/src/openssl/crypto/rsa/rsa_gen.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * NB: these functions have been "upgraded", the deprecated versions (which  | 
12  |  |  * are compatibility wrappers using these functions) are in rsa_depr.c. -  | 
13  |  |  * Geoff  | 
14  |  |  */  | 
15  |  |  | 
16  |  | /*  | 
17  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
18  |  |  * internal use.  | 
19  |  |  */  | 
20  |  | #include "internal/deprecated.h"  | 
21  |  |  | 
22  |  | #include <stdio.h>  | 
23  |  | #include <time.h>  | 
24  |  | #include "internal/cryptlib.h"  | 
25  |  | #include <openssl/bn.h>  | 
26  |  | #include <openssl/self_test.h>  | 
27  |  | #include "prov/providercommon.h"  | 
28  |  | #include "rsa_local.h"  | 
29  |  |  | 
30  |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);  | 
31  |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,  | 
32  |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);  | 
33  |  |  | 
34  |  | /*  | 
35  |  |  * NB: this wrapper would normally be placed in rsa_lib.c and the static  | 
36  |  |  * implementation would probably be in rsa_eay.c. Nonetheless, is kept here  | 
37  |  |  * so that we don't introduce a new linker dependency. Eg. any application  | 
38  |  |  * that wasn't previously linking object code related to key-generation won't  | 
39  |  |  * have to now just because key-generation is part of RSA_METHOD.  | 
40  |  |  */  | 
41  |  | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)  | 
42  | 0  | { | 
43  | 0  |     if (rsa->meth->rsa_keygen != NULL)  | 
44  | 0  |         return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);  | 
45  |  |  | 
46  | 0  |     return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,  | 
47  | 0  |                                         e_value, cb);  | 
48  | 0  | }  | 
49  |  |  | 
50  |  | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,  | 
51  |  |                                  BIGNUM *e_value, BN_GENCB *cb)  | 
52  | 0  | { | 
53  | 0  | #ifndef FIPS_MODULE  | 
54  |  |     /* multi-prime is only supported with the builtin key generation */  | 
55  | 0  |     if (rsa->meth->rsa_multi_prime_keygen != NULL) { | 
56  | 0  |         return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,  | 
57  | 0  |                                                  e_value, cb);  | 
58  | 0  |     } else if (rsa->meth->rsa_keygen != NULL) { | 
59  |  |         /*  | 
60  |  |          * However, if rsa->meth implements only rsa_keygen, then we  | 
61  |  |          * have to honour it in 2-prime case and assume that it wouldn't  | 
62  |  |          * know what to do with multi-prime key generated by builtin  | 
63  |  |          * subroutine...  | 
64  |  |          */  | 
65  | 0  |         if (primes == 2)  | 
66  | 0  |             return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);  | 
67  | 0  |         else  | 
68  | 0  |             return 0;  | 
69  | 0  |     }  | 
70  | 0  | #endif /* FIPS_MODULE */  | 
71  | 0  |     return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);  | 
72  | 0  | }  | 
73  |  |  | 
74  |  | DEFINE_STACK_OF(BIGNUM)  | 
75  |  |  | 
76  |  | /*  | 
77  |  |  * Given input values, q, p, n, d and e, derive the exponents  | 
78  |  |  * and coefficients for each prime in this key, placing the result  | 
79  |  |  * on their respective exps and coeffs stacks  | 
80  |  |  */  | 
81  |  | #ifndef FIPS_MODULE  | 
82  |  | int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,  | 
83  |  |                                BIGNUM *e_value,  | 
84  |  |                                STACK_OF(BIGNUM) *factors,  | 
85  |  |                                STACK_OF(BIGNUM) *exps,  | 
86  |  |                                STACK_OF(BIGNUM) *coeffs)  | 
87  | 0  | { | 
88  | 0  |     STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;  | 
89  | 0  |     BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;  | 
90  | 0  |     BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;  | 
91  | 0  |     BIGNUM *p = NULL, *q = NULL;  | 
92  | 0  |     BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;  | 
93  | 0  |     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;  | 
94  | 0  |     BN_CTX *ctx = NULL;  | 
