/src/openssl/crypto/x509/v3_addr.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * Copyright 2006-2025 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * Implementation of RFC 3779 section 2.2.  | 
12  |  |  */  | 
13  |  |  | 
14  |  | #include <stdio.h>  | 
15  |  | #include <stdlib.h>  | 
16  |  | #include <assert.h>  | 
17  |  | #include <string.h>  | 
18  |  |  | 
19  |  | #include <openssl/conf.h>  | 
20  |  | #include <openssl/asn1.h>  | 
21  |  | #include <openssl/asn1t.h>  | 
22  |  | #include <openssl/buffer.h>  | 
23  |  | #include <openssl/x509v3.h>  | 
24  |  | #include "internal/cryptlib.h"  | 
25  |  | #include "crypto/asn1.h"  | 
26  |  | #include "crypto/x509.h"  | 
27  |  | #include "ext_dat.h"  | 
28  |  | #include "x509_local.h"  | 
29  |  |  | 
30  |  | #ifndef OPENSSL_NO_RFC3779  | 
31  |  |  | 
32  |  | /*  | 
33  |  |  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.  | 
34  |  |  */  | 
35  |  |  | 
36  |  | ASN1_SEQUENCE(IPAddressRange) = { | 
37  |  |     ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),  | 
38  |  |     ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)  | 
39  | 0  | } ASN1_SEQUENCE_END(IPAddressRange)  | 
40  | 0  | 
  | 
41  | 0  | ASN1_CHOICE(IPAddressOrRange) = { | 
42  | 0  |     ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),  | 
43  | 0  |     ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)  | 
44  | 0  | } ASN1_CHOICE_END(IPAddressOrRange)  | 
45  | 0  | 
  | 
46  | 0  | ASN1_CHOICE(IPAddressChoice) = { | 
47  | 0  |     ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),  | 
48  | 0  |     ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)  | 
49  | 0  | } ASN1_CHOICE_END(IPAddressChoice)  | 
50  | 0  | 
  | 
51  | 0  | ASN1_SEQUENCE(IPAddressFamily) = { | 
52  | 0  |     ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),  | 
53  | 0  |     ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)  | 
54  | 0  | } ASN1_SEQUENCE_END(IPAddressFamily)  | 
55  | 0  | 
  | 
56  | 0  | ASN1_ITEM_TEMPLATE(IPAddrBlocks) =  | 
57  | 0  |     ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,  | 
58  | 0  |                           IPAddrBlocks, IPAddressFamily)  | 
59  | 0  | static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)  | 
60  |  |  | 
61  |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)  | 
62  |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)  | 
63  |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)  | 
64  |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)  | 
65  |  |  | 
66  |  | /*  | 
67  |  |  * How much buffer space do we need for a raw address?  | 
68  |  |  */  | 
69  |  | # define ADDR_RAW_BUF_LEN 16  | 
70  |  |  | 
71  |  | /*  | 
72  |  |  * What's the address length associated with this AFI?  | 
73  |  |  */  | 
74  |  | static int length_from_afi(const unsigned afi)  | 
75  | 0  | { | 
76  | 0  |     switch (afi) { | 
77  | 0  |     case IANA_AFI_IPV4:  | 
78  | 0  |         return 4;  | 
79  | 0  |     case IANA_AFI_IPV6:  | 
80  | 0  |         return 16;  | 
81  | 0  |     default:  | 
82  | 0  |         return 0;  | 
83  | 0  |     }  | 
84  | 0  | }  | 
85  |  |  | 
86  |  | /*  | 
87  |  |  * Extract the AFI from an IPAddressFamily.  | 
88  |  |  */  | 
89  |  | unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)  | 
90  | 0  | { | 
91  | 0  |     if (f == NULL  | 
92  | 0  |             || f->addressFamily == NULL  | 
93  | 0  |             || f->addressFamily->data == NULL  | 
94  | 0  |             || f->addressFamily->length < 2)  | 
95  | 0  |         return 0;  | 
96  | 0  |     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];  | 
97  | 0  | }  | 
98  |  |  | 
99  |  | /*  | 
100  |  |  * Expand the bitstring form of an address into a raw byte array.  | 
101  |  |  * At the moment this is coded for simplicity, not speed.  | 
102  |  |  */  | 
103  |  | static int addr_expand(unsigned char *addr,  | 
104  |  |                        const ASN1_BIT_STRING *bs,  | 
105  |  |                        const int length, const unsigned char fill)  | 
106  | 0  | { | 
107  | 0  |     if (bs->length < 0 || bs->length > length)  | 
108  | 0  |         return 0;  | 
109  | 0  |     if (bs->length > 0) { | 
110  | 0  |         memcpy(addr, bs->data, bs->length);  | 
111  | 0  |         if ((bs->flags & 7) != 0) { | 
112  | 0  |             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));  | 
113  |  | 
  | 
114  | 0  |             if (fill == 0)  | 
115  | 0  |                 addr[bs->length - 1] &= ~mask;  | 
116  | 0  |             else  | 
117  | 0  |                 addr[bs->length - 1] |= mask;  | 
118  | 0  |         }  | 
119  | 0  |     }  | 
120  | 0  |     memset(addr + bs->length, fill, length - bs->length);  | 
121  | 0  |     return 1;  | 
122  | 0  | }  | 
123  |  |  | 
124  |  | /*  | 
125  |  |  * Extract the prefix length from a bitstring.  | 
126  |  |  */  | 
127  | 0  | # define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))  | 
128  |  |  | 
129  |  | /*  | 
130  |  |  * i2r handler for one address bitstring.  | 
131  |  |  */  | 
132  |  | static int i2r_address(BIO *out,  | 
133  |  |                        const unsigned afi,  | 
134  |  |                        const unsigned char fill, const ASN1_BIT_STRING *bs)  | 
135  | 0  | { | 
136  | 0  |     unsigned char addr[ADDR_RAW_BUF_LEN];  | 
137  | 0  |     int i, n;  | 
138  |  | 
  | 
139  | 0  |     if (bs->length < 0)  | 
140  | 0  |         return 0;  | 
141  | 0  |     switch (afi) { | 
142  | 0  |     case IANA_AFI_IPV4:  | 
143  | 0  |         if (!addr_expand(addr, bs, 4, fill))  | 
144  | 0  |             return 0;  | 
145  | 0  |         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);  | 
146  | 0  |         break;  | 
147  | 0  |     case IANA_AFI_IPV6:  | 
148  | 0  |         if (!addr_expand(addr, bs, 16, fill))  | 
149  | 0  |             return 0;  | 
150  | 0  |         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;  | 
151  | 0  |              n -= 2) ;  | 
152  | 0  |         for (i = 0; i < n; i += 2)  | 
153  | 0  |             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],  | 
154  | 0  |                        (i < 14 ? ":" : ""));  | 
155  | 0  |         if (i < 16)  | 
156  | 0  |             BIO_puts(out, ":");  | 
157  | 0  |         if (i == 0)  | 
158  | 0  |             BIO_puts(out, ":");  | 
159  | 0  |         break;  | 
160  | 0  |     default:  | 
161  | 0  |         for (i = 0; i < bs->length; i++)  | 
162  | 0  |             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);  | 
163  | 0  |         BIO_printf(out, "[%d]", (int)(bs->flags & 7));  | 
164  | 0  |         break;  | 
165  | 0  |     }  | 
166  | 0  |     return 1;  | 
167  | 0  | }  | 
168  |  |  | 
169  |  | /*  | 
170  |  |  * i2r handler for a sequence of addresses and ranges.  | 
171  |  |  */  | 
172  |  | static int i2r_IPAddressOrRanges(BIO *out,  | 
173  |  |                                  const int indent,  | 
174  |  |                                  const IPAddressOrRanges *aors,  | 
175  |  |                                  const unsigned afi)  | 
176  | 0  | { | 
177  | 0  |     int i;  | 
178  |  | 
  | 
179  | 0  |     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | 
180  | 0  |         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);  | 
181  |  | 
  | 
182  | 0  |         BIO_printf(out, "%*s", indent, "");  | 
183  | 0  |         switch (aor->type) { | 
184  | 0  |         case IPAddressOrRange_addressPrefix:  | 
185  | 0  |             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))  | 
186  | 0  |                 return 0;  | 
187  | 0  |             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));  | 
188  | 0  |             continue;  | 
189  | 0  |         case IPAddressOrRange_addressRange:  | 
