/src/openssl/crypto/rsa/rsa_pk1.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
12  |  |  * internal use.  | 
13  |  |  */  | 
14  |  | #include "internal/deprecated.h"  | 
15  |  |  | 
16  |  | #include "internal/constant_time.h"  | 
17  |  |  | 
18  |  | #include <stdio.h>  | 
19  |  | #include <openssl/bn.h>  | 
20  |  | #include <openssl/rsa.h>  | 
21  |  | #include <openssl/rand.h>  | 
22  |  | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */  | 
23  |  | #include <openssl/prov_ssl.h>  | 
24  |  | #include <openssl/evp.h>  | 
25  |  | #include <openssl/sha.h>  | 
26  |  | #include <openssl/hmac.h>  | 
27  |  | #include "internal/cryptlib.h"  | 
28  |  | #include "crypto/rsa.h"  | 
29  |  | #include "rsa_local.h"  | 
30  |  |  | 
31  |  |  | 
32  |  | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,  | 
33  |  |                                  const unsigned char *from, int flen)  | 
34  | 0  | { | 
35  | 0  |     int j;  | 
36  | 0  |     unsigned char *p;  | 
37  |  | 
  | 
38  | 0  |     if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
39  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);  | 
40  | 0  |         return 0;  | 
41  | 0  |     }  | 
42  |  |  | 
43  | 0  |     p = (unsigned char *)to;  | 
44  |  | 
  | 
45  | 0  |     *(p++) = 0;  | 
46  | 0  |     *(p++) = 1;                 /* Private Key BT (Block Type) */  | 
47  |  |  | 
48  |  |     /* pad out with 0xff data */  | 
49  | 0  |     j = tlen - 3 - flen;  | 
50  | 0  |     memset(p, 0xff, j);  | 
51  | 0  |     p += j;  | 
52  | 0  |     *(p++) = '\0';  | 
53  | 0  |     memcpy(p, from, (unsigned int)flen);  | 
54  | 0  |     return 1;  | 
55  | 0  | }  | 
56  |  |  | 
57  |  | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,  | 
58  |  |                                    const unsigned char *from, int flen,  | 
59  |  |                                    int num)  | 
60  | 0  | { | 
61  | 0  |     int i, j;  | 
62  | 0  |     const unsigned char *p;  | 
63  |  | 
  | 
64  | 0  |     p = from;  | 
65  |  |  | 
66  |  |     /*  | 
67  |  |      * The format is  | 
68  |  |      * 00 || 01 || PS || 00 || D  | 
69  |  |      * PS - padding string, at least 8 bytes of FF  | 
70  |  |      * D  - data.  | 
71  |  |      */  | 
72  |  | 
  | 
73  | 0  |     if (num < RSA_PKCS1_PADDING_SIZE)  | 
74  | 0  |         return -1;  | 
75  |  |  | 
76  |  |     /* Accept inputs with and without the leading 0-byte. */  | 
77  | 0  |     if (num == flen) { | 
78  | 0  |         if ((*p++) != 0x00) { | 
79  | 0  |             ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING);  | 
80  | 0  |             return -1;  | 
81  | 0  |         }  | 
82  | 0  |         flen--;  | 
83  | 0  |     }  | 
84  |  |  | 
85  | 0  |     if ((num != (flen + 1)) || (*(p++) != 0x01)) { | 
86  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);  | 
87  | 0  |         return -1;  | 
88  | 0  |     }  | 
89  |  |  | 
90  |  |     /* scan over padding data */  | 
91  | 0  |     j = flen - 1;               /* one for type. */  | 
92  | 0  |     for (i = 0; i < j; i++) { | 
93  | 0  |         if (*p != 0xff) {       /* should decrypt to 0xff */ | 
94  | 0  |             if (*p == 0) { | 
95  | 0  |                 p++;  | 
96  | 0  |                 break;  | 
97  | 0  |             } else { | 
98  | 0  |                 ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);  | 
99  | 0  |                 return -1;  | 
100  | 0  |             }  | 
101  | 0  |         }  | 
102  | 0  |         p++;  | 
103  | 0  |     }  | 
104  |  |  | 
105  | 0  |     if (i == j) { | 
106  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);  | 
107  | 0  |         return -1;  | 
108  | 0  |     }  | 
109  |  |  | 
110  | 0  |     if (i < 8) { | 
111  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT);  | 