95  | 0  |     BIGNUM *tmp = NULL;  | 
96  | 0  |     int i;  | 
97  | 0  |     int ret = 0;  | 
98  |  | 
  | 
99  | 0  |     ctx = BN_CTX_new_ex(rsa->libctx);  | 
100  | 0  |     if (ctx == NULL)  | 
101  | 0  |         goto err;  | 
102  |  |  | 
103  | 0  |     BN_CTX_start(ctx);  | 
104  |  | 
  | 
105  | 0  |     pplist = sk_BIGNUM_new_null();  | 
106  | 0  |     if (pplist == NULL)  | 
107  | 0  |         goto err;  | 
108  |  |  | 
109  | 0  |     pdlist = sk_BIGNUM_new_null();  | 
110  | 0  |     if (pdlist == NULL)  | 
111  | 0  |         goto err;  | 
112  |  |  | 
113  | 0  |     r0 = BN_CTX_get(ctx);  | 
114  | 0  |     r1 = BN_CTX_get(ctx);  | 
115  | 0  |     r2 = BN_CTX_get(ctx);  | 
116  |  | 
  | 
117  | 0  |     if (r2 == NULL)  | 
118  | 0  |         goto err;  | 
119  |  |  | 
120  | 0  |     BN_set_flags(r0, BN_FLG_CONSTTIME);  | 
121  | 0  |     BN_set_flags(r1, BN_FLG_CONSTTIME);  | 
122  | 0  |     BN_set_flags(r2, BN_FLG_CONSTTIME);  | 
123  |  | 
  | 
124  | 0  |     if (BN_copy(r1, rsa->n) == NULL)  | 
125  | 0  |         goto err;  | 
126  |  |  | 
127  | 0  |     p = sk_BIGNUM_value(factors, 0);  | 
128  | 0  |     q = sk_BIGNUM_value(factors, 1);  | 
129  |  |  | 
130  |  |     /* Build list of partial products of primes */  | 
131  | 0  |     for (i = 0; i < sk_BIGNUM_num(factors); i++) { | 
132  | 0  |         switch (i) { | 
133  | 0  |         case 0:  | 
134  |  |             /* our first prime, p */  | 
135  | 0  |             if (!BN_sub(r2, p, BN_value_one()))  | 
136  | 0  |                 goto err;  | 
137  | 0  |             BN_set_flags(r2, BN_FLG_CONSTTIME);  | 
138  | 0  |             if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)  | 
139  | 0  |                 goto err;  | 
140  | 0  |             break;  | 
141  | 0  |         case 1:  | 
142  |  |             /* second prime q */  | 
143  | 0  |             if (!BN_mul(r1, p, q, ctx))  | 
144  | 0  |                 goto err;  | 
145  | 0  |             tmp = BN_dup(r1);  | 
146  | 0  |             if (tmp == NULL)  | 
147  | 0  |                 goto err;  | 
148  | 0  |             if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))  | 
149  | 0  |                 goto err;  | 
150  | 0  |             tmp = NULL;  | 
151  | 0  |             break;  | 
152  | 0  |         default:  | 
153  | 0  |             factor = sk_BIGNUM_value(factors, i);  | 
154  |  |             /* all other primes */  | 
155  | 0  |             if (!BN_mul(r1, r1, factor, ctx))  | 
156  | 0  |                 goto err;  | 
157  | 0  |             tmp = BN_dup(r1);  | 
158  | 0  |             if (tmp == NULL)  | 
159  | 0  |                 goto err;  | 
160  | 0  |             if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))  | 
161  | 0  |                 goto err;  | 
162  | 0  |             tmp = NULL;  | 
163  | 0  |             break;  | 
164  | 0  |         }  | 
165  | 0  |     }  | 
166  |  |  | 
167  |  |     /* build list of relative d values */  | 
168  |  |     /* p -1 */  | 
169  | 0  |     if (!BN_sub(r1, p, BN_value_one()))  | 
170  | 0  |         goto err;  | 
171  | 0  |     if (!BN_sub(r2, q, BN_value_one()))  | 
172  | 0  |         goto err;  | 
173  | 0  |     if (!BN_mul(r0, r1, r2, ctx))  | 
174  | 0  |         goto err;  | 
175  | 0  |     for (i = 2; i < sk_BIGNUM_num(factors); i++) { | 
176  | 0  |         factor = sk_BIGNUM_value(factors, i);  | 
177  | 0  |         dval = BN_new();  | 
178  | 0  |         if (dval == NULL)  | 
179  | 0  |             goto err;  | 
180  | 0  |         BN_set_flags(dval, BN_FLG_CONSTTIME);  | 
181  | 0  |         if (!BN_sub(dval, factor, BN_value_one()))  | 
182  | 0  |             goto err;  | 
183  | 0  |         if (!BN_mul(r0, r0, dval, ctx))  | 
184  | 0  |             goto err;  | 
185  | 0  |         if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))  | 
186  | 0  |             goto err;  | 
187  | 0  |         dval = NULL;  | 
188  | 0  |     }  | 
189  |  |  | 
190  |  |     /* Calculate dmp1, dmq1 and additional exponents */  | 
191  | 0  |     dmp1 = BN_secure_new();  | 
192  | 0  |     if (dmp1 == NULL)  | 
193  | 0  |         goto err;  | 
194  | 0  |     dmq1 = BN_secure_new();  | 
195  | 0  |     if (dmq1 == NULL)  | 