190  | 0  |             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))  | 
191  | 0  |                 return 0;  | 
192  | 0  |             BIO_puts(out, "-");  | 
193  | 0  |             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))  | 
194  | 0  |                 return 0;  | 
195  | 0  |             BIO_puts(out, "\n");  | 
196  | 0  |             continue;  | 
197  | 0  |         }  | 
198  | 0  |     }  | 
199  | 0  |     return 1;  | 
200  | 0  | }  | 
201  |  |  | 
202  |  | /*  | 
203  |  |  * i2r handler for an IPAddrBlocks extension.  | 
204  |  |  */  | 
205  |  | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,  | 
206  |  |                             void *ext, BIO *out, int indent)  | 
207  | 0  | { | 
208  | 0  |     const IPAddrBlocks *addr = ext;  | 
209  | 0  |     int i;  | 
210  |  | 
  | 
211  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
212  | 0  |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);  | 
213  | 0  |         const unsigned int afi = X509v3_addr_get_afi(f);  | 
214  |  | 
  | 
215  | 0  |         switch (afi) { | 
216  | 0  |         case IANA_AFI_IPV4:  | 
217  | 0  |             BIO_printf(out, "%*sIPv4", indent, "");  | 
218  | 0  |             break;  | 
219  | 0  |         case IANA_AFI_IPV6:  | 
220  | 0  |             BIO_printf(out, "%*sIPv6", indent, "");  | 
221  | 0  |             break;  | 
222  | 0  |         default:  | 
223  | 0  |             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);  | 
224  | 0  |             break;  | 
225  | 0  |         }  | 
226  | 0  |         if (f->addressFamily->length > 2) { | 
227  | 0  |             switch (f->addressFamily->data[2]) { | 
228  | 0  |             case 1:  | 
229  | 0  |                 BIO_puts(out, " (Unicast)");  | 
230  | 0  |                 break;  | 
231  | 0  |             case 2:  | 
232  | 0  |                 BIO_puts(out, " (Multicast)");  | 
233  | 0  |                 break;  | 
234  | 0  |             case 3:  | 
235  | 0  |                 BIO_puts(out, " (Unicast/Multicast)");  | 
236  | 0  |                 break;  | 
237  | 0  |             case 4:  | 
238  | 0  |                 BIO_puts(out, " (MPLS)");  | 
239  | 0  |                 break;  | 
240  | 0  |             case 64:  | 
241  | 0  |                 BIO_puts(out, " (Tunnel)");  | 
242  | 0  |                 break;  | 
243  | 0  |             case 65:  | 
244  | 0  |                 BIO_puts(out, " (VPLS)");  | 
245  | 0  |                 break;  | 
246  | 0  |             case 66:  | 
247  | 0  |                 BIO_puts(out, " (BGP MDT)");  | 
248  | 0  |                 break;  | 
249  | 0  |             case 128:  | 
250  | 0  |                 BIO_puts(out, " (MPLS-labeled VPN)");  | 
251  | 0  |                 break;  | 
252  | 0  |             default:  | 
253  | 0  |                 BIO_printf(out, " (Unknown SAFI %u)",  | 
254  | 0  |                            (unsigned)f->addressFamily->data[2]);  | 
255  | 0  |                 break;  | 
256  | 0  |             }  | 
257  | 0  |         }  | 
258  | 0  |         switch (f->ipAddressChoice->type) { | 
259  | 0  |         case IPAddressChoice_inherit:  | 
260  | 0  |             BIO_puts(out, ": inherit\n");  | 
261  | 0  |             break;  | 
262  | 0  |         case IPAddressChoice_addressesOrRanges:  | 
263  | 0  |             BIO_puts(out, ":\n");  | 
264  | 0  |             if (!i2r_IPAddressOrRanges(out,  | 
265  | 0  |                                        indent + 2,  | 
266  | 0  |                                        f->ipAddressChoice->  | 
267  | 0  |                                        u.addressesOrRanges, afi))  | 
268  | 0  |                 return 0;  | 
269  | 0  |             break;  | 
270  | 0  |         }  | 
271  | 0  |     }  | 
272  | 0  |     return 1;  | 
273  | 0  | }  | 
274  |  |  | 
275  |  | /*  | 
276  |  |  * Sort comparison function for a sequence of IPAddressOrRange  | 
277  |  |  * elements.  | 
278  |  |  *  | 
279  |  |  * There's no sane answer we can give if addr_expand() fails, and an  | 
280  |  |  * assertion failure on externally supplied data is seriously uncool,  | 
281  |  |  * so we just arbitrarily declare that if given invalid inputs this  | 
282  |  |  * function returns -1.  If this messes up your preferred sort order  | 
283  |  |  * for garbage input, tough noogies.  | 
284  |  |  */  | 
285  |  | static int IPAddressOrRange_cmp(const IPAddressOrRange *a,  | 
286  |  |                                 const IPAddressOrRange *b, const int length)  | 
287  | 0  | { | 
288  | 0  |     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];  | 
289  | 0  |     int prefixlen_a = 0, prefixlen_b = 0;  | 
290  | 0  |     int r;  | 
291  |  | 
  | 
292  | 0  |     switch (a->type) { | 
293  | 0  |     case IPAddressOrRange_addressPrefix:  | 
294  | 0  |         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))  | 
295  | 0  |             return -1;  | 
296  | 0  |         prefixlen_a = addr_prefixlen(a->u.addressPrefix);  | 
297  | 0  |         break;  | 
298  | 0  |     case IPAddressOrRange_addressRange:  | 
299  | 0  |         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))  | 
300  | 0  |             return -1;  | 
301  | 0  |         prefixlen_a = length * 8;  | 
302  | 0  |         break;  | 
303  | 0  |     default:  | 
304  | 0  |         return -1;  | 
305  | 0  |     }  | 
306  |  |  | 
307  | 0  |     switch (b->type) { | 
308  | 0  |     case IPAddressOrRange_addressPrefix:  | 
309  | 0  |         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))  | 
310  | 0  |             return -1;  | 
311  | 0  |         prefixlen_b = addr_prefixlen(b->u.addressPrefix);  | 
312  | 0  |         break;  | 
313  | 0  |     case IPAddressOrRange_addressRange:  | 
314  | 0  |         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))  | 
315  | 0  |             return -1;  | 
316  | 0  |         prefixlen_b = length * 8;  | 
317  | 0  |         break;  | 
318  | 0  |     default:  | 
319  | 0  |         return -1;  | 
320  | 0  |     }  | 
321  |  |  | 
322  | 0  |     if ((r = memcmp(addr_a, addr_b, length)) != 0)  | 
323  | 0  |         return r;  | 
324  | 0  |     else  | 
325  | 0  |         return prefixlen_a - prefixlen_b;  | 
326  | 0  | }  | 
327  |  |  | 
328  |  | /*  | 
329  |  |  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()  | 
330  |  |  * comparison routines are only allowed two arguments.  | 
331  |  |  */  | 
332  |  | static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,  | 
333  |  |                                   const IPAddressOrRange *const *b)  | 
334  | 0  | { | 
335  | 0  |     return IPAddressOrRange_cmp(*a, *b, 4);  | 
336  | 0  | }  | 
337  |  |  | 
338  |  | /*  | 
339  |  |  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()  | 
340  |  |  * comparison routines are only allowed two arguments.  | 
341  |  |  */  | 
342  |  | static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,  | 
343  |  |                                   const IPAddressOrRange *const *b)  | 
344  | 0  | { | 
345  | 0  |     return IPAddressOrRange_cmp(*a, *b, 16);  | 
346  | 0  | }  | 
347  |  |  | 
348  |  | /*  | 
349  |  |  * Calculate whether a range collapses to a prefix.  | 
350  |  |  * See last paragraph of RFC 3779 2.2.3.7.  | 
351  |  |  */  | 
352  |  | static int range_should_be_prefix(const unsigned char *min,  | 
353  |  |                                   const unsigned char *max, const int length)  | 
354  | 0  | { | 
355  | 0  |     unsigned char mask;  | 
356  | 0  |     int i, j;  | 
357  |  |  | 
358  |  |     /*  | 
359  |  |      * It is the responsibility of the caller to confirm min <= max. We don't  | 
360  |  |      * use ossl_assert() here since we have no way of signalling an error from  | 