112  | 0  |         return -1;  | 
113  | 0  |     }  | 
114  | 0  |     i++;                        /* Skip over the '\0' */  | 
115  | 0  |     j -= i;  | 
116  | 0  |     if (j > tlen) { | 
117  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE);  | 
118  | 0  |         return -1;  | 
119  | 0  |     }  | 
120  | 0  |     memcpy(to, p, (unsigned int)j);  | 
121  |  | 
  | 
122  | 0  |     return j;  | 
123  | 0  | }  | 
124  |  |  | 
125  |  | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to,  | 
126  |  |                                          int tlen, const unsigned char *from,  | 
127  |  |                                          int flen)  | 
128  | 0  | { | 
129  | 0  |     int i, j;  | 
130  | 0  |     unsigned char *p;  | 
131  |  | 
  | 
132  | 0  |     if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
133  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);  | 
134  | 0  |         return 0;  | 
135  | 0  |     } else if (flen < 0) { | 
136  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);  | 
137  | 0  |         return 0;  | 
138  | 0  |     }  | 
139  |  |  | 
140  | 0  |     p = (unsigned char *)to;  | 
141  |  | 
  | 
142  | 0  |     *(p++) = 0;  | 
143  | 0  |     *(p++) = 2;                 /* Public Key BT (Block Type) */  | 
144  |  |  | 
145  |  |     /* pad out with non-zero random data */  | 
146  | 0  |     j = tlen - 3 - flen;  | 
147  |  | 
  | 
148  | 0  |     if (RAND_bytes_ex(libctx, p, j, 0) <= 0)  | 
149  | 0  |         return 0;  | 
150  | 0  |     for (i = 0; i < j; i++) { | 
151  | 0  |         if (*p == '\0')  | 
152  | 0  |             do { | 
153  | 0  |                 if (RAND_bytes_ex(libctx, p, 1, 0) <= 0)  | 
154  | 0  |                     return 0;  | 
155  | 0  |             } while (*p == '\0');  | 
156  | 0  |         p++;  | 
157  | 0  |     }  | 
158  |  |  | 
159  | 0  |     *(p++) = '\0';  | 
160  |  | 
  | 
161  | 0  |     memcpy(p, from, (unsigned int)flen);  | 
162  | 0  |     return 1;  | 
163  | 0  | }  | 
164  |  |  | 
165  |  | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,  | 
166  |  |                                  const unsigned char *from, int flen)  | 
167  | 0  | { | 
168  | 0  |     return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen);  | 
169  | 0  | }  | 
170  |  |  | 
171  |  | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,  | 
172  |  |                                    const unsigned char *from, int flen,  | 
173  |  |                                    int num)  | 
174  | 0  | { | 
175  | 0  |     int i;  | 
176  |  |     /* |em| is the encoded message, zero-padded to exactly |num| bytes */  | 
177  | 0  |     unsigned char *em = NULL;  | 
178  | 0  |     unsigned int good, found_zero_byte, mask;  | 
179  | 0  |     int zero_index = 0, msg_index, mlen = -1;  | 
180  |  | 
  | 
181  | 0  |     if (tlen <= 0 || flen <= 0)  | 
182  | 0  |         return -1;  | 
183  |  |  | 
184  |  |     /*  | 
185  |  |      * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",  | 
186  |  |      * section 7.2.2.  | 
187  |  |      */  | 
188  |  |  | 
189  | 0  |     if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { | 
190  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);  | 
191  | 0  |         return -1;  | 
192  | 0  |     }  | 
193  |  |  | 
194  | 0  |     em = OPENSSL_malloc(num);  | 
195  | 0  |     if (em == NULL)  | 
196  | 0  |         return -1;  | 
197  |  |     /*  | 
198  |  |      * Caller is encouraged to pass zero-padded message created with  | 
199  |  |      * BN_bn2binpad. Trouble is that since we can't read out of |from|'s  | 
200  |  |      * bounds, it's impossible to have an invariant memory access pattern  | 
201  |  |      * in case |from| was not zero-padded in advance.  | 
202  |  |      */  | 
