 
281  | 0  |     return 1;  | 
282  | 0  | }  | 
283  |  |  | 
284  |  | /*  | 
285  |  |  * Set the coordinates of an EC_POINT using affine coordinates. Note that  | 
286  |  |  * the simple implementation only uses affine coordinates.  | 
287  |  |  */  | 
288  |  | int ossl_ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,  | 
289  |  |                                                      EC_POINT *point,  | 
290  |  |                                                      const BIGNUM *x,  | 
291  |  |                                                      const BIGNUM *y,  | 
292  |  |                                                      BN_CTX *ctx)  | 
293  | 0  | { | 
294  | 0  |     int ret = 0;  | 
295  | 0  |     if (x == NULL || y == NULL) { | 
296  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);  | 
297  | 0  |         return 0;  | 
298  | 0  |     }  | 
299  |  |  | 
300  | 0  |     if (!BN_copy(point->X, x))  | 
301  | 0  |         goto err;  | 
302  | 0  |     BN_set_negative(point->X, 0);  | 
303  | 0  |     if (!BN_copy(point->Y, y))  | 
304  | 0  |         goto err;  | 
305  | 0  |     BN_set_negative(point->Y, 0);  | 
306  | 0  |     if (!BN_copy(point->Z, BN_value_one()))  | 
307  | 0  |         goto err;  | 
308  | 0  |     BN_set_negative(point->Z, 0);  | 
309  | 0  |     point->Z_is_one = 1;  | 
310  | 0  |     ret = 1;  | 
311  |  | 
  | 
312  | 0  |  err:  | 
313  | 0  |     return ret;  | 
314  | 0  | }  | 
315  |  |  | 
316  |  | /*  | 
317  |  |  * Gets the affine coordinates of an EC_POINT. Note that the simple  | 
318  |  |  * implementation only uses affine coordinates.  | 
319  |  |  */  | 
320  |  | int ossl_ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,  | 
321  |  |                                                      const EC_POINT *point,  | 
322  |  |                                                      BIGNUM *x, BIGNUM *y,  | 
323  |  |                                                      BN_CTX *ctx)  | 
324  | 0  | { | 
325  | 0  |     int ret = 0;  | 
326  |  | 
  | 
327  | 0  |     if (EC_POINT_is_at_infinity(group, point)) { | 
328  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);  | 
329  | 0  |         return 0;  | 
330  | 0  |     }  | 
331  |  |  | 
332  | 0  |     if (BN_cmp(point->Z, BN_value_one())) { | 
333  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);  | 
334  | 0  |         return 0;  | 
335  | 0  |     }  | 
336  | 0  |     if (x != NULL) { | 
337  | 0  |         if (!BN_copy(x, point->X))  | 
338  | 0  |             goto err;  | 
339  | 0  |         BN_set_negative(x, 0);  | 
340  | 0  |     }  | 
341  | 0  |     if (y != NULL) { | 
342  | 0  |         if (!BN_copy(y, point->Y))  | 
343  | 0  |             goto err;  | 
344  | 0  |         BN_set_negative(y, 0);  | 
345  | 0  |     }  | 
346  | 0  |     ret = 1;  | 
347  |  | 
  | 
348  | 0  |  err:  | 
349  | 0  |     return ret;  | 
350  | 0  | }  | 
351  |  |  | 
352  |  | /*  | 
353  |  |  * Computes a + b and stores the result in r.  r could be a or b, a could be  | 
354  |  |  * b. Uses algorithm A.10.2 of IEEE P1363.  | 
355  |  |  */  | 
356  |  | int ossl_ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r,  | 
357  |  |                             const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)  | 
358  | 0  | { | 
359  | 0  |     BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;  | 
360  | 0  |     int ret = 0;  | 
361  | 0  | #ifndef FIPS_MODULE  | 
362  | 0  |     BN_CTX *new_ctx = NULL;  | 
363  | 0  | #endif  | 
364  |  | 
  | 
365  | 0  |     if (EC_POINT_is_at_infinity(group, a)) { | 
366  | 0  |         if (!EC_POINT_copy(r, b))  | 
367  | 0  |             return 0;  | 
368  | 0  |         return 1;  | 
369  | 0  |     }  | 
370  |  |  | 
371  | 0  |     if (EC_POINT_is_at_infinity(group, b)) { | 
372  | 0  |         if (!EC_POINT_copy(r, a))  | 
373  | 0  |             return 0;  | 
374  | 0  |         return 1;  | 
375  | 0  |     }  | 