361  |  |      * this function - so we just use a plain assert instead.  | 
362  |  |      */  | 
363  | 0  |     assert(memcmp(min, max, length) <= 0);  | 
364  |  | 
  | 
365  | 0  |     for (i = 0; i < length && min[i] == max[i]; i++) ;  | 
366  | 0  |     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;  | 
367  | 0  |     if (i < j)  | 
368  | 0  |         return -1;  | 
369  | 0  |     if (i > j)  | 
370  | 0  |         return i * 8;  | 
371  | 0  |     mask = min[i] ^ max[i];  | 
372  | 0  |     switch (mask) { | 
373  | 0  |     case 0x01:  | 
374  | 0  |         j = 7;  | 
375  | 0  |         break;  | 
376  | 0  |     case 0x03:  | 
377  | 0  |         j = 6;  | 
378  | 0  |         break;  | 
379  | 0  |     case 0x07:  | 
380  | 0  |         j = 5;  | 
381  | 0  |         break;  | 
382  | 0  |     case 0x0F:  | 
383  | 0  |         j = 4;  | 
384  | 0  |         break;  | 
385  | 0  |     case 0x1F:  | 
386  | 0  |         j = 3;  | 
387  | 0  |         break;  | 
388  | 0  |     case 0x3F:  | 
389  | 0  |         j = 2;  | 
390  | 0  |         break;  | 
391  | 0  |     case 0x7F:  | 
392  | 0  |         j = 1;  | 
393  | 0  |         break;  | 
394  | 0  |     default:  | 
395  | 0  |         return -1;  | 
396  | 0  |     }  | 
397  | 0  |     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)  | 
398  | 0  |         return -1;  | 
399  | 0  |     else  | 
400  | 0  |         return i * 8 + j;  | 
401  | 0  | }  | 
402  |  |  | 
403  |  | /*  | 
404  |  |  * Construct a prefix.  | 
405  |  |  */  | 
406  |  | static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,  | 
407  |  |                               const int prefixlen, const int afilen)  | 
408  | 0  | { | 
409  | 0  |     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;  | 
410  | 0  |     IPAddressOrRange *aor;  | 
411  |  | 
  | 
412  | 0  |     if (prefixlen < 0 || prefixlen > (afilen * 8))  | 
413  | 0  |         return 0;  | 
414  | 0  |     if ((aor = IPAddressOrRange_new()) == NULL)  | 
415  | 0  |         return 0;  | 
416  | 0  |     aor->type = IPAddressOrRange_addressPrefix;  | 
417  | 0  |     if (aor->u.addressPrefix == NULL &&  | 
418  | 0  |         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)  | 
419  | 0  |         goto err;  | 
420  | 0  |     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))  | 
421  | 0  |         goto err;  | 
422  | 0  |     if (bitlen > 0)  | 
423  | 0  |         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);  | 
424  | 0  |     ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);  | 
425  |  | 
  | 
426  | 0  |     *result = aor;  | 
427  | 0  |     return 1;  | 
428  |  |  | 
429  | 0  |  err:  | 
430  | 0  |     IPAddressOrRange_free(aor);  | 
431  | 0  |     return 0;  | 
432  | 0  | }  | 
433  |  |  | 
434  |  | /*  | 
435  |  |  * Construct a range.  If it can be expressed as a prefix,  | 
436  |  |  * return a prefix instead.  Doing this here simplifies  | 
437  |  |  * the rest of the code considerably.  | 
438  |  |  */  | 
439  |  | static int make_addressRange(IPAddressOrRange **result,  | 
440  |  |                              unsigned char *min,  | 
441  |  |                              unsigned char *max, const int length)  | 
442  | 0  | { | 
443  | 0  |     IPAddressOrRange *aor;  | 
444  | 0  |     int i, prefixlen;  | 
445  |  | 
  | 
446  | 0  |     if (memcmp(min, max, length) > 0)  | 
447  | 0  |         return 0;  | 
448  |  |  | 
449  | 0  |     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)  | 
450  | 0  |         return make_addressPrefix(result, min, prefixlen, length);  | 
451  |  |  | 
452  | 0  |     if ((aor = IPAddressOrRange_new()) == NULL)  | 
453  | 0  |         return 0;  | 
454  | 0  |     aor->type = IPAddressOrRange_addressRange;  | 
455  | 0  |     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)  | 
456  | 0  |         goto err;  | 
457  | 0  |     if (aor->u.addressRange->min == NULL &&  | 
458  | 0  |         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)  | 
459  | 0  |         goto err;  | 
460  | 0  |     if (aor->u.addressRange->max == NULL &&  | 
461  | 0  |         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)  | 
462  | 0  |         goto err;  | 
463  |  |  | 
464  | 0  |     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;  | 
465  | 0  |     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))  | 
466  | 0  |         goto err;  | 
467  | 0  |     ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);  | 
468  | 0  |     if (i > 0) { | 
469  | 0  |         unsigned char b = min[i - 1];  | 
470  | 0  |         int j = 1;  | 
471  |  | 
  | 
472  | 0  |         while ((b & (0xFFU >> j)) != 0)  | 
473  | 0  |             ++j;  | 
474  | 0  |         aor->u.addressRange->min->flags |= 8 - j;  | 
475  | 0  |     }  | 
476  |  | 
  | 
477  | 0  |     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;  | 
478  | 0  |     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))  | 
479  | 0  |         goto err;  | 
480  | 0  |     ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);  | 
481  | 0  |     if (i > 0) { | 
482  | 0  |         unsigned char b = max[i - 1];  | 
483  | 0  |         int j = 1;  | 
484  |  | 
  | 
485  | 0  |         while ((b & (0xFFU >> j)) != (0xFFU >> j))  | 
486  | 0  |             ++j;  | 
487  | 0  |         aor->u.addressRange->max->flags |= 8 - j;  | 
488  | 0  |     }  | 
489  |  | 
  | 
490  | 0  |     *result = aor;  | 
491  | 0  |     return 1;  | 
492  |  |  | 
493  | 0  |  err:  | 
494  | 0  |     IPAddressOrRange_free(aor);  | 
495  | 0  |     return 0;  | 
496  | 0  | }  | 
497  |  |  | 
498  |  | /*  | 
499  |  |  * Construct a new address family or find an existing one.  | 
500  |  |  */  | 
501  |  | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,  | 
502  |  |                                              const unsigned afi,  | 
503  |  |                                              const unsigned *safi)  | 
504  | 0  | { | 
505  | 0  |     IPAddressFamily *f;  | 
506  | 0  |     unsigned char key[3];  | 
507  | 0  |     int keylen;  | 
508  | 0  |     int i;  | 
509  |  | 
  | 
510  | 0  |     key[0] = (afi >> 8) & 0xFF;  | 
511  | 0  |     key[1] = afi & 0xFF;  | 
512  | 0  |     if (safi != NULL) { | 
513  | 0  |         key[2] = *safi & 0xFF;  | 
514  | 0  |         keylen = 3;  | 
515  | 0  |     } else { | 
516  | 0  |         keylen = 2;  | 
517  | 0  |     }  | 
518  |  | 
  | 
519  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
520  | 0  |         f = sk_IPAddressFamily_value(addr, i);  | 
521  | 0  |         if (f->addressFamily->length == keylen &&  | 
522  | 0  |             !memcmp(f->addressFamily->data, key, keylen))  | 
523  | 0  |             return f;  | 
524  | 0  |     }  | 
525  |  |  | 
526  | 0  |     if ((f = IPAddressFamily_new()) == NULL)  | 
527  | 0  |         goto err;  | 
528  | 0  |     if (f->ipAddressChoice == NULL &&  | 
529  | 0  |         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)  | 
530  | 0  |         goto err;  | 
531  | 0  |     if (f->addressFamily == NULL &&  | 
532  | 0  |         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)  | 
533  | 0  |         goto err;  | 
534  | 0  |     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))  | 
535  | 0  |         goto err;  | 
536  | 0  |     if (!sk_IPAddressFamily_push(addr, f))  | 
537  | 0  |         goto err;  | 
538  |  |  | 
539  | 0  |     return f;  | 
540  |  |  | 
541  | 0  |  err:  | 
542  | 0  |     IPAddressFamily_free(f);  | 
543  | 0  |     return NULL;  | 
544  | 0  | }  | 
545  |  |  | 
546  |  | /*  | 
547  |  |  * Add an inheritance element.  | 
548  |  |  */  | 
549  |  | int X509v3_addr_add_inherit(IPAddrBlocks *addr,  | 