203  | 0  |     for (from += flen, em += num, i = 0; i < num; i++) { | 
204  | 0  |         mask = ~constant_time_is_zero(flen);  | 
205  | 0  |         flen -= 1 & mask;  | 
206  | 0  |         from -= 1 & mask;  | 
207  | 0  |         *--em = *from & mask;  | 
208  | 0  |     }  | 
209  |  | 
  | 
210  | 0  |     good = constant_time_is_zero(em[0]);  | 
211  | 0  |     good &= constant_time_eq(em[1], 2);  | 
212  |  |  | 
213  |  |     /* scan over padding data */  | 
214  | 0  |     found_zero_byte = 0;  | 
215  | 0  |     for (i = 2; i < num; i++) { | 
216  | 0  |         unsigned int equals0 = constant_time_is_zero(em[i]);  | 
217  |  | 
  | 
218  | 0  |         zero_index = constant_time_select_int(~found_zero_byte & equals0,  | 
219  | 0  |                                               i, zero_index);  | 
220  | 0  |         found_zero_byte |= equals0;  | 
221  | 0  |     }  | 
222  |  |  | 
223  |  |     /*  | 
224  |  |      * PS must be at least 8 bytes long, and it starts two bytes into |em|.  | 
225  |  |      * If we never found a 0-byte, then |zero_index| is 0 and the check  | 
226  |  |      * also fails.  | 
227  |  |      */  | 
228  | 0  |     good &= constant_time_ge(zero_index, 2 + 8);  | 
229  |  |  | 
230  |  |     /*  | 
231  |  |      * Skip the zero byte. This is incorrect if we never found a zero-byte  | 
232  |  |      * but in this case we also do not copy the message out.  | 
233  |  |      */  | 
234  | 0  |     msg_index = zero_index + 1;  | 
235  | 0  |     mlen = num - msg_index;  | 
236  |  |  | 
237  |  |     /*  | 
238  |  |      * For good measure, do this check in constant time as well.  | 
239  |  |      */  | 
240  | 0  |     good &= constant_time_ge(tlen, mlen);  | 
241  |  |  | 
242  |  |     /*  | 
243  |  |      * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.  | 
244  |  |      * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.  | 
245  |  |      * Otherwise leave |to| unchanged.  | 
246  |  |      * Copy the memory back in a way that does not reveal the size of  | 
247  |  |      * the data being copied via a timing side channel. This requires copying  | 
248  |  |      * parts of the buffer multiple times based on the bits set in the real  | 
249  |  |      * length. Clear bits do a non-copy with identical access pattern.  | 
250  |  |      * The loop below has overall complexity of O(N*log(N)).  | 
251  |  |      */  | 
252  | 0  |     tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),  | 
253  | 0  |                                     num - RSA_PKCS1_PADDING_SIZE, tlen);  | 
254  | 0  |     for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { | 
255  | 0  |         mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);  | 
256  | 0  |         for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)  | 
257  | 0  |             em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);  | 
258  | 0  |     }  | 
259  | 0  |     for (i = 0; i < tlen; i++) { | 
260  | 0  |         mask = good & constant_time_lt(i, mlen);  | 
261  | 0  |         to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);  | 
262  | 0  |     }  | 
263  |  | 
  | 
264  | 0  |     OPENSSL_clear_free(em, num);  | 
265  | 0  | #ifndef FIPS_MODULE  | 
266  |  |     /*  | 
267  |  |      * This trick doesn't work in the FIPS provider because libcrypto manages  | 
268  |  |      * the error stack. Instead we opt not to put an error on the stack at all  | 
269  |  |      * in case of padding failure in the FIPS provider.  | 
270  |  |      */  | 
271  | 0  |     ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);  | 
272  | 0  |     err_clear_last_constant_time(1 & good);  | 
273  | 0  | #endif  | 
274  |  | 
  | 
275  | 0  |     return constant_time_select_int(good, mlen, -1);  | 
276  | 0  | }  | 