376  |  |  | 
377  | 0  | #ifndef FIPS_MODULE  | 
378  | 0  |     if (ctx == NULL) { | 
379  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
380  | 0  |         if (ctx == NULL)  | 
381  | 0  |             return 0;  | 
382  | 0  |     }  | 
383  | 0  | #endif  | 
384  |  |  | 
385  | 0  |     BN_CTX_start(ctx);  | 
386  | 0  |     x0 = BN_CTX_get(ctx);  | 
387  | 0  |     y0 = BN_CTX_get(ctx);  | 
388  | 0  |     x1 = BN_CTX_get(ctx);  | 
389  | 0  |     y1 = BN_CTX_get(ctx);  | 
390  | 0  |     x2 = BN_CTX_get(ctx);  | 
391  | 0  |     y2 = BN_CTX_get(ctx);  | 
392  | 0  |     s = BN_CTX_get(ctx);  | 
393  | 0  |     t = BN_CTX_get(ctx);  | 
394  | 0  |     if (t == NULL)  | 
395  | 0  |         goto err;  | 
396  |  |  | 
397  | 0  |     if (a->Z_is_one) { | 
398  | 0  |         if (!BN_copy(x0, a->X))  | 
399  | 0  |             goto err;  | 
400  | 0  |         if (!BN_copy(y0, a->Y))  | 
401  | 0  |             goto err;  | 
402  | 0  |     } else { | 
403  | 0  |         if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))  | 
404  | 0  |             goto err;  | 
405  | 0  |     }  | 
406  | 0  |     if (b->Z_is_one) { | 
407  | 0  |         if (!BN_copy(x1, b->X))  | 
408  | 0  |             goto err;  | 
409  | 0  |         if (!BN_copy(y1, b->Y))  | 
410  | 0  |             goto err;  | 
411  | 0  |     } else { | 
412  | 0  |         if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))  | 
413  | 0  |             goto err;  | 
414  | 0  |     }  | 
415  |  |  | 
416  | 0  |     if (BN_GF2m_cmp(x0, x1)) { | 
417  | 0  |         if (!BN_GF2m_add(t, x0, x1))  | 
418  | 0  |             goto err;  | 
419  | 0  |         if (!BN_GF2m_add(s, y0, y1))  | 
420  | 0  |             goto err;  | 
421  | 0  |         if (!group->meth->field_div(group, s, s, t, ctx))  | 
422  | 0  |             goto err;  | 
423  | 0  |         if (!group->meth->field_sqr(group, x2, s, ctx))  | 
424  | 0  |             goto err;  | 
425  | 0  |         if (!BN_GF2m_add(x2, x2, group->a))  | 
426  | 0  |             goto err;  | 
427  | 0  |         if (!BN_GF2m_add(x2, x2, s))  | 
428  | 0  |             goto err;  | 
429  | 0  |         if (!BN_GF2m_add(x2, x2, t))  | 
430  | 0  |             goto err;  | 
431  | 0  |     } else { | 
432  | 0  |         if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { | 
433  | 0  |             if (!EC_POINT_set_to_infinity(group, r))  | 
434  | 0  |                 goto err;  | 
435  | 0  |             ret = 1;  | 
436  | 0  |             goto err;  | 
437  | 0  |         }  | 
438  | 0  |         if (!group->meth->field_div(group, s, y1, x1, ctx))  | 
439  | 0  |             goto err;  | 
440  | 0  |         if (!BN_GF2m_add(s, s, x1))  | 
441  | 0  |             goto err;  | 
442  |  |  | 
443  | 0  |         if (!group->meth->field_sqr(group, x2, s, ctx))  | 
444  | 0  |             goto err;  | 
445  | 0  |         if (!BN_GF2m_add(x2, x2, s))  | 
446  | 0  |             goto err;  | 
447  | 0  |         if (!BN_GF2m_add(x2, x2, group->a))  | 
448  | 0  |             goto err;  | 
449  | 0  |     }  | 
450  |  |  | 
451  | 0  |     if (!BN_GF2m_add(y2, x1, x2))  | 
452  | 0  |         goto err;  | 
453  | 0  |     if (!group->meth->field_mul(group, y2, y2, s, ctx))  | 
454  | 0  |         goto err;  | 
455  | 0  |     if (!BN_GF2m_add(y2, y2, x2))  | 
456  | 0  |         goto err;  | 
457  | 0  |     if (!BN_GF2m_add(y2, y2, y1))  | 
458  | 0  |         goto err;  | 
459  |  |  | 
460  | 0  |     if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))  | 
461  | 0  |         goto err;  | 
462  |  |  | 
463  | 0  |     ret = 1;  | 
464  |  | 
  | 
465  | 0  |  err:  | 
466  | 0  |     BN_CTX_end(ctx);  | 
467  | 0  | #ifndef FIPS_MODULE  | 
468  | 0  |     BN_CTX_free(new_ctx);  | 
469  | 0  | #endif  | 
470  | 0  |     return ret;  | 
471  | 0  | }  | 
472  |  |  | 
473  |  | /*  | 
474  |  |  * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm  | 