550  |  |                             const unsigned afi, const unsigned *safi)  | 
551  | 0  | { | 
552  | 0  |     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);  | 
553  |  | 
  | 
554  | 0  |     if (f == NULL ||  | 
555  | 0  |         f->ipAddressChoice == NULL ||  | 
556  | 0  |         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&  | 
557  | 0  |          f->ipAddressChoice->u.addressesOrRanges != NULL))  | 
558  | 0  |         return 0;  | 
559  | 0  |     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&  | 
560  | 0  |         f->ipAddressChoice->u.inherit != NULL)  | 
561  | 0  |         return 1;  | 
562  | 0  |     if (f->ipAddressChoice->u.inherit == NULL &&  | 
563  | 0  |         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)  | 
564  | 0  |         return 0;  | 
565  | 0  |     f->ipAddressChoice->type = IPAddressChoice_inherit;  | 
566  | 0  |     return 1;  | 
567  | 0  | }  | 
568  |  |  | 
569  |  | /*  | 
570  |  |  * Construct an IPAddressOrRange sequence, or return an existing one.  | 
571  |  |  */  | 
572  |  | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,  | 
573  |  |                                                const unsigned afi,  | 
574  |  |                                                const unsigned *safi)  | 
575  | 0  | { | 
576  | 0  |     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);  | 
577  | 0  |     IPAddressOrRanges *aors = NULL;  | 
578  |  | 
  | 
579  | 0  |     if (f == NULL ||  | 
580  | 0  |         f->ipAddressChoice == NULL ||  | 
581  | 0  |         (f->ipAddressChoice->type == IPAddressChoice_inherit &&  | 
582  | 0  |          f->ipAddressChoice->u.inherit != NULL))  | 
583  | 0  |         return NULL;  | 
584  | 0  |     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)  | 
585  | 0  |         aors = f->ipAddressChoice->u.addressesOrRanges;  | 
586  | 0  |     if (aors != NULL)  | 
587  | 0  |         return aors;  | 
588  | 0  |     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)  | 
589  | 0  |         return NULL;  | 
590  | 0  |     switch (afi) { | 
591  | 0  |     case IANA_AFI_IPV4:  | 
592  | 0  |         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);  | 
593  | 0  |         break;  | 
594  | 0  |     case IANA_AFI_IPV6:  | 
595  | 0  |         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);  | 
596  | 0  |         break;  | 
597  | 0  |     }  | 
598  | 0  |     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;  | 
599  | 0  |     f->ipAddressChoice->u.addressesOrRanges = aors;  | 
600  | 0  |     return aors;  | 
601  | 0  | }  | 
602  |  |  | 
603  |  | /*  | 
604  |  |  * Add a prefix.  | 
605  |  |  */  | 
606  |  | int X509v3_addr_add_prefix(IPAddrBlocks *addr,  | 
607  |  |                            const unsigned afi,  | 
608  |  |                            const unsigned *safi,  | 
609  |  |                            unsigned char *a, const int prefixlen)  | 
610  | 0  | { | 
611  | 0  |     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);  | 
612  | 0  |     IPAddressOrRange *aor;  | 
613  |  | 
  | 
614  | 0  |     if (aors == NULL  | 
615  | 0  |             || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))  | 
616  | 0  |         return 0;  | 
617  | 0  |     if (sk_IPAddressOrRange_push(aors, aor))  | 
618  | 0  |         return 1;  | 
619  | 0  |     IPAddressOrRange_free(aor);  | 
620  | 0  |     return 0;  | 
621  | 0  | }  | 
622  |  |  | 
623  |  | /*  | 
624  |  |  * Add a range.  | 
625  |  |  */  | 
626  |  | int X509v3_addr_add_range(IPAddrBlocks *addr,  | 
627  |  |                           const unsigned afi,  | 
628  |  |                           const unsigned *safi,  | 
629  |  |                           unsigned char *min, unsigned char *max)  | 
630  | 0  | { | 
631  | 0  |     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);  | 
632  | 0  |     IPAddressOrRange *aor;  | 
633  | 0  |     int length = length_from_afi(afi);  | 
634  |  | 
  | 
635  | 0  |     if (aors == NULL)  | 
636  | 0  |         return 0;  | 
637  | 0  |     if (!make_addressRange(&aor, min, max, length))  | 
638  | 0  |         return 0;  | 
639  | 0  |     if (sk_IPAddressOrRange_push(aors, aor))  | 
640  | 0  |         return 1;  | 
641  | 0  |     IPAddressOrRange_free(aor);  | 
642  | 0  |     return 0;  | 
643  | 0  | }  | 
644  |  |  | 
645  |  | /*  | 
646  |  |  * Extract min and max values from an IPAddressOrRange.  | 
647  |  |  */  | 
648  |  | static int extract_min_max(IPAddressOrRange *aor,  | 
649  |  |                            unsigned char *min, unsigned char *max, int length)  | 
650  | 0  | { | 
651  | 0  |     if (aor == NULL || min == NULL || max == NULL)  | 
652  | 0  |         return 0;  | 
653  | 0  |     switch (aor->type) { | 
654  | 0  |     case IPAddressOrRange_addressPrefix:  | 
655  | 0  |         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&  | 
656  | 0  |                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));  | 
657  | 0  |     case IPAddressOrRange_addressRange:  | 
658  | 0  |         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&  | 
659  | 0  |                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));  | 
660  | 0  |     }  | 
661  | 0  |     return 0;  | 
662  | 0  | }  | 
663  |  |  | 
664  |  | /*  | 
665  |  |  * Public wrapper for extract_min_max().  | 
666  |  |  */  | 
667  |  | int X509v3_addr_get_range(IPAddressOrRange *aor,  | 
668  |  |                           const unsigned afi,  | 
669  |  |                           unsigned char *min,  | 
670  |  |                           unsigned char *max, const int length)  | 
671  | 0  | { | 
672  | 0  |     int afi_length = length_from_afi(afi);  | 
673  |  | 
  | 
674  | 0  |     if (aor == NULL || min == NULL || max == NULL ||  | 
675  | 0  |         afi_length == 0 || length < afi_length ||  | 
676  | 0  |         (aor->type != IPAddressOrRange_addressPrefix &&  | 
677  | 0  |          aor->type != IPAddressOrRange_addressRange) ||  | 
678  | 0  |         !extract_min_max(aor, min, max, afi_length))  | 
679  | 0  |         return 0;  | 
680  |  |  | 
681  | 0  |     return afi_length;  | 
682  | 0  | }  | 
683  |  |  | 
684  |  | /*  | 
685  |  |  * Sort comparison function for a sequence of IPAddressFamily.  | 
686  |  |  *  | 
687  |  |  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about  | 
688  |  |  * the ordering: I can read it as meaning that IPv6 without a SAFI  | 
689  |  |  * comes before IPv4 with a SAFI, which seems pretty weird.  The  | 
690  |  |  * examples in appendix B suggest that the author intended the  | 
691  |  |  * null-SAFI rule to apply only within a single AFI, which is what I  | 
692  |  |  * would have expected and is what the following code implements.  | 
693  |  |  */  | 
694  |  | static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,  | 
695  |  |                                const IPAddressFamily *const *b_)  | 
696  | 0  | { | 
697  | 0  |     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;  | 
698  | 0  |     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;  | 
699  | 0  |     int len = ((a->length <= b->length) ? a->length : b->length);  | 
700  | 0  |     int cmp = memcmp(a->data, b->data, len);  | 
701  |  | 
  | 
702  | 0  |     return cmp ? cmp : a->length - b->length;  | 
703  | 0  | }  | 
704  |  |  | 
705  |  | static int IPAddressFamily_check_len(const IPAddressFamily *f)  | 
706  | 0  | { | 
707  | 0  |     if (f->addressFamily->length < 2 || f->addressFamily->length > 3)  | 
708  | 0  |         return 0;  | 
709  | 0  |     else  | 
710  | 0  |         return 1;  | 
711  | 0  | }  | 
712  |  |  | 
713  |  | /*  | 
714  |  |  * Check whether an IPAddrBLocks is in canonical form.  | 
715  |  |  */  | 
716  |  | int X509v3_addr_is_canonical(IPAddrBlocks *addr)  | 