196  | 0  |         goto err;  | 
197  |  |  | 
198  | 0  |     if (!BN_mod(dmp1, rsa->d, r1, ctx))  | 
199  | 0  |         goto err;  | 
200  | 0  |     if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))  | 
201  | 0  |         goto err;  | 
202  | 0  |     dmp1 = NULL;  | 
203  |  | 
  | 
204  | 0  |     if (!BN_mod(dmq1, rsa->d, r2, ctx))  | 
205  | 0  |         goto err;  | 
206  | 0  |     if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))  | 
207  | 0  |         goto err;  | 
208  | 0  |     dmq1 = NULL;  | 
209  |  | 
  | 
210  | 0  |     for (i = 2; i < sk_BIGNUM_num(factors); i++) { | 
211  | 0  |         newpd = sk_BIGNUM_value(pdlist, i - 2);  | 
212  | 0  |         newexp = BN_new();  | 
213  | 0  |         if (newexp == NULL)  | 
214  | 0  |             goto err;  | 
215  | 0  |         if (!BN_mod(newexp, rsa->d, newpd, ctx))  | 
216  | 0  |             goto err;  | 
217  | 0  |         if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))  | 
218  | 0  |             goto err;  | 
219  | 0  |         newexp = NULL;  | 
220  | 0  |     }  | 
221  |  |  | 
222  |  |     /* Calculate iqmp and additional coefficients */  | 
223  | 0  |     iqmp = BN_new();  | 
224  | 0  |     if (iqmp == NULL)  | 
225  | 0  |         goto err;  | 
226  |  |  | 
227  | 0  |     if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),  | 
228  | 0  |                        sk_BIGNUM_value(factors, 0), ctx) == NULL)  | 
229  | 0  |         goto err;  | 
230  | 0  |     if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))  | 
231  | 0  |         goto err;  | 
232  | 0  |     iqmp = NULL;  | 
233  |  | 
  | 
234  | 0  |     for (i = 2; i < sk_BIGNUM_num(factors); i++) { | 
235  | 0  |         newpp = sk_BIGNUM_value(pplist, i - 2);  | 
236  | 0  |         newcoeff = BN_new();  | 
237  | 0  |         if (newcoeff == NULL)  | 
238  | 0  |             goto err;  | 
239  | 0  |         if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),  | 
240  | 0  |                            ctx) == NULL)  | 
241  | 0  |             goto err;  | 
242  | 0  |         if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))  | 
243  | 0  |             goto err;  | 
244  | 0  |         newcoeff = NULL;  | 
245  | 0  |     }  | 
246  |  |  | 
247  | 0  |     ret = 1;  | 
248  | 0  |  err:  | 
249  | 0  |     BN_free(newcoeff);  | 
250  | 0  |     BN_free(newexp);  | 
251  | 0  |     BN_free(dval);  | 
252  | 0  |     BN_free(tmp);  | 
253  | 0  |     sk_BIGNUM_pop_free(pplist, BN_free);  | 
254  | 0  |     sk_BIGNUM_pop_free(pdlist, BN_free);  | 
255  | 0  |     BN_CTX_end(ctx);  | 
256  | 0  |     BN_CTX_free(ctx);  | 
257  | 0  |     BN_clear_free(dmp1);  | 
258  | 0  |     BN_clear_free(dmq1);  | 
259  | 0  |     BN_clear_free(iqmp);  | 
260  | 0  |     return ret;  | 
261  | 0  | }  | 
262  |  |  | 
263  |  | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,  | 
264  |  |                                  BIGNUM *e_value, BN_GENCB *cb)  | 
265  | 0  | { | 
266  | 0  |     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;  | 
267  | 0  |     int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;  | 
268  | 0  |     int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;  | 
269  | 0  |     RSA_PRIME_INFO *pinfo = NULL;  | 
270  | 0  |     STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;  | 
271  | 0  |     STACK_OF(BIGNUM) *factors = NULL;  | 
272  | 0  |     STACK_OF(BIGNUM) *exps = NULL;  | 
273  | 0  |     STACK_OF(BIGNUM) *coeffs = NULL;  | 
274  | 0  |     BN_CTX *ctx = NULL;  | 
275  | 0  |     BN_ULONG bitst = 0;  | 
276  | 0  |     unsigned long error = 0;  | 
277  | 0  |     int ok = -1;  | 
278  |  | 
  | 
279  | 0  |     if (bits < RSA_MIN_MODULUS_BITS) { | 
280  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);  | 
281  | 0  |         return 0;  | 
282  | 0  |     }  | 
283  | 0  |     if (e_value == NULL) { | 
284  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);  | 
285  | 0  |         return 0;  | 
286  | 0  |     }  | 
287  |  |     /* A bad value for e can cause infinite loops */  | 
288  | 0  |     if (!ossl_rsa_check_public_exponent(e_value)) { | 
289  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);  | 
290  | 0  |         return 0;  | 
291  | 0  |     }  | 