475  |  |  * A.10.2 of IEEE P1363.  | 
476  |  |  */  | 
477  |  | int ossl_ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r,  | 
478  |  |                             const EC_POINT *a, BN_CTX *ctx)  | 
479  | 0  | { | 
480  | 0  |     return ossl_ec_GF2m_simple_add(group, r, a, a, ctx);  | 
481  | 0  | }  | 
482  |  |  | 
483  |  | int ossl_ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point,  | 
484  |  |                                BN_CTX *ctx)  | 
485  | 0  | { | 
486  | 0  |     if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))  | 
487  |  |         /* point is its own inverse */  | 
488  | 0  |         return 1;  | 
489  |  |  | 
490  | 0  |     if (group->meth->make_affine == NULL  | 
491  | 0  |         || !group->meth->make_affine(group, point, ctx))  | 
492  | 0  |         return 0;  | 
493  | 0  |     return BN_GF2m_add(point->Y, point->X, point->Y);  | 
494  | 0  | }  | 
495  |  |  | 
496  |  | /* Indicates whether the given point is the point at infinity. */  | 
497  |  | int ossl_ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,  | 
498  |  |                                        const EC_POINT *point)  | 
499  | 0  | { | 
500  | 0  |     return BN_is_zero(point->Z);  | 
501  | 0  | }  | 
502  |  |  | 
503  |  | /*-  | 
504  |  |  * Determines whether the given EC_POINT is an actual point on the curve defined  | 
505  |  |  * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:  | 
506  |  |  *      y^2 + x*y = x^3 + a*x^2 + b.  | 
507  |  |  */  | 
508  |  | int ossl_ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,  | 
509  |  |                                     BN_CTX *ctx)  | 
510  | 0  | { | 
511  | 0  |     int ret = -1;  | 
512  | 0  |     BIGNUM *lh, *y2;  | 
513  | 0  |     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,  | 
514  | 0  |                       const BIGNUM *, BN_CTX *);  | 
515  | 0  |     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);  | 
516  | 0  | #ifndef FIPS_MODULE  | 
517  | 0  |     BN_CTX *new_ctx = NULL;  | 
518  | 0  | #endif  | 
519  |  | 
  | 
520  | 0  |     if (EC_POINT_is_at_infinity(group, point))  | 
521  | 0  |         return 1;  | 
522  |  |  | 
523  | 0  |     field_mul = group->meth->field_mul;  | 
524  | 0  |     field_sqr = group->meth->field_sqr;  | 
525  |  |  | 
526  |  |     /* only support affine coordinates */  | 
527  | 0  |     if (!point->Z_is_one)  | 
528  | 0  |         return -1;  | 
529  |  |  | 
530  | 0  | #ifndef FIPS_MODULE  | 
531  | 0  |     if (ctx == NULL) { | 
532  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
533  | 0  |         if (ctx == NULL)  | 
534  | 0  |             return -1;  | 
535  | 0  |     }  | 
536  | 0  | #endif  | 
537  |  |  | 
538  | 0  |     BN_CTX_start(ctx);  | 
539  | 0  |     y2 = BN_CTX_get(ctx);  | 
540  | 0  |     lh = BN_CTX_get(ctx);  | 
541  | 0  |     if (lh == NULL)  | 
542  | 0  |         goto err;  | 
543  |  |  | 
544  |  |     /*-  | 
545  |  |      * We have a curve defined by a Weierstrass equation  | 
546  |  |      *      y^2 + x*y = x^3 + a*x^2 + b.  | 
547  |  |      *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0  | 
548  |  |      *  <=> ((x + a) * x + y) * x + b + y^2 = 0  | 
549  |  |      */  | 
550  | 0  |     if (!BN_GF2m_add(lh, point->X, group->a))  | 
551  | 0  |         goto err;  | 
552  | 0  |     if (!field_mul(group, lh, lh, point->X, ctx))  | 
553  | 0  |         goto err;  | 
554  | 0  |     if (!BN_GF2m_add(lh, lh, point->Y))  | 
555  | 0  |         goto err;  | 
556  | 0  |     if (!field_mul(group, lh, lh, point->X, ctx))  | 
557  | 0  |         goto err;  | 
558  | 0  |     if (!BN_GF2m_add(lh, lh, group->b))  | 
559  | 0  |         goto err;  | 
560  | 0  |     if (!field_sqr(group, y2, point->Y, ctx))  | 
561  | 0  |         goto err;  | 
562  | 0  |     if (!BN_GF2m_add(lh, lh, y2))  | 
563  | 0  |         goto err;  | 
564  | 0  |     ret = BN_is_zero(lh);  | 
565  |  | 
  | 
566  | 0  |  err:  | 