717  | 0  | { | 
718  | 0  |     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];  | 
719  | 0  |     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];  | 
720  | 0  |     IPAddressOrRanges *aors;  | 
721  | 0  |     int i, j, k;  | 
722  |  |  | 
723  |  |     /*  | 
724  |  |      * Empty extension is canonical.  | 
725  |  |      */  | 
726  | 0  |     if (addr == NULL)  | 
727  | 0  |         return 1;  | 
728  |  |  | 
729  |  |     /*  | 
730  |  |      * Check whether the top-level list is in order.  | 
731  |  |      */  | 
732  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | 
733  | 0  |         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);  | 
734  | 0  |         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);  | 
735  |  | 
  | 
736  | 0  |         if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))  | 
737  | 0  |             return 0;  | 
738  |  |  | 
739  | 0  |         if (IPAddressFamily_cmp(&a, &b) >= 0)  | 
740  | 0  |             return 0;  | 
741  | 0  |     }  | 
742  |  |  | 
743  |  |     /*  | 
744  |  |      * Top level's ok, now check each address family.  | 
745  |  |      */  | 
746  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
747  | 0  |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);  | 
748  | 0  |         int length = length_from_afi(X509v3_addr_get_afi(f));  | 
749  |  |  | 
750  |  |         /*  | 
751  |  |          * Inheritance is canonical.  Anything other than inheritance or  | 
752  |  |          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.  | 
753  |  |          */  | 
754  | 0  |         if (f == NULL || f->ipAddressChoice == NULL)  | 
755  | 0  |             return 0;  | 
756  | 0  |         switch (f->ipAddressChoice->type) { | 
757  | 0  |         case IPAddressChoice_inherit:  | 
758  | 0  |             continue;  | 
759  | 0  |         case IPAddressChoice_addressesOrRanges:  | 
760  | 0  |             break;  | 
761  | 0  |         default:  | 
762  | 0  |             return 0;  | 
763  | 0  |         }  | 
764  |  |  | 
765  | 0  |         if (!IPAddressFamily_check_len(f))  | 
766  | 0  |             return 0;  | 
767  |  |  | 
768  |  |         /*  | 
769  |  |          * It's an IPAddressOrRanges sequence, check it.  | 
770  |  |          */  | 
771  | 0  |         aors = f->ipAddressChoice->u.addressesOrRanges;  | 
772  | 0  |         if (sk_IPAddressOrRange_num(aors) == 0)  | 
773  | 0  |             return 0;  | 
774  | 0  |         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | 
775  | 0  |             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);  | 
776  | 0  |             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);  | 
777  |  | 
  | 
778  | 0  |             if (!extract_min_max(a, a_min, a_max, length) ||  | 
779  | 0  |                 !extract_min_max(b, b_min, b_max, length))  | 
780  | 0  |                 return 0;  | 
781  |  |  | 
782  |  |             /*  | 
783  |  |              * Punt misordered list, overlapping start, or inverted range.  | 
784  |  |              */  | 
785  | 0  |             if (memcmp(a_min, b_min, length) >= 0 ||  | 
786  | 0  |                 memcmp(a_min, a_max, length) > 0 ||  | 
787  | 0  |                 memcmp(b_min, b_max, length) > 0)  | 
788  | 0  |                 return 0;  | 
789  |  |  | 
790  |  |             /*  | 
791  |  |              * Punt if adjacent or overlapping.  Check for adjacency by  | 
792  |  |              * subtracting one from b_min first.  | 
793  |  |              */  | 
794  | 0  |             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;  | 
795  | 0  |             if (memcmp(a_max, b_min, length) >= 0)  | 
796  | 0  |                 return 0;  | 
797  |  |  | 
798  |  |             /*  | 
799  |  |              * Check for range that should be expressed as a prefix.  | 
800  |  |              */  | 
801  | 0  |             if (a->type == IPAddressOrRange_addressRange &&  | 
802  | 0  |                 range_should_be_prefix(a_min, a_max, length) >= 0)  | 
803  | 0  |                 return 0;  | 
804  | 0  |         }  | 
805  |  |  | 
806  |  |         /*  | 
807  |  |          * Check range to see if it's inverted or should be a  | 
808  |  |          * prefix.  | 
809  |  |          */  | 
810  | 0  |         j = sk_IPAddressOrRange_num(aors) - 1;  | 
811  | 0  |         { | 
812  | 0  |             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);  | 
813  |  | 
  | 
814  | 0  |             if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 
815  | 0  |                 if (!extract_min_max(a, a_min, a_max, length))  | 
816  | 0  |                     return 0;  | 
817  | 0  |                 if (memcmp(a_min, a_max, length) > 0 ||  | 
818  | 0  |                     range_should_be_prefix(a_min, a_max, length) >= 0)  | 
819  | 0  |                     return 0;  | 
820  | 0  |             }  | 
821  | 0  |         }  | 
822  | 0  |     }  | 
823  |  |  | 
824  |  |     /*  | 
825  |  |      * If we made it through all that, we're happy.  | 
826  |  |      */  | 
827  | 0  |     return 1;  | 
828  | 0  | }  | 
829  |  |  | 
830  |  | /*  | 
831  |  |  * Whack an IPAddressOrRanges into canonical form.  | 
832  |  |  */  | 
833  |  | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,  | 
834  |  |                                       const unsigned afi)  | 
835  | 0  | { | 
836  | 0  |     int i, j, length = length_from_afi(afi);  | 
837  |  |  | 
838  |  |     /*  | 
839  |  |      * Sort the IPAddressOrRanges sequence.  | 
840  |  |      */  | 
841  | 0  |     sk_IPAddressOrRange_sort(aors);  | 
842  |  |  | 
843  |  |     /*  | 
844  |  |      * Clean up representation issues, punt on duplicates or overlaps.  | 
845  |  |      */  | 
846  | 0  |     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | 
847  | 0  |         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);  | 
848  | 0  |         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);  | 
849  | 0  |         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];  | 
850  | 0  |         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];  | 
851  |  | 
  | 
852  | 0  |         if (!extract_min_max(a, a_min, a_max, length) ||  | 
853  | 0  |             !extract_min_max(b, b_min, b_max, length))  | 
854  | 0  |             return 0;  | 
855  |  |  | 
856  |  |         /*  | 
857  |  |          * Punt inverted ranges.  | 
858  |  |          */  | 
859  | 0  |         if (memcmp(a_min, a_max, length) > 0 ||  | 
860  | 0  |             memcmp(b_min, b_max, length) > 0)  | 
861  | 0  |             return 0;  | 
862  |  |  | 
863  |  |         /*  | 
864  |  |          * Punt overlaps.  | 
865  |  |          */  | 
866  | 0  |         if (memcmp(a_max, b_min, length) >= 0)  | 
867  | 0  |             return 0;  | 
868  |  |  | 
869  |  |         /*  | 
870  |  |          * Merge if a and b are adjacent.  We check for  | 
871  |  |          * adjacency by subtracting one from b_min first.  | 
872  |  |          */  | 
873  | 0  |         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;  | 
874  | 0  |         if (memcmp(a_max, b_min, length) == 0) { | 
875  | 0  |             IPAddressOrRange *merged;  | 
876  |  | 
  | 
877  | 0  |             if (!make_addressRange(&merged, a_min, b_max, length))  | 
878  | 0  |                 return 0;  | 
879  | 0  |             (void)sk_IPAddressOrRange_set(aors, i, merged);  | 
880  | 0  |             (void)sk_IPAddressOrRange_delete(aors, i + 1);  | 
881  | 0  |             IPAddressOrRange_free(a);  | 
882  | 0  |             IPAddressOrRange_free(b);  | 
883  | 0  |             --i;  | 
884  | 0  |             continue;  | 
885  | 0  |         }  | 
886  | 0  |     }  | 
887  |  |  | 
888  |  |     /*  | 