277  |  |  | 
278  |  |  | 
279  |  | static int ossl_rsa_prf(OSSL_LIB_CTX *ctx,  | 
280  |  |                         unsigned char *to, int tlen,  | 
281  |  |                         const char *label, int llen,  | 
282  |  |                         const unsigned char *kdk,  | 
283  |  |                         uint16_t bitlen)  | 
284  | 0  | { | 
285  | 0  |     int pos;  | 
286  | 0  |     int ret = -1;  | 
287  | 0  |     uint16_t iter = 0;  | 
288  | 0  |     unsigned char be_iter[sizeof(iter)];  | 
289  | 0  |     unsigned char be_bitlen[sizeof(bitlen)];  | 
290  | 0  |     HMAC_CTX *hmac = NULL;  | 
291  | 0  |     EVP_MD *md = NULL;  | 
292  | 0  |     unsigned char hmac_out[SHA256_DIGEST_LENGTH];  | 
293  | 0  |     unsigned int md_len;  | 
294  |  | 
  | 
295  | 0  |     if (tlen * 8 != bitlen) { | 
296  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
297  | 0  |         return ret;  | 
298  | 0  |     }  | 
299  |  |  | 
300  | 0  |     be_bitlen[0] = (bitlen >> 8) & 0xff;  | 
301  | 0  |     be_bitlen[1] = bitlen & 0xff;  | 
302  |  | 
  | 
303  | 0  |     hmac = HMAC_CTX_new();  | 
304  | 0  |     if (hmac == NULL) { | 
305  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
306  | 0  |         goto err;  | 
307  | 0  |     }  | 
308  |  |  | 
309  |  |     /*  | 
310  |  |      * we use hardcoded hash so that migrating between versions that use  | 
311  |  |      * different hash doesn't provide a Bleichenbacher oracle:  | 
312  |  |      * if the attacker can see that different versions return different  | 
313  |  |      * messages for the same ciphertext, they'll know that the message is  | 
314  |  |      * synthetically generated, which means that the padding check failed  | 
315  |  |      */  | 
316  | 0  |     md = EVP_MD_fetch(ctx, "sha256", NULL);  | 
317  | 0  |     if (md == NULL) { | 
318  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
319  | 0  |         goto err;  | 
320  | 0  |     }  | 
321  |  |  | 
322  | 0  |     if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) { | 
323  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
324  | 0  |         goto err;  | 
325  | 0  |     }  | 
326  |  |  | 
327  | 0  |     for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) { | 
328  | 0  |         if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) { | 
329  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
330  | 0  |             goto err;  | 
331  | 0  |         }  | 
332  |  |  | 
333  | 0  |         be_iter[0] = (iter >> 8) & 0xff;  | 
334  | 0  |         be_iter[1] = iter & 0xff;  | 
335  |  | 
  | 
336  | 0  |         if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) { | 
337  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
338  | 0  |             goto err;  | 
339  | 0  |         }  | 
340  | 0  |         if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) { | 
341  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
342  | 0  |             goto err;  | 
343  | 0  |         }  | 
344  | 0  |         if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) { | 
345  | 0  |             ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
346  | 0  |             goto err;  | 
347  | 0  |         }  | 
348  |  |  | 
349  |  |         /*  | 
350  |  |          * HMAC_Final requires the output buffer to fit the whole MAC  | 
351  |  |          * value, so we need to use the intermediate buffer for the last  | 
352  |  |          * unaligned block  | 
353  |  |          */  | 
354  | 0  |         md_len = SHA256_DIGEST_LENGTH;  | 
355  | 0  |         if (pos + SHA256_DIGEST_LENGTH > tlen) { | 
356  | 0  |             if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) { | 
357  | 0  |                 ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
358  | 0  |                 goto err;  | 