292  |  |  | 
293  | 0  |     if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) { | 
294  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);  | 
295  | 0  |         return 0;  | 
296  | 0  |     }  | 
297  |  |  | 
298  | 0  |     factors = sk_BIGNUM_new_null();  | 
299  | 0  |     if (factors == NULL)  | 
300  | 0  |         return 0;  | 
301  |  |  | 
302  | 0  |     exps = sk_BIGNUM_new_null();  | 
303  | 0  |     if (exps == NULL)  | 
304  | 0  |         goto err;  | 
305  |  |  | 
306  | 0  |     coeffs = sk_BIGNUM_new_null();  | 
307  | 0  |     if (coeffs == NULL)  | 
308  | 0  |         goto err;  | 
309  |  |  | 
310  | 0  |     ctx = BN_CTX_new_ex(rsa->libctx);  | 
311  | 0  |     if (ctx == NULL)  | 
312  | 0  |         goto err;  | 
313  | 0  |     BN_CTX_start(ctx);  | 
314  | 0  |     r0 = BN_CTX_get(ctx);  | 
315  | 0  |     r1 = BN_CTX_get(ctx);  | 
316  | 0  |     r2 = BN_CTX_get(ctx);  | 
317  | 0  |     if (r2 == NULL)  | 
318  | 0  |         goto err;  | 
319  |  |  | 
320  |  |     /* divide bits into 'primes' pieces evenly */  | 
321  | 0  |     quo = bits / primes;  | 
322  | 0  |     rmd = bits % primes;  | 
323  |  | 
  | 
324  | 0  |     for (i = 0; i < primes; i++)  | 
325  | 0  |         bitsr[i] = (i < rmd) ? quo + 1 : quo;  | 
326  |  | 
  | 
327  | 0  |     rsa->dirty_cnt++;  | 
328  |  |  | 
329  |  |     /* We need the RSA components non-NULL */  | 
330  | 0  |     if (!rsa->n && ((rsa->n = BN_new()) == NULL))  | 
331  | 0  |         goto err;  | 
332  | 0  |     if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))  | 
333  | 0  |         goto err;  | 
334  | 0  |     BN_set_flags(rsa->d, BN_FLG_CONSTTIME);  | 
335  | 0  |     if (!rsa->e && ((rsa->e = BN_new()) == NULL))  | 
336  | 0  |         goto err;  | 
337  | 0  |     if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))  | 
338  | 0  |         goto err;  | 
339  | 0  |     BN_set_flags(rsa->p, BN_FLG_CONSTTIME);  | 
340  | 0  |     if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))  | 
341  | 0  |         goto err;  | 
342  | 0  |     BN_set_flags(rsa->q, BN_FLG_CONSTTIME);  | 
343  |  |  | 
344  |  |     /* initialize multi-prime components */  | 
345  | 0  |     if (primes > RSA_DEFAULT_PRIME_NUM) { | 
346  | 0  |         rsa->version = RSA_ASN1_VERSION_MULTI;  | 
347  | 0  |         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);  | 
348  | 0  |         if (prime_infos == NULL)  | 
349  | 0  |             goto err;  | 
350  | 0  |         if (rsa->prime_infos != NULL) { | 
351  |  |             /* could this happen? */  | 
352  | 0  |             sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,  | 
353  | 0  |                                        ossl_rsa_multip_info_free);  | 
354  | 0  |         }  | 
355  | 0  |         rsa->prime_infos = prime_infos;  | 
356  |  |  | 
357  |  |         /* prime_info from 2 to |primes| -1 */  | 
358  | 0  |         for (i = 2; i < primes; i++) { | 
359  | 0  |             pinfo = ossl_rsa_multip_info_new();  | 
360  | 0  |             if (pinfo == NULL)  | 
361  | 0  |                 goto err;  | 
362  | 0  |             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);  | 
363  | 0  |         }  | 
364  | 0  |     }  | 
365  |  |  | 
366  | 0  |     if (BN_copy(rsa->e, e_value) == NULL)  | 
367  | 0  |         goto err;  | 
368  |  |  | 
369  |  |     /* generate p, q and other primes (if any) */  | 
370  | 0  |     for (i = 0; i < primes; i++) { | 
371  | 0  |         adj = 0;  | 
372  | 0  |         retries = 0;  | 
373  |  | 
  | 
374  | 0  |         if (i == 0) { | 
375  | 0  |             prime = rsa->p;  | 
376  | 0  |         } else if (i == 1) { | 
377  | 0  |             prime = rsa->q;  | 
378  | 0  |         } else { | 
379  | 0  |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
380  | 0  |             prime = pinfo->r;  | 
381  | 0  |         }  | 
382  | 0  |         BN_set_flags(prime, BN_FLG_CONSTTIME);  | 
383  |  | 
  | 
384  | 0  |         for (;;) { | 
385  | 0  |  redo:  | 
386  | 0  |             if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,  | 
387  | 0  |                                        cb, ctx))  | 
388  | 0  |                 goto err;  | 
389  |  |             /*  | 