889  |  |      * Check for inverted final range.  | 
890  |  |      */  | 
891  | 0  |     j = sk_IPAddressOrRange_num(aors) - 1;  | 
892  | 0  |     { | 
893  | 0  |         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);  | 
894  |  | 
  | 
895  | 0  |         if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 
896  | 0  |             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];  | 
897  |  | 
  | 
898  | 0  |             if (!extract_min_max(a, a_min, a_max, length))  | 
899  | 0  |                 return 0;  | 
900  | 0  |             if (memcmp(a_min, a_max, length) > 0)  | 
901  | 0  |                 return 0;  | 
902  | 0  |         }  | 
903  | 0  |     }  | 
904  |  |  | 
905  | 0  |     return 1;  | 
906  | 0  | }  | 
907  |  |  | 
908  |  | /*  | 
909  |  |  * Whack an IPAddrBlocks extension into canonical form.  | 
910  |  |  */  | 
911  |  | int X509v3_addr_canonize(IPAddrBlocks *addr)  | 
912  | 0  | { | 
913  | 0  |     int i;  | 
914  |  | 
  | 
915  | 0  |     if (addr == NULL) { | 
916  | 0  |         ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT);  | 
917  | 0  |         return 0;  | 
918  | 0  |     }  | 
919  |  |  | 
920  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
921  | 0  |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);  | 
922  |  | 
  | 
923  | 0  |         if (!IPAddressFamily_check_len(f))  | 
924  | 0  |             return 0;  | 
925  |  |  | 
926  | 0  |         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&  | 
927  | 0  |             !IPAddressOrRanges_canonize(f->ipAddressChoice->  | 
928  | 0  |                                         u.addressesOrRanges,  | 
929  | 0  |                                         X509v3_addr_get_afi(f)))  | 
930  | 0  |             return 0;  | 
931  | 0  |     }  | 
932  | 0  |     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);  | 
933  | 0  |     sk_IPAddressFamily_sort(addr);  | 
934  | 0  |     if (!ossl_assert(X509v3_addr_is_canonical(addr)))  | 
935  | 0  |         return 0;  | 
936  | 0  |     return 1;  | 
937  | 0  | }  | 
938  |  |  | 
939  |  | /*  | 
940  |  |  * v2i handler for the IPAddrBlocks extension.  | 
941  |  |  */  | 
942  |  | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,  | 
943  |  |                               struct v3_ext_ctx *ctx,  | 
944  |  |                               STACK_OF(CONF_VALUE) *values)  | 
945  | 0  | { | 
946  | 0  |     static const char v4addr_chars[] = "0123456789.";  | 
947  | 0  |     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";  | 
948  | 0  |     IPAddrBlocks *addr = NULL;  | 
949  | 0  |     char *s = NULL, *t;  | 
950  | 0  |     int i;  | 
951  |  | 
  | 
952  | 0  |     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | 
953  | 0  |         ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);  | 
954  | 0  |         return NULL;  | 
955  | 0  |     }  | 
956  |  |  | 
957  | 0  |     for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | 
958  | 0  |         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);  | 
959  | 0  |         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];  | 
960  | 0  |         unsigned afi, *safi = NULL, safi_;  | 
961  | 0  |         const char *addr_chars = NULL;  | 
962  | 0  |         int prefixlen, i1, i2, delim, length;  | 
963  |  | 
  | 
964  | 0  |         if (!ossl_v3_name_cmp(val->name, "IPv4")) { | 
965  | 0  |             afi = IANA_AFI_IPV4;  | 
966  | 0  |         } else if (!ossl_v3_name_cmp(val->name, "IPv6")) { | 
967  | 0  |             afi = IANA_AFI_IPV6;  | 
968  | 0  |         } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) { | 
969  | 0  |             afi = IANA_AFI_IPV4;  | 
970  | 0  |             safi = &safi_;  | 
971  | 0  |         } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) { | 
972  | 0  |             afi = IANA_AFI_IPV6;  | 
973  | 0  |             safi = &safi_;  | 
974  | 0  |         } else { | 
975  | 0  |             ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,  | 
976  | 0  |                            "%s", val->name);  | 
977  | 0  |             goto err;  | 
978  | 0  |         }  | 
979  |  |  | 
980  | 0  |         switch (afi) { | 
981  | 0  |         case IANA_AFI_IPV4:  | 
982  | 0  |             addr_chars = v4addr_chars;  | 
983  | 0  |             break;  | 
984  | 0  |         case IANA_AFI_IPV6:  | 
985  | 0  |             addr_chars = v6addr_chars;  | 
986  | 0  |             break;  | 
987  | 0  |         }  | 
988  |  |  | 
989  | 0  |         length = length_from_afi(afi);  | 
990  |  |  | 
991  |  |         /*  | 
992  |  |          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate  | 
993  |  |          * the other input values.  | 
994  |  |          */  | 
995  | 0  |         if (safi != NULL) { | 
996  | 0  |             if (val->value == NULL) { | 
997  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);  | 
998  | 0  |                 goto err;  | 
999  | 0  |             }  | 
1000  | 0  |             *safi = strtoul(val->value, &t, 0);  | 
1001  | 0  |             t += strspn(t, " \t");  | 
1002  | 0  |             if (*safi > 0xFF || *t++ != ':') { | 
1003  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);  | 
1004  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1005  | 0  |                 goto err;  | 
1006  | 0  |             }  | 
1007  | 0  |             t += strspn(t, " \t");  | 
1008  | 0  |             s = OPENSSL_strdup(t);  | 
1009  | 0  |         } else { | 
1010  | 0  |             s = OPENSSL_strdup(val->value);  | 
1011  | 0  |         }  | 
1012  | 0  |         if (s == NULL)  | 
1013  | 0  |             goto err;  | 
1014  |  |  | 
1015  |  |         /*  | 
1016  |  |          * Check for inheritance.  Not worth additional complexity to  | 
1017  |  |          * optimize this (seldom-used) case.  | 
1018  |  |          */  | 
1019  | 0  |         if (strcmp(s, "inherit") == 0) { | 
1020  | 0  |             if (!X509v3_addr_add_inherit(addr, afi, safi)) { | 
1021  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);  | 
1022  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1023  | 0  |                 goto err;  | 
1024  | 0  |             }  | 
1025  | 0  |             OPENSSL_free(s);  | 
1026  | 0  |             s = NULL;  | 
1027  | 0  |             continue;  | 
1028  | 0  |         }  | 
1029  |  |  | 
1030  | 0  |         i1 = (int)strspn(s, addr_chars);  | 
1031  | 0  |         i2 = i1 + (int)strspn(s + i1, " \t");  | 
1032  | 0  |         delim = s[i2++];  | 
1033  | 0  |         s[i1] = '\0';  | 
1034  |  | 
  | 
1035  | 0  |         if (ossl_a2i_ipadd(min, s) != length) { | 
1036  | 0  |             ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);  | 
1037  | 0  |             X509V3_conf_add_error_name_value(val);  | 
1038  | 0  |             goto err;  | 
1039  | 0  |         }  | 
1040  |  |  | 
1041  | 0  |         switch (delim) { | 
1042  | 0  |         case '/':  | 
1043  | 0  |             prefixlen = (int)strtoul(s + i2, &t, 10);  | 
1044  | 0  |             if (t == s + i2  | 
1045  | 0  |                     || *t != '\0'  | 
1046  | 0  |                     || prefixlen > (length * 8)  | 
1047  | 0  |                     || prefixlen < 0) { | 
1048  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);  | 
1049  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1050  | 0  |                 goto err;  | 
1051  | 0  |             }  | 
1052  | 0  |             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | 
1053  | 0  |                 ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);  | 
1054  | 0  |                 goto err;  | 
1055  | 0  |             }  | 
1056  | 0  |             break;  | 
1057  | 0  |         case '-':  | 
1058  | 0  |             i1 = i2 + (int)strspn(s + i2, " \t");  | 