567  | 0  |     BN_CTX_end(ctx);  | 
568  | 0  | #ifndef FIPS_MODULE  | 
569  | 0  |     BN_CTX_free(new_ctx);  | 
570  | 0  | #endif  | 
571  | 0  |     return ret;  | 
572  | 0  | }  | 
573  |  |  | 
574  |  | /*-  | 
575  |  |  * Indicates whether two points are equal.  | 
576  |  |  * Return values:  | 
577  |  |  *  -1   error  | 
578  |  |  *   0   equal (in affine coordinates)  | 
579  |  |  *   1   not equal  | 
580  |  |  */  | 
581  |  | int ossl_ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,  | 
582  |  |                             const EC_POINT *b, BN_CTX *ctx)  | 
583  | 0  | { | 
584  | 0  |     BIGNUM *aX, *aY, *bX, *bY;  | 
585  | 0  |     int ret = -1;  | 
586  | 0  | #ifndef FIPS_MODULE  | 
587  | 0  |     BN_CTX *new_ctx = NULL;  | 
588  | 0  | #endif  | 
589  |  | 
  | 
590  | 0  |     if (EC_POINT_is_at_infinity(group, a)) { | 
591  | 0  |         return EC_POINT_is_at_infinity(group, b) ? 0 : 1;  | 
592  | 0  |     }  | 
593  |  |  | 
594  | 0  |     if (EC_POINT_is_at_infinity(group, b))  | 
595  | 0  |         return 1;  | 
596  |  |  | 
597  | 0  |     if (a->Z_is_one && b->Z_is_one) { | 
598  | 0  |         return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;  | 
599  | 0  |     }  | 
600  |  |  | 
601  | 0  | #ifndef FIPS_MODULE  | 
602  | 0  |     if (ctx == NULL) { | 
603  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
604  | 0  |         if (ctx == NULL)  | 
605  | 0  |             return -1;  | 
606  | 0  |     }  | 
607  | 0  | #endif  | 
608  |  |  | 
609  | 0  |     BN_CTX_start(ctx);  | 
610  | 0  |     aX = BN_CTX_get(ctx);  | 
611  | 0  |     aY = BN_CTX_get(ctx);  | 
612  | 0  |     bX = BN_CTX_get(ctx);  | 
613  | 0  |     bY = BN_CTX_get(ctx);  | 
614  | 0  |     if (bY == NULL)  | 
615  | 0  |         goto err;  | 
616  |  |  | 
617  | 0  |     if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))  | 
618  | 0  |         goto err;  | 
619  | 0  |     if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))  | 
620  | 0  |         goto err;  | 
621  | 0  |     ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;  | 
622  |  | 
  | 
623  | 0  |  err:  | 
624  | 0  |     BN_CTX_end(ctx);  | 
625  | 0  | #ifndef FIPS_MODULE  | 
626  | 0  |     BN_CTX_free(new_ctx);  | 
627  | 0  | #endif  | 
628  | 0  |     return ret;  | 
629  | 0  | }  | 
630  |  |  | 
631  |  | /* Forces the given EC_POINT to internally use affine coordinates. */  | 
632  |  | int ossl_ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,  | 
633  |  |                                     BN_CTX *ctx)  | 
634  | 0  | { | 
635  | 0  |     BIGNUM *x, *y;  | 
636  | 0  |     int ret = 0;  | 
637  | 0  | #ifndef FIPS_MODULE  | 
638  | 0  |     BN_CTX *new_ctx = NULL;  | 
639  | 0  | #endif  | 
640  |  | 
  | 
641  | 0  |     if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))  | 
642  | 0  |         return 1;  | 
643  |  |  | 
644  | 0  | #ifndef FIPS_MODULE  | 
645  | 0  |     if (ctx == NULL) { | 
646  | 0  |         ctx = new_ctx = BN_CTX_new();  | 
647  | 0  |         if (ctx == NULL)  | 
648  | 0  |             return 0;  | 
649  | 0  |     }  | 
650  | 0  | #endif  | 
651  |  |  | 
652  | 0  |     BN_CTX_start(ctx);  | 
653  | 0  |     x = BN_CTX_get(ctx);  | 
654  | 0  |     y = BN_CTX_get(ctx);  | 
655  | 0  |     if (y == NULL)  | 
656  | 0  |         goto err;  | 
657  |  |  | 
658  | 0  |     if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))  | 
659  | 0  |         goto err;  | 
660  | 0  |     if (!BN_copy(point->X, x))  | 
661  | 0  |         goto err;  | 
662  | 0  |     if (!BN_copy(point->Y, y))  | 
663  | 0  |         goto err;  | 
664  | 0  |     if (!BN_one(point->Z))  | 
665  | 0  |         goto err;  | 
666  | 0  |     point->Z_is_one = 1;  | 
667  |  | 
  | 
668  | 0  |     ret = 1;  | 
669  |  | 
  | 
670  | 0  |  err:  | 
671  | 0  |     BN_CTX_end(ctx);  | 
672  | 0  | #ifndef FIPS_MODULE  | 
673  | 0  |     BN_CTX_free(new_ctx);  | 
674  | 0  | #endif  | 