390  |  |              * prime should not be equal to p, q, r_3...  | 
391  |  |              * (those primes prior to this one)  | 
392  |  |              */  | 
393  | 0  |             { | 
394  | 0  |                 int j;  | 
395  |  | 
  | 
396  | 0  |                 for (j = 0; j < i; j++) { | 
397  | 0  |                     BIGNUM *prev_prime;  | 
398  |  | 
  | 
399  | 0  |                     if (j == 0)  | 
400  | 0  |                         prev_prime = rsa->p;  | 
401  | 0  |                     else if (j == 1)  | 
402  | 0  |                         prev_prime = rsa->q;  | 
403  | 0  |                     else  | 
404  | 0  |                         prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,  | 
405  | 0  |                                                              j - 2)->r;  | 
406  |  | 
  | 
407  | 0  |                     if (!BN_cmp(prime, prev_prime)) { | 
408  | 0  |                         goto redo;  | 
409  | 0  |                     }  | 
410  | 0  |                 }  | 
411  | 0  |             }  | 
412  | 0  |             if (!BN_sub(r2, prime, BN_value_one()))  | 
413  | 0  |                 goto err;  | 
414  | 0  |             ERR_set_mark();  | 
415  | 0  |             BN_set_flags(r2, BN_FLG_CONSTTIME);  | 
416  | 0  |             if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { | 
417  |  |                 /* GCD == 1 since inverse exists */  | 
418  | 0  |                 break;  | 
419  | 0  |             }  | 
420  | 0  |             error = ERR_peek_last_error();  | 
421  | 0  |             if (ERR_GET_LIB(error) == ERR_LIB_BN  | 
422  | 0  |                 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { | 
423  |  |                 /* GCD != 1 */  | 
424  | 0  |                 ERR_pop_to_mark();  | 
425  | 0  |             } else { | 
426  | 0  |                 goto err;  | 
427  | 0  |             }  | 
428  | 0  |             if (!BN_GENCB_call(cb, 2, n++))  | 
429  | 0  |                 goto err;  | 
430  | 0  |         }  | 
431  |  |  | 
432  | 0  |         bitse += bitsr[i];  | 
433  |  |  | 
434  |  |         /* calculate n immediately to see if it's sufficient */  | 
435  | 0  |         if (i == 1) { | 
436  |  |             /* we get at least 2 primes */  | 
437  | 0  |             if (!BN_mul(r1, rsa->p, rsa->q, ctx))  | 
438  | 0  |                 goto err;  | 
439  | 0  |         } else if (i != 0) { | 
440  |  |             /* modulus n = p * q * r_3 * r_4 ... */  | 
441  | 0  |             if (!BN_mul(r1, rsa->n, prime, ctx))  | 
442  | 0  |                 goto err;  | 
443  | 0  |         } else { | 
444  |  |             /* i == 0, do nothing */  | 
445  | 0  |             if (!BN_GENCB_call(cb, 3, i))  | 
446  | 0  |                 goto err;  | 
447  | 0  |             tmp = BN_dup(prime);  | 
448  | 0  |             if (tmp == NULL)  | 
449  | 0  |                 goto err;  | 
450  | 0  |             if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))  | 
451  | 0  |                 goto err;  | 
452  | 0  |             continue;  | 
453  | 0  |         }  | 
454  |  |  | 
455  |  |         /*  | 
456  |  |          * if |r1|, product of factors so far, is not as long as expected  | 
457  |  |          * (by checking the first 4 bits are less than 0x9 or greater than  | 
458  |  |          * 0xF). If so, re-generate the last prime.  | 
459  |  |          *  | 
460  |  |          * NOTE: This actually can't happen in two-prime case, because of  | 
461  |  |          * the way factors are generated.  | 
462  |  |          *  | 
463  |  |          * Besides, another consideration is, for multi-prime case, even the  | 
464  |  |          * length modulus is as long as expected, the modulus could start at  | 
465  |  |          * 0x8, which could be utilized to distinguish a multi-prime private  | 
466  |  |          * key by using the modulus in a certificate. This is also covered  | 
467  |  |          * by checking the length should not be less than 0x9.  | 
468  |  |          */  | 
469  | 0  |         if (!BN_rshift(r2, r1, bitse - 4))  | 
470  | 0  |             goto err;  | 
471  | 0  |         bitst = BN_get_word(r2);  | 
472  |  | 
  | 
473  | 0  |         if (bitst < 0x9 || bitst > 0xF) { | 
474  |  |             /*  | 