1059  | 0  |             i2 = i1 + (int)strspn(s + i1, addr_chars);  | 
1060  | 0  |             if (i1 == i2 || s[i2] != '\0') { | 
1061  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);  | 
1062  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1063  | 0  |                 goto err;  | 
1064  | 0  |             }  | 
1065  | 0  |             if (ossl_a2i_ipadd(max, s + i1) != length) { | 
1066  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);  | 
1067  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1068  | 0  |                 goto err;  | 
1069  | 0  |             }  | 
1070  | 0  |             if (memcmp(min, max, length_from_afi(afi)) > 0) { | 
1071  | 0  |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);  | 
1072  | 0  |                 X509V3_conf_add_error_name_value(val);  | 
1073  | 0  |                 goto err;  | 
1074  | 0  |             }  | 
1075  | 0  |             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { | 
1076  | 0  |                 ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);  | 
1077  | 0  |                 goto err;  | 
1078  | 0  |             }  | 
1079  | 0  |             break;  | 
1080  | 0  |         case '\0':  | 
1081  | 0  |             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | 
1082  | 0  |                 ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);  | 
1083  | 0  |                 goto err;  | 
1084  | 0  |             }  | 
1085  | 0  |             break;  | 
1086  | 0  |         default:  | 
1087  | 0  |             ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);  | 
1088  | 0  |             X509V3_conf_add_error_name_value(val);  | 
1089  | 0  |             goto err;  | 
1090  | 0  |         }  | 
1091  |  |  | 
1092  | 0  |         OPENSSL_free(s);  | 
1093  | 0  |         s = NULL;  | 
1094  | 0  |     }  | 
1095  |  |  | 
1096  |  |     /*  | 
1097  |  |      * Canonize the result, then we're done.  | 
1098  |  |      */  | 
1099  | 0  |     if (!X509v3_addr_canonize(addr))  | 
1100  | 0  |         goto err;  | 
1101  | 0  |     return addr;  | 
1102  |  |  | 
1103  | 0  |  err:  | 
1104  | 0  |     OPENSSL_free(s);  | 
1105  | 0  |     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);  | 
1106  | 0  |     return NULL;  | 
1107  | 0  | }  | 
1108  |  |  | 
1109  |  | /*  | 
1110  |  |  * OpenSSL dispatch  | 
1111  |  |  */  | 
1112  |  | const X509V3_EXT_METHOD ossl_v3_addr = { | 
1113  |  |     NID_sbgp_ipAddrBlock,       /* nid */  | 
1114  |  |     0,                          /* flags */  | 
1115  |  |     ASN1_ITEM_ref(IPAddrBlocks), /* template */  | 
1116  |  |     0, 0, 0, 0,                 /* old functions, ignored */  | 
1117  |  |     0,                          /* i2s */  | 
1118  |  |     0,                          /* s2i */  | 
1119  |  |     0,                          /* i2v */  | 
1120  |  |     v2i_IPAddrBlocks,           /* v2i */  | 
1121  |  |     i2r_IPAddrBlocks,           /* i2r */  | 
1122  |  |     0,                          /* r2i */  | 
1123  |  |     NULL                        /* extension-specific data */  | 
1124  |  | };  | 
1125  |  |  | 
1126  |  | /*  | 
1127  |  |  * Figure out whether extension sues inheritance.  | 
1128  |  |  */  | 
1129  |  | int X509v3_addr_inherits(IPAddrBlocks *addr)  | 
1130  | 0  | { | 
1131  | 0  |     int i;  | 
1132  |  | 
  | 
1133  | 0  |     if (addr == NULL)  | 
1134  | 0  |         return 0;  | 
1135  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
1136  | 0  |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);  | 
1137  |  | 
  | 
1138  | 0  |         if (f->ipAddressChoice->type == IPAddressChoice_inherit)  | 
1139  | 0  |             return 1;  | 
1140  | 0  |     }  | 
1141  | 0  |     return 0;  | 
1142  | 0  | }  | 
1143  |  |  | 
1144  |  | /*  | 
1145  |  |  * Figure out whether parent contains child.  | 
1146  |  |  */  | 
1147  |  | static int addr_contains(IPAddressOrRanges *parent,  | 
1148  |  |                          IPAddressOrRanges *child, int length)  | 
1149  | 0  | { | 
1150  | 0  |     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];  | 
1151  | 0  |     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];  | 
1152  | 0  |     int p, c;  | 
1153  |  | 
  | 
1154  | 0  |     if (child == NULL || parent == child)  | 
1155  | 0  |         return 1;  | 
1156  | 0  |     if (parent == NULL)  | 
1157  | 0  |         return 0;  | 
1158  |  |  | 
1159  | 0  |     p = 0;  | 
1160  | 0  |     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | 
1161  | 0  |         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),  | 
1162  | 0  |                              c_min, c_max, length))  | 
1163  | 0  |             return 0;  | 
1164  | 0  |         for (;; p++) { | 
1165  | 0  |             if (p >= sk_IPAddressOrRange_num(parent))  | 
1166  | 0  |                 return 0;  | 
1167  | 0  |             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),  | 
1168  | 0  |                                  p_min, p_max, length))  | 
1169  | 0  |                 return 0;  | 
1170  | 0  |             if (memcmp(p_max, c_max, length) < 0)  | 
1171  | 0  |                 continue;  | 
1172  | 0  |             if (memcmp(p_min, c_min, length) > 0)  | 
1173  | 0  |                 return 0;  | 
1174  | 0  |             break;  | 
1175  | 0  |         }  | 
1176  | 0  |     }  | 
1177  |  |  | 
1178  | 0  |     return 1;  | 
1179  | 0  | }  | 
1180  |  |  | 
1181  |  | /*  | 
1182  |  |  * Test whether a is a subset of b.  | 
1183  |  |  */  | 
1184  |  | int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)  | 
1185  | 0  | { | 
1186  | 0  |     int i;  | 
1187  |  | 
  | 
1188  | 0  |     if (a == NULL || a == b)  | 
1189  | 0  |         return 1;  | 
1190  | 0  |     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))  | 
1191  | 0  |         return 0;  | 
1192  | 0  |     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);  | 
1193  | 0  |     sk_IPAddressFamily_sort(b);  | 
1194  |  |     /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */  | 
1195  | 0  |     for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | 
1196  | 0  |         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);  | 
1197  | 0  |         int j = sk_IPAddressFamily_find(b, fa);  | 
1198  | 0  |         IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);  | 
1199  |  | 
  | 
1200  | 0  |         if (fb == NULL)  | 
1201  | 0  |             return 0;  | 
1202  | 0  |         if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))  | 
1203  | 0  |             return 0;  | 
1204  | 0  |         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,  | 
1205  | 0  |                            fa->ipAddressChoice->u.addressesOrRanges,  | 
1206  | 0  |                            length_from_afi(X509v3_addr_get_afi(fb))))  | 
1207  | 0  |             return 0;  | 
1208  | 0  |     }  | 
1209  | 0  |     return 1;  | 
1210  | 0  | }  | 
1211  |  |  | 
1212  |  | /*  | 
1213  |  |  * Validation error handling via callback.  | 
1214  |  |  */  | 
1215  |  | # define validation_err(_err_)            \  | 
1216  | 0  |     do {                                  \ | 
1217  | 0  |         if (ctx != NULL) {                \ | 
1218  | 0  |             ctx->error = _err_;           \  | 
1219  | 0  |             ctx->error_depth = i;         \  | 
1220  | 0  |             ctx->current_cert = x;        \  | 
1221  | 0  |             rv = ctx->verify_cb(0, ctx);  \  | 
1222  | 0  |         } else {                          \ | 
1223  | 0  |             rv = 0;                       \  | 
1224  | 0  |         }                                 \  | 
1225  | 0  |         if (rv == 0)                      \  | 
1226  | 0  |             goto done;                    \  | 
