Coverage Report

Created: 2025-10-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/providers/implementations/kdfs/argon2.c
Line
Count
Source
1
/*
2
 * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 *
9
 * RFC 9106 Argon2 (see https://www.rfc-editor.org/rfc/rfc9106.txt)
10
 *
11
 */
12
13
#include <stdlib.h>
14
#include <stddef.h>
15
#include <stdarg.h>
16
#include <string.h>
17
#include <openssl/e_os2.h>
18
#include <openssl/evp.h>
19
#include <openssl/objects.h>
20
#include <openssl/crypto.h>
21
#include <openssl/kdf.h>
22
#include <openssl/err.h>
23
#include <openssl/core_names.h>
24
#include <openssl/params.h>
25
#include <openssl/thread.h>
26
#include <openssl/proverr.h>
27
#include "internal/thread.h"
28
#include "internal/numbers.h"
29
#include "internal/endian.h"
30
#include "crypto/evp.h"
31
#include "prov/implementations.h"
32
#include "prov/provider_ctx.h"
33
#include "prov/providercommon.h"
34
#include "prov/blake2.h"
35
36
#if defined(OPENSSL_NO_DEFAULT_THREAD_POOL) && defined(OPENSSL_NO_THREAD_POOL)
37
# define ARGON2_NO_THREADS
38
#endif
39
40
#if !defined(OPENSSL_THREADS)
41
# define ARGON2_NO_THREADS
42
#endif
43
44
#ifndef OPENSSL_NO_ARGON2
45
46
# include "providers/implementations/kdfs/argon2.inc"
47
48
0
# define ARGON2_MIN_LANES 1u
49
0
# define ARGON2_MAX_LANES 0xFFFFFFu
50
0
# define ARGON2_MIN_THREADS 1u
51
0
# define ARGON2_MAX_THREADS 0xFFFFFFu
52
0
# define ARGON2_SYNC_POINTS 4u
53
0
# define ARGON2_MIN_OUT_LENGTH 4u
54
# define ARGON2_MAX_OUT_LENGTH 0xFFFFFFFFu
55
0
# define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS)
56
# define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
57
# define ARGON2_MAX_MEMORY 0xFFFFFFFFu
58
0
# define ARGON2_MIN_TIME 1u
59
# define ARGON2_MAX_TIME 0xFFFFFFFFu
60
# define ARGON2_MIN_PWD_LENGTH 0u
61
0
# define ARGON2_MAX_PWD_LENGTH 0xFFFFFFFFu
62
# define ARGON2_MIN_AD_LENGTH 0u
63
0
# define ARGON2_MAX_AD_LENGTH 0xFFFFFFFFu
64
0
# define ARGON2_MIN_SALT_LENGTH 8u
65
0
# define ARGON2_MAX_SALT_LENGTH 0xFFFFFFFFu
66
# define ARGON2_MIN_SECRET 0u
67
0
# define ARGON2_MAX_SECRET 0xFFFFFFFFu
68
0
# define ARGON2_BLOCK_SIZE 1024
69
0
# define ARGON2_QWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 8)
70
# define ARGON2_OWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 16)
71
# define ARGON2_HWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 32)
72
# define ARGON2_512BIT_WORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 64)
73
0
# define ARGON2_ADDRESSES_IN_BLOCK 128
74
0
# define ARGON2_PREHASH_DIGEST_LENGTH 64
75
# define ARGON2_PREHASH_SEED_LENGTH \
76
0
    (ARGON2_PREHASH_DIGEST_LENGTH + (2 * sizeof(uint32_t)))
77
78
0
# define ARGON2_DEFAULT_OUTLEN 64u
79
0
# define ARGON2_DEFAULT_T_COST 3u
80
0
# define ARGON2_DEFAULT_M_COST ARGON2_MIN_MEMORY
81
0
# define ARGON2_DEFAULT_LANES  1u
82
0
# define ARGON2_DEFAULT_THREADS 1u
83
0
# define ARGON2_DEFAULT_VERSION ARGON2_VERSION_NUMBER
84
85
# undef G
86
# define G(a, b, c, d)                                                        \
87
0
    do {                                                                      \
88
0
        a = a + b + 2 * mul_lower(a, b);                                      \
89
0
        d = rotr64(d ^ a, 32);                                                \
90
0
        c = c + d + 2 * mul_lower(c, d);                                      \
91
0
        b = rotr64(b ^ c, 24);                                                \
92
0
        a = a + b + 2 * mul_lower(a, b);                                      \
93
0
        d = rotr64(d ^ a, 16);                                                \
94
0
        c = c + d + 2 * mul_lower(c, d);                                      \
95
0
        b = rotr64(b ^ c, 63);                                                \
96
0
    } while ((void)0, 0)
97
98
# undef PERMUTATION_P
99
# define PERMUTATION_P(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,      \
100
                       v12, v13, v14, v15)                                    \
101
0
    do {                                                                      \
102