359  | 0  |             }  | 
360  | 0  |             memcpy(to + pos, hmac_out, tlen - pos);  | 
361  | 0  |         } else { | 
362  | 0  |             if (HMAC_Final(hmac, to + pos, &md_len) <= 0) { | 
363  | 0  |                 ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
364  | 0  |                 goto err;  | 
365  | 0  |             }  | 
366  | 0  |         }  | 
367  | 0  |     }  | 
368  |  |  | 
369  | 0  |     ret = 0;  | 
370  |  | 
  | 
371  | 0  | err:  | 
372  | 0  |     HMAC_CTX_free(hmac);  | 
373  | 0  |     EVP_MD_free(md);  | 
374  | 0  |     return ret;  | 
375  | 0  | }  | 
376  |  |  | 
377  |  | /*  | 
378  |  |  * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2  | 
379  |  |  * padding from a decrypted RSA message. Unlike the  | 
380  |  |  * RSA_padding_check_PKCS1_type_2() it will not return an error in case it  | 
381  |  |  * detects a padding error, rather it will return a deterministically generated  | 
382  |  |  * random message. In other words it will perform an implicit rejection  | 
383  |  |  * of an invalid padding. This means that the returned value does not indicate  | 
384  |  |  * if the padding of the encrypted message was correct or not, making  | 
385  |  |  * side channel attacks like the ones described by Bleichenbacher impossible  | 
386  |  |  * without access to the full decrypted value and a brute-force search of  | 
387  |  |  * remaining padding bytes  | 
388  |  |  */  | 
389  |  | int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx,  | 
390  |  |                                         unsigned char *to, int tlen,  | 
391  |  |                                         const unsigned char *from, int flen,  | 
392  |  |                                         int num, unsigned char *kdk)  | 
393  | 0  | { | 
394  |  | /*  | 
395  |  |  * We need to generate a random length for the synthetic message, to avoid  | 
396  |  |  * bias towards zero and avoid non-constant timeness of DIV, we prepare  | 
397  |  |  * 128 values to check if they are not too large for the used key size,  | 
398  |  |  * and use 0 in case none of them are small enough, as 2^-128 is a good enough  | 
399  |  |  * safety margin  | 
400  |  |  */  | 
401  | 0  | #define MAX_LEN_GEN_TRIES 128  | 
402  | 0  |     unsigned char *synthetic = NULL;  | 
403  | 0  |     int synthetic_length;  | 
404  | 0  |     uint16_t len_candidate;  | 
405  | 0  |     unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)];  | 
406  | 0  |     uint16_t len_mask;  | 
407  | 0  |     uint16_t max_sep_offset;  | 
408  | 0  |     int synth_msg_index = 0;  | 
409  | 0  |     int ret = -1;  | 
410  | 0  |     int i, j;  | 
411  | 0  |     unsigned int good, found_zero_byte;  | 
412  | 0  |     int zero_index = 0, msg_index;  | 
413  |  |  | 
414  |  |     /*  | 
415  |  |      * If these checks fail then either the message in publicly invalid, or  | 
416  |  |      * we've been called incorrectly. We can fail immediately.  | 
417  |  |      * Since this code is called only internally by openssl, those are just  | 
418  |  |      * sanity checks  | 
419  |  |      */  | 
420  | 0  |     if (num != flen || tlen <= 0 || flen <= 0) { | 
421  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
422  | 0  |         return -1;  | 
423  | 0  |     }  | 
424  |  |  | 
425  |  |     /* Generate a random message to return in case the padding checks fail */  | 
426  | 0  |     synthetic = OPENSSL_malloc(flen);  | 
427  | 0  |     if (synthetic == NULL) { | 
428  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);  | 
429  | 0  |         return -1;  | 
430  | 0  |     }  | 
431  |  |  | 
432  | 0  |     if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0)  | 
433  | 0  |         goto err;  | 
434  |  |  | 