1227  | 0  |     } while (0)  | 
1228  |  |  | 
1229  |  | /*  | 
1230  |  |  * Core code for RFC 3779 2.3 path validation.  | 
1231  |  |  *  | 
1232  |  |  * Returns 1 for success, 0 on error.  | 
1233  |  |  *  | 
1234  |  |  * When returning 0, ctx->error MUST be set to an appropriate value other than  | 
1235  |  |  * X509_V_OK.  | 
1236  |  |  */  | 
1237  |  | static int addr_validate_path_internal(X509_STORE_CTX *ctx,  | 
1238  |  |                                        STACK_OF(X509) *chain,  | 
1239  |  |                                        IPAddrBlocks *ext)  | 
1240  | 0  | { | 
1241  | 0  |     IPAddrBlocks *child = NULL;  | 
1242  | 0  |     int i, j, ret = 0, rv;  | 
1243  | 0  |     X509 *x;  | 
1244  |  | 
  | 
1245  | 0  |     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)  | 
1246  | 0  |             || !ossl_assert(ctx != NULL || ext != NULL)  | 
1247  | 0  |             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { | 
1248  | 0  |         if (ctx != NULL)  | 
1249  | 0  |             ctx->error = X509_V_ERR_UNSPECIFIED;  | 
1250  | 0  |         return 0;  | 
1251  | 0  |     }  | 
1252  |  |  | 
1253  |  |     /*  | 
1254  |  |      * Figure out where to start.  If we don't have an extension to  | 
1255  |  |      * check, we're done.  Otherwise, check canonical form and  | 
1256  |  |      * set up for walking up the chain.  | 
1257  |  |      */  | 
1258  | 0  |     if (ext != NULL) { | 
1259  | 0  |         i = -1;  | 
1260  | 0  |         x = NULL;  | 
1261  | 0  |     } else { | 
1262  | 0  |         i = 0;  | 
1263  | 0  |         x = sk_X509_value(chain, i);  | 
1264  | 0  |         if ((ext = x->rfc3779_addr) == NULL)  | 
1265  | 0  |             return 1; /* Return success */  | 
1266  | 0  |     }  | 
1267  | 0  |     if (!X509v3_addr_is_canonical(ext))  | 
1268  | 0  |         validation_err(X509_V_ERR_INVALID_EXTENSION);  | 
1269  | 0  |     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);  | 
1270  | 0  |     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | 
1271  | 0  |         ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);  | 
1272  | 0  |         if (ctx != NULL)  | 
1273  | 0  |             ctx->error = X509_V_ERR_OUT_OF_MEM;  | 
1274  | 0  |         goto done;  | 
1275  | 0  |     }  | 
1276  | 0  |     sk_IPAddressFamily_sort(child);  | 
1277  |  |  | 
1278  |  |     /*  | 
1279  |  |      * Now walk up the chain.  No cert may list resources that its  | 
1280  |  |      * parent doesn't list.  | 
1281  |  |      */  | 
1282  | 0  |     for (i++; i < sk_X509_num(chain); i++) { | 
1283  | 0  |         x = sk_X509_value(chain, i);  | 
1284  | 0  |         if (!X509v3_addr_is_canonical(x->rfc3779_addr))  | 
1285  | 0  |             validation_err(X509_V_ERR_INVALID_EXTENSION);  | 
1286  | 0  |         if (x->rfc3779_addr == NULL) { | 
1287  | 0  |             for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
1288  | 0  |                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);  | 
1289  |  | 
  | 
1290  | 0  |                 if (!IPAddressFamily_check_len(fc))  | 
1291  | 0  |                     goto done;  | 
1292  |  |  | 
1293  | 0  |                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | 
1294  | 0  |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);  | 
1295  | 0  |                     break;  | 
1296  | 0  |                 }  | 
1297  | 0  |             }  | 
1298  | 0  |             continue;  | 
1299  | 0  |         }  | 
1300  | 0  |         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,  | 
1301  | 0  |                                               IPAddressFamily_cmp);  | 
1302  | 0  |         sk_IPAddressFamily_sort(x->rfc3779_addr);  | 
1303  | 0  |         for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
1304  | 0  |             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);  | 
1305  | 0  |             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);  | 
1306  | 0  |             IPAddressFamily *fp =  | 
1307  | 0  |                 sk_IPAddressFamily_value(x->rfc3779_addr, k);  | 
1308  |  | 
  | 
1309  | 0  |             if (fp == NULL) { | 
1310  | 0  |                 if (fc->ipAddressChoice->type ==  | 
1311  | 0  |                     IPAddressChoice_addressesOrRanges) { | 
1312  | 0  |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);  | 
1313  | 0  |                     break;  | 
1314  | 0  |                 }  | 
1315  | 0  |                 continue;  | 
1316  | 0  |             }  | 
1317  |  |  | 
1318  | 0  |             if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))  | 
1319  | 0  |                 goto done;  | 
1320  |  |  | 
1321  | 0  |             if (fp->ipAddressChoice->type ==  | 
1322  | 0  |                 IPAddressChoice_addressesOrRanges) { | 
1323  | 0  |                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit  | 
1324  | 0  |                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,  | 
1325  | 0  |                                      fc->ipAddressChoice->u.addressesOrRanges,  | 
1326  | 0  |                                      length_from_afi(X509v3_addr_get_afi(fc))))  | 
1327  | 0  |                     (void)sk_IPAddressFamily_set(child, j, fp);  | 
1328  | 0  |                 else  | 
1329  | 0  |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);  | 
1330  | 0  |             }  | 
1331  | 0  |         }  | 
1332  | 0  |     }  | 
1333  |  |  | 
1334  |  |     /*  | 
1335  |  |      * Trust anchor can't inherit.  | 
1336  |  |      */  | 
1337  | 0  |     if (x->rfc3779_addr != NULL) { | 
1338  | 0  |         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | 
1339  | 0  |             IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);  | 
1340  |  | 
  | 
1341  | 0  |             if (!IPAddressFamily_check_len(fp))  | 
1342  | 0  |                 goto done;  | 
1343  |  |  | 
1344  | 0  |             if (fp->ipAddressChoice->type == IPAddressChoice_inherit  | 
1345  | 0  |                 && sk_IPAddressFamily_find(child, fp) >= 0)  | 
1346  | 0  |                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);  | 
1347  | 0  |         }  | 
1348  | 0  |     }  | 
1349  | 0  |     ret = 1;  | 
1350  | 0  |  done:  | 
1351  | 0  |     sk_IPAddressFamily_free(child);  | 
1352  | 0  |     return ret;  | 
1353  | 0  | }  | 
1354  |  |  | 
1355  |  | # undef validation_err  | 
1356  |  |  | 
1357  |  | /*  | 
1358  |  |  * RFC 3779 2.3 path validation -- called from X509_verify_cert().  | 
1359  |  |  */  | 
1360  |  | int X509v3_addr_validate_path(X509_STORE_CTX *ctx)  | 
1361  | 0  | { | 
1362  | 0  |     if (ctx->chain == NULL  | 
1363  | 0  |             || sk_X509_num(ctx->chain) == 0  | 
1364  | 0  |             || ctx->verify_cb == NULL) { | 
1365  | 0  |         ctx->error = X509_V_ERR_UNSPECIFIED;  | 
1366  | 0  |         return 0;  | 
1367  | 0  |     }  | 
1368  | 0  |     return addr_validate_path_internal(ctx, ctx->chain, NULL);  | 
1369  | 0  | }  | 
1370  |  |  | 
1371  |  | /*  | 
1372  |  |  * RFC 3779 2.3 path validation of an extension.  | 
1373  |  |  * Test whether chain covers extension.  | 
1374  |  |  */  | 
1375  |  | int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,  | 
1376  |  |                                       IPAddrBlocks *ext, int allow_inheritance)  | 
1377  | 0  | { | 
1378  | 0  |     if (ext == NULL)  | 
1379  | 0  |         return 1;  | 
1380  | 0  |     if (chain == NULL || sk_X509_num(chain) == 0)  | 
1381  | 0  |         return 0;  | 
1382  | 0  |     if (!allow_inheritance && X509v3_addr_inherits(ext))  | 
1383  | 0  |         return 0;  | 
1384  | 0  |     return addr_validate_path_internal(NULL, chain, ext);  | 
1385  | 0  | }  | 
1386  |  |  | 
1387  |  | #endif /* OPENSSL_NO_RFC3779 */  |