0
        G(v0, v4, v8, v12);                                                   \
103
0
        G(v1, v5, v9, v13);                                                   \
104
0
        G(v2, v6, v10, v14);                                                  \
105
0
        G(v3, v7, v11, v15);                                                  \
106
0
        G(v0, v5, v10, v15);                                                  \
107
0
        G(v1, v6, v11, v12);                                                  \
108
0
        G(v2, v7, v8, v13);                                                   \
109
0
        G(v3, v4, v9, v14);                                                   \
110
0
    } while ((void)0, 0)
111
112
# undef PERMUTATION_P_COLUMN
113
# define PERMUTATION_P_COLUMN(x, i)                                           \
114
0
    do {                                                                      \
115
0
        uint64_t *base = &x[16 * i];                                          \
116
0
        PERMUTATION_P(                                                        \
117
0
            *base,        *(base + 1),  *(base + 2),  *(base + 3),            \
118
0
            *(base + 4),  *(base + 5),  *(base + 6),  *(base + 7),            \
119
0
            *(base + 8),  *(base + 9),  *(base + 10), *(base + 11),           \
120
0
            *(base + 12), *(base + 13), *(base + 14), *(base + 15)            \
121
0
        );                                                                    \
122
0
    } while ((void)0, 0)
123
124
# undef PERMUTATION_P_ROW
125
# define PERMUTATION_P_ROW(x, i)                                              \
126
0
    do {                                                                      \
127
0
        uint64_t *base = &x[2 * i];                                           \
128
0
        PERMUTATION_P(                                                        \
129
0
            *base,        *(base + 1),  *(base + 16),  *(base + 17),          \
130
0
            *(base + 32), *(base + 33), *(base + 48),  *(base + 49),          \
131
0
            *(base + 64), *(base + 65), *(base + 80),  *(base + 81),          \
132
0
            *(base + 96), *(base + 97), *(base + 112), *(base + 113)          \
133
0
        );                                                                    \
134
0
    } while ((void)0, 0)
135
136
typedef struct {
137
    uint64_t v[ARGON2_QWORDS_IN_BLOCK];
138
} BLOCK;
139
140
typedef enum {
141
    ARGON2_VERSION_10 = 0x10,
142
    ARGON2_VERSION_13 = 0x13,
143
    ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
144
} ARGON2_VERSION;
145
146
typedef enum {
147
    ARGON2_D  = 0,
148
    ARGON2_I  = 1,
149
    ARGON2_ID = 2
150
} ARGON2_TYPE;
151
152
typedef struct {
153
    uint32_t pass;
154
    uint32_t lane;
155
    uint8_t slice;
156
    uint32_t index;
157
} ARGON2_POS;
158
159
typedef struct {
160
    void *provctx;
161
    uint32_t outlen;
162
    uint8_t *pwd;
163
    uint32_t pwdlen;
164
    uint8_t *salt;
165
    uint32_t saltlen;
166
    uint8_t *secret;
167
    uint32_t secretlen;
168
    uint8_t *ad;
169
    uint32_t adlen;
170
    uint32_t t_cost;
171
    uint32_t m_cost;
172
    uint32_t lanes;
173
    uint32_t threads;
174
    uint32_t version;
175
    uint32_t early_clean;
176
    ARGON2_TYPE type;
177
    BLOCK *memory;
178
    uint32_t passes;
179
    uint32_t memory_blocks;
180
    uint32_t segment_length;
181
    uint32_t lane_length;
182
    OSSL_LIB_CTX *libctx;
183
    EVP_MD *md;
184
    EVP_MAC *mac;
185
    char *propq;
186
} KDF_ARGON2;
187
188
typedef struct {
189
    ARGON2_POS pos;
190
    KDF_ARGON2 *ctx;
191
} ARGON2_THREAD_DATA;
192
193
static OSSL_FUNC_kdf_newctx_fn kdf_argon2i_new;
194
static OSSL_FUNC_kdf_newctx_fn kdf_argon2d_new;
195
static OSSL_FUNC_kdf_newctx_fn kdf_argon2id_new;
196
static OSSL_FUNC_kdf_freectx_fn kdf_argon2_free;
197
static OSSL_FUNC_kdf_reset_fn kdf_argon2_reset;
198
static OSSL_FUNC_kdf_derive_fn kdf_argon2_derive;
199
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_argon2_settable_ctx_params;
200