435  |  |     /* decide how long the random message should be */  | 
436  | 0  |     if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths),  | 
437  | 0  |                      "length", 6, kdk,  | 
438  | 0  |                      MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) < 0)  | 
439  | 0  |         goto err;  | 
440  |  |  | 
441  |  |     /*  | 
442  |  |      * max message size is the size of the modulus size less 2 bytes for  | 
443  |  |      * version and padding type and a minimum of 8 bytes padding  | 
444  |  |      */  | 
445  | 0  |     len_mask = max_sep_offset = flen - 2 - 8;  | 
446  |  |     /*  | 
447  |  |      * we want a mask so lets propagate the high bit to all positions less  | 
448  |  |      * significant than it  | 
449  |  |      */  | 
450  | 0  |     len_mask |= len_mask >> 1;  | 
451  | 0  |     len_mask |= len_mask >> 2;  | 
452  | 0  |     len_mask |= len_mask >> 4;  | 
453  | 0  |     len_mask |= len_mask >> 8;  | 
454  |  | 
  | 
455  | 0  |     synthetic_length = 0;  | 
456  | 0  |     for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate);  | 
457  | 0  |             i += sizeof(len_candidate)) { | 
458  | 0  |         len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1];  | 
459  | 0  |         len_candidate &= len_mask;  | 
460  |  | 
  | 
461  | 0  |         synthetic_length = constant_time_select_int(  | 
462  | 0  |             constant_time_lt(len_candidate, max_sep_offset),  | 
463  | 0  |             len_candidate, synthetic_length);  | 
464  | 0  |     }  | 
465  |  | 
  | 
466  | 0  |     synth_msg_index = flen - synthetic_length;  | 
467  |  |  | 
468  |  |     /* we have alternative message ready, check the real one */  | 
469  | 0  |     good = constant_time_is_zero(from[0]);  | 
470  | 0  |     good &= constant_time_eq(from[1], 2);  | 
471  |  |  | 
472  |  |     /* then look for the padding|message separator (the first zero byte) */  | 
473  | 0  |     found_zero_byte = 0;  | 
474  | 0  |     for (i = 2; i < flen; i++) { | 
475  | 0  |         unsigned int equals0 = constant_time_is_zero(from[i]);  | 
476  | 0  |         zero_index = constant_time_select_int(~found_zero_byte & equals0,  | 
477  | 0  |                                               i, zero_index);  | 
478  | 0  |         found_zero_byte |= equals0;  | 
479  | 0  |     }  | 
480  |  |  | 
481  |  |     /*  | 
482  |  |      * padding must be at least 8 bytes long, and it starts two bytes into  | 
483  |  |      * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check  | 
484  |  |      * also fails.  | 
485  |  |      */  | 
486  | 0  |     good &= constant_time_ge(zero_index, 2 + 8);  | 
487  |  |  | 
488  |  |     /*  | 
489  |  |      * Skip the zero byte. This is incorrect if we never found a zero-byte  | 
490  |  |      * but in this case we also do not copy the message out.  | 
491  |  |      */  | 
492  | 0  |     msg_index = zero_index + 1;  | 
493  |  |  | 
494  |  |     /*  | 
495  |  |      * old code returned an error in case the decrypted message wouldn't fit  | 
496  |  |      * into the |to|, since that would leak information, return the synthetic  | 
497  |  |      * message instead  | 
498  |  |      */  | 
499  | 0  |     good &= constant_time_ge(tlen, num - msg_index);  | 
500  |  | 
  | 
501  | 0  |     msg_index = constant_time_select_int(good, msg_index, synth_msg_index);  | 
502  |  |  | 
503  |  |     /*  | 
504  |  |      * since at this point the |msg_index| does not provide the signal  | 
505  |  |      * indicating if the padding check failed or not, we don't have to worry  | 
506  |  |      * about leaking the length of returned message, we still need to ensure  | 
507  |  |      * that we read contents of both buffers so that cache accesses don't leak  | 
508  |  |      * the value of |good|  | 