675  | 0  |     return ret;  | 
676  | 0  | }  | 
677  |  |  | 
678  |  | /*  | 
679  |  |  * Forces each of the EC_POINTs in the given array to use affine coordinates.  | 
680  |  |  */  | 
681  |  | int ossl_ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,  | 
682  |  |                                            EC_POINT *points[], BN_CTX *ctx)  | 
683  | 0  | { | 
684  | 0  |     size_t i;  | 
685  |  | 
  | 
686  | 0  |     for (i = 0; i < num; i++) { | 
687  | 0  |         if (!group->meth->make_affine(group, points[i], ctx))  | 
688  | 0  |             return 0;  | 
689  | 0  |     }  | 
690  |  |  | 
691  | 0  |     return 1;  | 
692  | 0  | }  | 
693  |  |  | 
694  |  | /* Wrapper to simple binary polynomial field multiplication implementation. */  | 
695  |  | int ossl_ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,  | 
696  |  |                                   const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
697  | 0  | { | 
698  | 0  |     return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);  | 
699  | 0  | }  | 
700  |  |  | 
701  |  | /* Wrapper to simple binary polynomial field squaring implementation. */  | 
702  |  | int ossl_ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,  | 
703  |  |                                   const BIGNUM *a, BN_CTX *ctx)  | 
704  | 0  | { | 
705  | 0  |     return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);  | 
706  | 0  | }  | 
707  |  |  | 
708  |  | /* Wrapper to simple binary polynomial field division implementation. */  | 
709  |  | int ossl_ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,  | 
710  |  |                                   const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
711  | 0  | { | 
712  | 0  |     return BN_GF2m_mod_div(r, a, b, group->field, ctx);  | 
713  | 0  | }  | 
714  |  |  | 
715  |  | /*-  | 
716  |  |  * Lopez-Dahab ladder, pre step.  | 
717  |  |  * See e.g. "Guide to ECC" Alg 3.40.  | 
718  |  |  * Modified to blind s and r independently.  | 
719  |  |  * s:= p, r := 2p  | 
720  |  |  */  | 
721  |  | static  | 
722  |  | int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,  | 
723  |  |                               EC_POINT *r, EC_POINT *s,  | 
724  |  |                               EC_POINT *p, BN_CTX *ctx)  | 
725  | 0  | { | 
726  |  |     /* if p is not affine, something is wrong */  | 
727  | 0  |     if (p->Z_is_one == 0)  | 
728  | 0  |         return 0;  | 
729  |  |  | 
730  |  |     /* s blinding: make sure lambda (s->Z here) is not zero */  | 
731  | 0  |     do { | 
732  | 0  |         if (!BN_priv_rand_ex(s->Z, BN_num_bits(group->field) - 1,  | 
733  | 0  |                              BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) { | 
734  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
735  | 0  |             return 0;  | 
736  | 0  |         }  | 
737  | 0  |     } while (BN_is_zero(s->Z));  | 
738  |  |  | 
739  |  |     /* if field_encode defined convert between representations */  | 
740  | 0  |     if ((group->meth->field_encode != NULL  | 
741  | 0  |          && !group->meth->field_encode(group, s->Z, s->Z, ctx))  | 
742  | 0  |         || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))  | 
743  | 0  |         return 0;  | 
744  |  |  | 
745  |  |     /* r blinding: make sure lambda (r->Y here for storage) is not zero */  | 
746  | 0  |     do { | 
747  | 0  |         if (!BN_priv_rand_ex(r->Y, BN_num_bits(group->field) - 1,  | 
748  | 0  |                              BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) { | 
749  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
750  | 0  |             return 0;  | 
751  | 0  |         }  | 
752  | 0  |     } while (BN_is_zero(r->Y));  | 
753  |  |  | 
754  | 0  |     if ((group->meth->field_encode != NULL  | 
755  | 0  |          && !group->meth->field_encode(group, r->Y, r->Y, ctx))  | 
756  | 0  |         || !group->meth->field_sqr(group, r->Z, p->X, ctx)  | 