475  |  |              * For keys with more than 4 primes, we attempt longer factor to  | 
476  |  |              * meet length requirement.  | 
477  |  |              *  | 
478  |  |              * Otherwise, we just re-generate the prime with the same length.  | 
479  |  |              *  | 
480  |  |              * This strategy has the following goals:  | 
481  |  |              *  | 
482  |  |              * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key  | 
483  |  |              * 2. stay the same logic with normal 2-prime key  | 
484  |  |              */  | 
485  | 0  |             bitse -= bitsr[i];  | 
486  | 0  |             if (!BN_GENCB_call(cb, 2, n++))  | 
487  | 0  |                 goto err;  | 
488  | 0  |             if (primes > 4) { | 
489  | 0  |                 if (bitst < 0x9)  | 
490  | 0  |                     adj++;  | 
491  | 0  |                 else  | 
492  | 0  |                     adj--;  | 
493  | 0  |             } else if (retries == 4) { | 
494  |  |                 /*  | 
495  |  |                  * re-generate all primes from scratch, mainly used  | 
496  |  |                  * in 4 prime case to avoid long loop. Max retry times  | 
497  |  |                  * is set to 4.  | 
498  |  |                  */  | 
499  | 0  |                 i = -1;  | 
500  | 0  |                 bitse = 0;  | 
501  | 0  |                 sk_BIGNUM_pop_free(factors, BN_clear_free);  | 
502  | 0  |                 factors = sk_BIGNUM_new_null();  | 
503  | 0  |                 if (factors == NULL)  | 
504  | 0  |                     goto err;  | 
505  | 0  |                 continue;  | 
506  | 0  |             }  | 
507  | 0  |             retries++;  | 
508  | 0  |             goto redo;  | 
509  | 0  |         }  | 
510  |  |         /* save product of primes for further use, for multi-prime only */  | 
511  | 0  |         if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)  | 
512  | 0  |             goto err;  | 
513  | 0  |         if (BN_copy(rsa->n, r1) == NULL)  | 
514  | 0  |             goto err;  | 
515  | 0  |         if (!BN_GENCB_call(cb, 3, i))  | 
516  | 0  |             goto err;  | 
517  | 0  |         tmp = BN_dup(prime);  | 
518  | 0  |         if (tmp == NULL)  | 
519  | 0  |             goto err;  | 
520  | 0  |         if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))  | 
521  | 0  |             goto err;  | 
522  | 0  |     }  | 
523  |  |  | 
524  | 0  |     if (BN_cmp(rsa->p, rsa->q) < 0) { | 
525  | 0  |         tmp = rsa->p;  | 
526  | 0  |         rsa->p = rsa->q;  | 
527  | 0  |         rsa->q = tmp;  | 
528  |  |         /* mirror this in our factor stack */  | 
529  | 0  |         if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))  | 
530  | 0  |             goto err;  | 
531  | 0  |     }  | 
532  |  |  | 
533  |  |     /* calculate d */  | 
534  |  |  | 
535  |  |     /* p - 1 */  | 
536  | 0  |     if (!BN_sub(r1, rsa->p, BN_value_one()))  | 
537  | 0  |         goto err;  | 
538  |  |     /* q - 1 */  | 
539  | 0  |     if (!BN_sub(r2, rsa->q, BN_value_one()))  | 
540  | 0  |         goto err;  | 
541  |  |     /* (p - 1)(q - 1) */  | 
542  | 0  |     if (!BN_mul(r0, r1, r2, ctx))  | 
543  | 0  |         goto err;  | 
544  |  |     /* multi-prime */  | 
545  | 0  |     for (i = 2; i < primes; i++) { | 
546  | 0  |         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
547  |  |         /* save r_i - 1 to pinfo->d temporarily */  | 
548  | 0  |         if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))  | 
549  | 0  |             goto err;  | 
550  | 0  |         if (!BN_mul(r0, r0, pinfo->d, ctx))  | 
551  | 0  |             goto err;  | 
552  | 0  |     }  | 
553  |  |  | 
554  |  |  | 
555  | 0  |     BN_set_flags(r0, BN_FLG_CONSTTIME);  | 
556  | 0  |     if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) { | 
557  | 0  |         goto err;               /* d */  | 
558  | 0  |     }  | 
559  |  |  | 
560  |  |     /* derive any missing exponents and coefficients */  | 
561  | 0  |     if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,  | 
562  | 0  |                                     factors, exps, coeffs))  | 
563  | 0  |         goto err;  | 
564  |  |  | 
565  |  |     /*  | 