509  |  |      */  | 
510  | 0  |     for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++)  | 
511  | 0  |         to[j] = constant_time_select_8(good, from[i], synthetic[i]);  | 
512  | 0  |     ret = j;  | 
513  |  | 
  | 
514  | 0  | err:  | 
515  |  |     /*  | 
516  |  |      * the only time ret < 0 is when the ciphertext is publicly invalid  | 
517  |  |      * or we were called with invalid parameters, so we don't have to perform  | 
518  |  |      * a side-channel secure raising of the error  | 
519  |  |      */  | 
520  | 0  |     if (ret < 0)  | 
521  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
522  | 0  |     OPENSSL_free(synthetic);  | 
523  | 0  |     return ret;  | 
524  | 0  | }  | 
525  |  |  | 
526  |  | /*  | 
527  |  |  * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2  | 
528  |  |  * padding from a decrypted RSA message in a TLS signature. The result is stored  | 
529  |  |  * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen|  | 
530  |  |  * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message  | 
531  |  |  * should be stored in |from| which must be |flen| bytes in length and padded  | 
532  |  |  * such that |flen == RSA_size()|. The TLS protocol version that the client  | 
533  |  |  * originally requested should be passed in |client_version|. Some buggy clients  | 
534  |  |  * can exist which use the negotiated version instead of the originally  | 
535  |  |  * requested protocol version. If it is necessary to work around this bug then  | 
536  |  |  * the negotiated protocol version can be passed in |alt_version|, otherwise 0  | 
537  |  |  * should be passed.  | 
538  |  |  *  | 
539  |  |  * If the passed message is publicly invalid or some other error that can be  | 
540  |  |  * treated in non-constant time occurs then -1 is returned. On success the  | 
541  |  |  * length of the decrypted data is returned. This will always be  | 
542  |  |  * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in  | 
543  |  |  * constant time then this function will appear to return successfully, but the  | 
544  |  |  * decrypted data will be randomly generated (as per  | 
545  |  |  * https://tools.ietf.org/html/rfc5246#section-7.4.7.1).  | 
546  |  |  */  | 
547  |  | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx,  | 
548  |  |                                             unsigned char *to, size_t tlen,  | 
549  |  |                                             const unsigned char *from,  | 
550  |  |                                             size_t flen, int client_version,  | 
551  |  |                                             int alt_version)  | 
552  | 0  | { | 
553  | 0  |     unsigned int i, good, version_good;  | 
554  | 0  |     unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];  | 
555  |  |  | 
556  |  |     /*  | 
557  |  |      * If these checks fail then either the message in publicly invalid, or  | 
558  |  |      * we've been called incorrectly. We can fail immediately.  | 
559  |  |      */  | 
560  | 0  |     if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH  | 
561  | 0  |             || tlen < SSL_MAX_MASTER_KEY_LENGTH) { | 
562  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);  | 
563  | 0  |         return -1;  | 
564  | 0  |     }  | 
565  |  |  | 
566  |  |     /*  | 
567  |  |      * Generate a random premaster secret to use in the event that we fail  | 
568  |  |      * to decrypt.  | 
569  |  |      */  | 
570  | 0  |     if (RAND_priv_bytes_ex(libctx, rand_premaster_secret,  | 
571  | 0  |                            sizeof(rand_premaster_secret), 0) <= 0) { | 
572  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);  | 
573  | 0  |         return -1;  | 
574  | 0  |     }  | 
575  |  |  | 
576  | 0  |     good = constant_time_is_zero(from[0]);  | 