757  | 0  |         || !group->meth->field_sqr(group, r->X, r->Z, ctx)  | 
758  | 0  |         || !BN_GF2m_add(r->X, r->X, group->b)  | 
759  | 0  |         || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)  | 
760  | 0  |         || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))  | 
761  | 0  |         return 0;  | 
762  |  |  | 
763  | 0  |     s->Z_is_one = 0;  | 
764  | 0  |     r->Z_is_one = 0;  | 
765  |  | 
  | 
766  | 0  |     return 1;  | 
767  | 0  | }  | 
768  |  |  | 
769  |  | /*-  | 
770  |  |  * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.  | 
771  |  |  * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3  | 
772  |  |  * s := r + s, r := 2r  | 
773  |  |  */  | 
774  |  | static  | 
775  |  | int ec_GF2m_simple_ladder_step(const EC_GROUP *group,  | 
776  |  |                                EC_POINT *r, EC_POINT *s,  | 
777  |  |                                EC_POINT *p, BN_CTX *ctx)  | 
778  | 0  | { | 
779  | 0  |     if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)  | 
780  | 0  |         || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)  | 
781  | 0  |         || !group->meth->field_sqr(group, s->Y, r->Z, ctx)  | 
782  | 0  |         || !group->meth->field_sqr(group, r->Z, r->X, ctx)  | 
783  | 0  |         || !BN_GF2m_add(s->Z, r->Y, s->X)  | 
784  | 0  |         || !group->meth->field_sqr(group, s->Z, s->Z, ctx)  | 
785  | 0  |         || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)  | 
786  | 0  |         || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)  | 
787  | 0  |         || !BN_GF2m_add(s->X, s->X, r->Y)  | 
788  | 0  |         || !group->meth->field_sqr(group, r->Y, r->Z, ctx)  | 
789  | 0  |         || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)  | 
790  | 0  |         || !group->meth->field_sqr(group, s->Y, s->Y, ctx)  | 
791  | 0  |         || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)  | 
792  | 0  |         || !BN_GF2m_add(r->X, r->Y, s->Y))  | 
793  | 0  |         return 0;  | 
794  |  |  | 
795  | 0  |     return 1;  | 
796  | 0  | }  | 
797  |  |  | 
798  |  | /*-  | 
799  |  |  * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.  | 
800  |  |  * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)  | 
801  |  |  * without Precomputation" (Lopez and Dahab, CHES 1999),  | 
802  |  |  * Appendix Alg Mxy.  | 
803  |  |  */  | 
804  |  | static  | 
805  |  | int ec_GF2m_simple_ladder_post(const EC_GROUP *group,  | 
806  |  |                                EC_POINT *r, EC_POINT *s,  | 
807  |  |                                EC_POINT *p, BN_CTX *ctx)  | 
808  | 0  | { | 
809  | 0  |     int ret = 0;  | 
810  | 0  |     BIGNUM *t0, *t1, *t2 = NULL;  | 
811  |  | 
  | 
812  | 0  |     if (BN_is_zero(r->Z))  | 
813  | 0  |         return EC_POINT_set_to_infinity(group, r);  | 
814  |  |  | 
815  | 0  |     if (BN_is_zero(s->Z)) { | 
816  | 0  |         if (!EC_POINT_copy(r, p)  | 
817  | 0  |             || !EC_POINT_invert(group, r, ctx)) { | 
818  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);  | 
819  | 0  |             return 0;  | 
820  | 0  |         }  | 
821  | 0  |         return 1;  | 
822  | 0  |     }  | 
823  |  |  | 
824  | 0  |     BN_CTX_start(ctx);  | 
825  | 0  |     t0 = BN_CTX_get(ctx);  | 
826  | 0  |     t1 = BN_CTX_get(ctx);  | 
827  | 0  |     t2 = BN_CTX_get(ctx);  | 
828  | 0  |     if (t2 == NULL) { | 
829  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
830  | 0  |         goto err;  | 
831  | 0  |     }  | 
832  |  |  | 
833  | 0  |     if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)  | 
834  | 0  |         || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)  | 
835  | 0  |         || !BN_GF2m_add(t1, r->X, t1)  | 
836  | 0  |         || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)  | 
837  | 0  |         || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)  | 
838  | 0  |         || !BN_GF2m_add(t2, t2, s->X)  | 