566  |  |      * first 2 factors/exps are already tracked in p/q/dmq1/dmp1  | 
567  |  |      * and the first coeff is in iqmp, so pop those off the stack  | 
568  |  |      * Note, the first 2 factors/exponents are already tracked by p and q  | 
569  |  |      * assign dmp1/dmq1 and iqmp  | 
570  |  |      * the remaining pinfo values are separately allocated, so copy and delete   | 
571  |  |      * those  | 
572  |  |      */  | 
573  | 0  |     BN_clear_free(sk_BIGNUM_delete(factors, 0));  | 
574  | 0  |     BN_clear_free(sk_BIGNUM_delete(factors, 0));  | 
575  | 0  |     rsa->dmp1 = sk_BIGNUM_delete(exps, 0);  | 
576  | 0  |     rsa->dmq1 = sk_BIGNUM_delete(exps, 0);  | 
577  | 0  |     rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);  | 
578  | 0  |     for (i = 2; i < primes; i++) { | 
579  | 0  |         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
580  | 0  |         tmp = sk_BIGNUM_delete(factors, 0);  | 
581  | 0  |         BN_copy(pinfo->r, tmp);  | 
582  | 0  |         BN_clear_free(tmp);  | 
583  | 0  |         tmp = sk_BIGNUM_delete(exps, 0);  | 
584  | 0  |         tmp2 = BN_copy(pinfo->d, tmp);  | 
585  | 0  |         BN_clear_free(tmp);  | 
586  | 0  |         if (tmp2 == NULL)  | 
587  | 0  |             goto err;  | 
588  | 0  |         tmp = sk_BIGNUM_delete(coeffs, 0);  | 
589  | 0  |         tmp2 = BN_copy(pinfo->t, tmp);  | 
590  | 0  |         BN_clear_free(tmp);  | 
591  | 0  |         if (tmp2 == NULL)  | 
592  | 0  |             goto err;  | 
593  | 0  |     }  | 
594  | 0  |     ok = 1;  | 
595  | 0  |  err:  | 
596  | 0  |     sk_BIGNUM_free(factors);  | 
597  | 0  |     sk_BIGNUM_free(exps);  | 
598  | 0  |     sk_BIGNUM_free(coeffs);  | 
599  | 0  |     if (ok == -1) { | 
600  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);  | 
601  | 0  |         ok = 0;  | 
602  | 0  |     }  | 
603  | 0  |     BN_CTX_end(ctx);  | 
604  | 0  |     BN_CTX_free(ctx);  | 
605  | 0  |     return ok;  | 
606  | 0  | }  | 
607  |  | #endif /* FIPS_MODULE */  | 
608  |  |  | 
609  |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,  | 
610  |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)  | 
611  | 0  | { | 
612  | 0  |     int ok = 0;  | 
613  |  | 
  | 
614  |  | #ifdef FIPS_MODULE  | 
615  |  |     ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);  | 
616  |  |     pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */  | 
617  |  | #else  | 
618  |  |     /*  | 
619  |  |      * Only multi-prime keys or insecure keys with a small key length or a  | 
620  |  |      * public exponent <= 2^16 will use the older rsa_multiprime_keygen().  | 
621  |  |      */  | 
622  | 0  |     if (primes == 2  | 
623  | 0  |             && bits >= 2048  | 
624  | 0  |             && (e_value == NULL || BN_num_bits(e_value) > 16))  | 
625  | 0  |         ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);  | 
626  | 0  |     else  | 
627  | 0  |         ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);  | 
628  | 0  | #endif /* FIPS_MODULE */  | 
629  |  | 
  | 
630  | 0  |     if (pairwise_test && ok > 0) { | 
631  | 0  |         OSSL_CALLBACK *stcb = NULL;  | 
632  | 0  |         void *stcbarg = NULL;  | 
633  |  | 
  | 
634  | 0  |         OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);  | 
635  | 0  |         ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);  | 
636  | 0  |         if (!ok) { | 
637  | 0  |             ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);  | 
638  |  |             /* Clear intermediate results */  | 
639  | 0  |             BN_clear_free(rsa->d);  | 
640  | 0  |             BN_clear_free(rsa->p);  | 
641  | 0  |             BN_clear_free(rsa->q);  | 
642  | 0  |             BN_clear_free(rsa->dmp1);  | 
643  | 0  |             BN_clear_free(rsa->dmq1);  | 
644  | 0  |             BN_clear_free(rsa->iqmp);  | 
645  | 0  |             rsa->d = NULL;  | 
646  | 0  |             rsa->p = NULL;  | 
647  | 0  |             rsa->q = NULL;  | 
648  | 0  |             rsa->dmp1 = NULL;  | 
649  | 0  |             rsa->dmq1 = NULL;  | 
650  | 0  |             rsa->iqmp = NULL;  | 
651  | 0  |         }  | 
652  | 0  |     }  | 
653  | 0  |     return ok;  | 
654  | 0  | }  | 
655  |  |  | 
656  |  | /*  | 