577  | 0  |     good &= constant_time_eq(from[1], 2);  | 
578  |  |  | 
579  |  |     /* Check we have the expected padding data */  | 
580  | 0  |     for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++)  | 
581  | 0  |         good &= ~constant_time_is_zero_8(from[i]);  | 
582  | 0  |     good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]);  | 
583  |  |  | 
584  |  |  | 
585  |  |     /*  | 
586  |  |      * If the version in the decrypted pre-master secret is correct then  | 
587  |  |      * version_good will be 0xff, otherwise it'll be zero. The  | 
588  |  |      * Klima-Pokorny-Rosa extension of Bleichenbacher's attack  | 
589  |  |      * (http://eprint.iacr.org/2003/052/) exploits the version number  | 
590  |  |      * check as a "bad version oracle". Thus version checks are done in  | 
591  |  |      * constant time and are treated like any other decryption error.  | 
592  |  |      */  | 
593  | 0  |     version_good =  | 
594  | 0  |         constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],  | 
595  | 0  |                          (client_version >> 8) & 0xff);  | 
596  | 0  |     version_good &=  | 
597  | 0  |         constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],  | 
598  | 0  |                          client_version & 0xff);  | 
599  |  |  | 
600  |  |     /*  | 
601  |  |      * The premaster secret must contain the same version number as the  | 
602  |  |      * ClientHello to detect version rollback attacks (strangely, the  | 
603  |  |      * protocol does not offer such protection for DH ciphersuites).  | 
604  |  |      * However, buggy clients exist that send the negotiated protocol  | 
605  |  |      * version instead if the server does not support the requested  | 
606  |  |      * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate  | 
607  |  |      * such clients. In that case alt_version will be non-zero and set to  | 
608  |  |      * the negotiated version.  | 
609  |  |      */  | 
610  | 0  |     if (alt_version > 0) { | 
611  | 0  |         unsigned int workaround_good;  | 
612  |  | 
  | 
613  | 0  |         workaround_good =  | 
614  | 0  |             constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],  | 
615  | 0  |                              (alt_version >> 8) & 0xff);  | 
616  | 0  |         workaround_good &=  | 
617  | 0  |             constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],  | 
618  | 0  |                              alt_version & 0xff);  | 
619  | 0  |         version_good |= workaround_good;  | 
620  | 0  |     }  | 
621  |  | 
  | 
622  | 0  |     good &= version_good;  | 
623  |  |  | 
624  |  |  | 
625  |  |     /*  | 
626  |  |      * Now copy the result over to the to buffer if good, or random data if  | 
627  |  |      * not good.  | 
628  |  |      */  | 
629  | 0  |     for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { | 
630  | 0  |         to[i] =  | 
631  | 0  |             constant_time_select_8(good,  | 
632  | 0  |                                    from[flen - SSL_MAX_MASTER_KEY_LENGTH + i],  | 
633  | 0  |                                    rand_premaster_secret[i]);  | 
634  | 0  |     }  | 
635  |  |  | 
636  |  |     /*  | 
637  |  |      * We must not leak whether a decryption failure occurs because of  | 
638  |  |      * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,  | 
639  |  |      * section 7.4.7.1). The code follows that advice of the TLS RFC and  | 
640  |  |      * generates a random premaster secret for the case that the decrypt  | 
641  |  |      * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1  | 
642  |  |      * So, whether we actually succeeded or not, return success.  | 
643  |  |      */  | 
644  |  | 
  | 
645  | 0  |     return SSL_MAX_MASTER_KEY_LENGTH;  | 
646  | 0  | }  |