839  | 0  |         || !group->meth->field_mul(group, t1, t1, t2, ctx)  | 
840  | 0  |         || !group->meth->field_sqr(group, t2, p->X, ctx)  | 
841  | 0  |         || !BN_GF2m_add(t2, p->Y, t2)  | 
842  | 0  |         || !group->meth->field_mul(group, t2, t2, t0, ctx)  | 
843  | 0  |         || !BN_GF2m_add(t1, t2, t1)  | 
844  | 0  |         || !group->meth->field_mul(group, t2, p->X, t0, ctx)  | 
845  | 0  |         || !group->meth->field_inv(group, t2, t2, ctx)  | 
846  | 0  |         || !group->meth->field_mul(group, t1, t1, t2, ctx)  | 
847  | 0  |         || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)  | 
848  | 0  |         || !BN_GF2m_add(t2, p->X, r->X)  | 
849  | 0  |         || !group->meth->field_mul(group, t2, t2, t1, ctx)  | 
850  | 0  |         || !BN_GF2m_add(r->Y, p->Y, t2)  | 
851  | 0  |         || !BN_one(r->Z))  | 
852  | 0  |         goto err;  | 
853  |  |  | 
854  | 0  |     r->Z_is_one = 1;  | 
855  |  |  | 
856  |  |     /* GF(2^m) field elements should always have BIGNUM::neg = 0 */  | 
857  | 0  |     BN_set_negative(r->X, 0);  | 
858  | 0  |     BN_set_negative(r->Y, 0);  | 
859  |  | 
  | 
860  | 0  |     ret = 1;  | 
861  |  | 
  | 
862  | 0  |  err:  | 
863  | 0  |     BN_CTX_end(ctx);  | 
864  | 0  |     return ret;  | 
865  | 0  | }  | 
866  |  |  | 
867  |  | static  | 
868  |  | int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,  | 
869  |  |                               const BIGNUM *scalar, size_t num,  | 
870  |  |                               const EC_POINT *points[],  | 
871  |  |                               const BIGNUM *scalars[],  | 
872  |  |                               BN_CTX *ctx)  | 
873  | 0  | { | 
874  | 0  |     int ret = 0;  | 
875  | 0  |     EC_POINT *t = NULL;  | 
876  |  |  | 
877  |  |     /*-  | 
878  |  |      * We limit use of the ladder only to the following cases:  | 
879  |  |      * - r := scalar * G  | 
880  |  |      *   Fixed point mul: scalar != NULL && num == 0;  | 
881  |  |      * - r := scalars[0] * points[0]  | 
882  |  |      *   Variable point mul: scalar == NULL && num == 1;  | 
883  |  |      * - r := scalar * G + scalars[0] * points[0]  | 
884  |  |      *   used, e.g., in ECDSA verification: scalar != NULL && num == 1  | 
885  |  |      *  | 
886  |  |      * In any other case (num > 1) we use the default wNAF implementation.  | 
887  |  |      *  | 
888  |  |      * We also let the default implementation handle degenerate cases like group  | 
889  |  |      * order or cofactor set to 0.  | 
890  |  |      */  | 
891  | 0  |     if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))  | 
892  | 0  |         return ossl_ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);  | 
893  |  |  | 
894  | 0  |     if (scalar != NULL && num == 0)  | 
895  |  |         /* Fixed point multiplication */  | 
896  | 0  |         return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);  | 
897  |  |  | 
898  | 0  |     if (scalar == NULL && num == 1)  | 
899  |  |         /* Variable point multiplication */  | 
900  | 0  |         return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);  | 
901  |  |  | 
902  |  |     /*-  | 
903  |  |      * Double point multiplication:  | 
904  |  |      *  r := scalar * G + scalars[0] * points[0]  | 
905  |  |      */  | 
906  |  |  | 
907  | 0  |     if ((t = EC_POINT_new(group)) == NULL) { | 
908  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);  | 
909  | 0  |         return 0;  | 
910  | 0  |     }  | 
911  |  |  | 
912  | 0  |     if (!ossl_ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)  | 
913  | 0  |         || !ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)  | 
914  | 0  |         || !EC_POINT_add(group, r, t, r, ctx))  | 
915  | 0  |         goto err;  | 
916  |  |  | 
917  | 0  |     ret = 1;  | 
918  |  | 
  | 
919  | 0  |  err:  | 
920  | 0  |     EC_POINT_free(t);  | 
921  | 0  |     return ret;  | 
922  | 0  | }  | 
923  |  |  | 
924  |  | /*-  | 