657  |  |  * AS10.35 (and its VEs/TEs) of the FIPS 140-3 standard requires a PCT for every  | 
658  |  |  * generated key pair. There are 3 options:  | 
659  |  |  * 1) If the key pair is to be used for key transport (asymmetric cipher), the  | 
660  |  |  *    PCT consists of encrypting a plaintext, verifying that the result  | 
661  |  |  *    (ciphertext) is not equal to the plaintext, decrypting the ciphertext, and  | 
662  |  |  *    verifying that the result is equal to the plaintext.  | 
663  |  |  * 2) If the key pair is to be used for digital signatures, the PCT consists of  | 
664  |  |  *    computing and verifying a signature.  | 
665  |  |  * 3) If the key pair is to be used for key agreement, the exact PCT is defined  | 
666  |  |  *    in the applicable standards. For RSA-based schemes, this is defined in  | 
667  |  |  *    SP 800-56Br2 (Section 6.4.1.1) as:  | 
668  |  |  *    "The owner shall perform a pair-wise consistency test by verifying that m  | 
669  |  |  *    = (m^e)^d mod n for some integer m satisfying 1 < m < (n - 1)."  | 
670  |  |  *  | 
671  |  |  * OpenSSL implements all three use cases: RSA-OAEP for key transport,  | 
672  |  |  * RSA signatures with PKCS#1 v1.5 or PSS padding, and KAS-IFC-SSC (KAS1/KAS2)  | 
673  |  |  * using RSASVE.  | 
674  |  |  *  | 
675  |  |  * According to FIPS 140-3 IG 10.3.A, if at the time when the PCT is performed  | 
676  |  |  * the keys' intended usage is not known, then any of the three PCTs described  | 
677  |  |  * in AS10.35 shall be performed on this key pair.  | 
678  |  |  *  | 
679  |  |  * Because of this allowance from the IG, the simplest option is 3, i.e.  | 
680  |  |  * RSA_public_encrypt() and RSA_private_decrypt() with RSA_NO_PADDING.  | 
681  |  |  */  | 
682  |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)  | 
683  | 0  | { | 
684  | 0  |     int ret = 0;  | 
685  | 0  |     unsigned int plaintxt_len;  | 
686  | 0  |     unsigned char *plaintxt = NULL;  | 
687  | 0  |     unsigned int ciphertxt_len;  | 
688  | 0  |     unsigned char *ciphertxt = NULL;  | 
689  | 0  |     unsigned char *decoded = NULL;  | 
690  | 0  |     unsigned int decoded_len;  | 
691  | 0  |     int padding = RSA_NO_PADDING;  | 
692  | 0  |     OSSL_SELF_TEST *st = NULL;  | 
693  |  | 
  | 
694  | 0  |     st = OSSL_SELF_TEST_new(cb, cbarg);  | 
695  | 0  |     if (st == NULL)  | 
696  | 0  |         goto err;  | 
697  | 0  |     OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,  | 
698  | 0  |                            OSSL_SELF_TEST_DESC_PCT_RSA);  | 
699  |  |  | 
700  |  |     /*  | 
701  |  |      * For RSA_NO_PADDING, RSA_public_encrypt() and RSA_private_decrypt()  | 
702  |  |      * require the 'to' and 'from' parameters to have equal length and a  | 
703  |  |      * maximum of RSA_size() - allocate space for plaintxt, ciphertxt, and  | 
704  |  |      * decoded.  | 
705  |  |      */  | 
706  | 0  |     plaintxt_len = RSA_size(rsa);  | 
707  | 0  |     plaintxt = OPENSSL_calloc(plaintxt_len, 3);  | 
708  | 0  |     if (plaintxt == NULL)  | 
709  | 0  |         goto err;  | 
710  | 0  |     ciphertxt = plaintxt + plaintxt_len;  | 
711  | 0  |     decoded = ciphertxt + plaintxt_len;  | 
712  |  |  | 
713  |  |     /* SP 800-56Br2 Section 6.4.1.1 requires that plaintext is greater than 1 */  | 
714  | 0  |     plaintxt[plaintxt_len - 1] = 2;  | 
715  |  | 
  | 
716  | 0  |     ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,  | 
717  | 0  |                                        padding);  | 
718  | 0  |     if (ciphertxt_len <= 0)  | 
719  | 0  |         goto err;  | 
720  |  |  | 
721  | 0  |     OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);  | 
722  |  | 
  | 
723  | 0  |     decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,  | 
724  | 0  |                                       padding);  | 
725  | 0  |     if (decoded_len != plaintxt_len  | 
726  | 0  |         || memcmp(decoded, plaintxt,  decoded_len) != 0)  | 
727  | 0  |         goto err;  | 
728  |  |  | 
729  | 0  |     ret = 1;  | 
730  | 0  | err:  | 
731  | 0  |     OSSL_SELF_TEST_onend(st, ret);  | 
732  | 0  |     OSSL_SELF_TEST_free(st);  | 
733  | 0  |     OPENSSL_free(plaintxt);  | 
734  |  | 
  | 
735  | 0  |     return ret;  | 
736  | 0  | }  |