925  |  |  * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.  | 
926  |  |  * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.  | 
927  |  |  * SCA hardening is with blinding: BN_GF2m_mod_inv does that.  | 
928  |  |  */  | 
929  |  | static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,  | 
930  |  |                                     const BIGNUM *a, BN_CTX *ctx)  | 
931  | 0  | { | 
932  | 0  |     int ret;  | 
933  |  | 
  | 
934  | 0  |     if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))  | 
935  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);  | 
936  | 0  |     return ret;  | 
937  | 0  | }  | 
938  |  |  | 
939  |  | const EC_METHOD *EC_GF2m_simple_method(void)  | 
940  | 0  | { | 
941  | 0  |     static const EC_METHOD ret = { | 
942  | 0  |         EC_FLAGS_DEFAULT_OCT,  | 
943  | 0  |         NID_X9_62_characteristic_two_field,  | 
944  | 0  |         ossl_ec_GF2m_simple_group_init,  | 
945  | 0  |         ossl_ec_GF2m_simple_group_finish,  | 
946  | 0  |         ossl_ec_GF2m_simple_group_clear_finish,  | 
947  | 0  |         ossl_ec_GF2m_simple_group_copy,  | 
948  | 0  |         ossl_ec_GF2m_simple_group_set_curve,  | 
949  | 0  |         ossl_ec_GF2m_simple_group_get_curve,  | 
950  | 0  |         ossl_ec_GF2m_simple_group_get_degree,  | 
951  | 0  |         ossl_ec_group_simple_order_bits,  | 
952  | 0  |         ossl_ec_GF2m_simple_group_check_discriminant,  | 
953  | 0  |         ossl_ec_GF2m_simple_point_init,  | 
954  | 0  |         ossl_ec_GF2m_simple_point_finish,  | 
955  | 0  |         ossl_ec_GF2m_simple_point_clear_finish,  | 
956  | 0  |         ossl_ec_GF2m_simple_point_copy,  | 
957  | 0  |         ossl_ec_GF2m_simple_point_set_to_infinity,  | 
958  | 0  |         ossl_ec_GF2m_simple_point_set_affine_coordinates,  | 
959  | 0  |         ossl_ec_GF2m_simple_point_get_affine_coordinates,  | 
960  | 0  |         0, /* point_set_compressed_coordinates */  | 
961  | 0  |         0, /* point2oct */  | 
962  | 0  |         0, /* oct2point */  | 
963  | 0  |         ossl_ec_GF2m_simple_add,  | 
964  | 0  |         ossl_ec_GF2m_simple_dbl,  | 
965  | 0  |         ossl_ec_GF2m_simple_invert,  | 
966  | 0  |         ossl_ec_GF2m_simple_is_at_infinity,  | 
967  | 0  |         ossl_ec_GF2m_simple_is_on_curve,  | 
968  | 0  |         ossl_ec_GF2m_simple_cmp,  | 
969  | 0  |         ossl_ec_GF2m_simple_make_affine,  | 
970  | 0  |         ossl_ec_GF2m_simple_points_make_affine,  | 
971  | 0  |         ec_GF2m_simple_points_mul,  | 
972  | 0  |         0, /* precompute_mult */  | 
973  | 0  |         0, /* have_precompute_mult */  | 
974  | 0  |         ossl_ec_GF2m_simple_field_mul,  | 
975  | 0  |         ossl_ec_GF2m_simple_field_sqr,  | 
976  | 0  |         ossl_ec_GF2m_simple_field_div,  | 
977  | 0  |         ec_GF2m_simple_field_inv,  | 
978  | 0  |         0, /* field_encode */  | 
979  | 0  |         0, /* field_decode */  | 
980  | 0  |         0, /* field_set_to_one */  | 
981  | 0  |         ossl_ec_key_simple_priv2oct,  | 
982  | 0  |         ossl_ec_key_simple_oct2priv,  | 
983  | 0  |         0, /* set private */  | 
984  | 0  |         ossl_ec_key_simple_generate_key,  | 
985  | 0  |         ossl_ec_key_simple_check_key,  | 
986  | 0  |         ossl_ec_key_simple_generate_public_key,  | 
987  | 0  |         0, /* keycopy */  | 
988  | 0  |         0, /* keyfinish */  | 
989  | 0  |         ossl_ecdh_simple_compute_key,  | 
990  | 0  |         ossl_ecdsa_simple_sign_setup,  | 
991  | 0  |         ossl_ecdsa_simple_sign_sig,  | 
992  | 0  |         ossl_ecdsa_simple_verify_sig,  | 
993  | 0  |         0, /* field_inverse_mod_ord */  | 
994  | 0  |         0, /* blind_coordinates */  | 
995  | 0  |         ec_GF2m_simple_ladder_pre,  | 
996  | 0  |         ec_GF2m_simple_ladder_step,  | 
997  | 0  |         ec_GF2m_simple_ladder_post  | 
998  | 0  |     };  | 
999  |  | 
  | 
1000  | 0  |     return &ret;  | 
1001  | 0  | }  | 
1002  |  |  | 
1003  |  | #endif  |