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_argon2_set_ctx_params;
201
202
static void kdf_argon2_init(KDF_ARGON2 *ctx, ARGON2_TYPE t);
203
static void *kdf_argon2d_new(void *provctx);
204
static void *kdf_argon2i_new(void *provctx);
205
static void *kdf_argon2id_new(void *provctx);
206
static void kdf_argon2_free(void *vctx);
207
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
208
                             const OSSL_PARAM params[]);
209
static void kdf_argon2_reset(void *vctx);
210
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads);
211
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes);
212
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost);
213
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost);
214
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen);
215
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
216
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
217
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
218
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
219
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[]);
220
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[]);
221
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version);
222
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
223
                                                        ossl_unused void *p_ctx);
224
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
225
                                                        ossl_unused void *p_ctx);
226
static int argon2_set_ctx_params(KDF_ARGON2 *ctx, const OSSL_PARAM params[],
227
                                 OSSL_PARAM **size_param_ptr);
228
229
static ossl_inline uint64_t load64(const uint8_t *src);
230
static ossl_inline void store32(uint8_t *dst, uint32_t w);
231
static ossl_inline void store64(uint8_t *dst, uint64_t w);
232
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c);
233
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y);
234
235
static void init_block_value(BLOCK *b, uint8_t in);
236
static void copy_block(BLOCK *dst, const BLOCK *src);
237
static void xor_block(BLOCK *dst, const BLOCK *src);
238
static void load_block(BLOCK *dst, const void *input);
239
static void store_block(void *output, const BLOCK *src);
240
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx);
241
static void fill_block(const BLOCK *prev, const BLOCK *ref, BLOCK *next,
242
                       int with_xor);
243
244
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
245
                           const BLOCK *zero_block);
246
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
247
                                 uint8_t slice);
248
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
249
                            uint8_t slice, uint32_t index,
250
                            uint32_t pseudo_rand, int same_lane);
251
252
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
253
                         uint8_t slice);
254
255
# if !defined(ARGON2_NO_THREADS)
256
static uint32_t fill_segment_thr(void *thread_data);
257
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx);
258
# endif
259
260
static int fill_mem_blocks_st(KDF_ARGON2 *ctx);
261
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx);
262
263
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx);
264
static int initialize(KDF_ARGON2 *ctx);
265
static void finalize(const KDF_ARGON2 *ctx, void *out);
266
267
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
268
                   const void *in, size_t inlen, const void *key,
269
                   size_t keylen);
270
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
271
                        size_t outlen, const void *in, size_t inlen);
272
273
static ossl_inline uint64_t load64(const uint8_t *src)
274
0
{
275
0
    return
276
0
      (((uint64_t)src[0]) << 0)
277
0
    | (((uint64_t)src[1]) << 8)
278
0
    | (((uint64_t)src[2]) << 16)
279
0
    | (((uint64_t)src[3]) << 24)
280
0
    | (((uint64_t)src[4]) << 32)
281
0
    | (((uint64_t)src[5]) << 40)
282
0
    | (((uint64_t)src[6]) << 48)
283
0
    | (((uint64_t)src[7]) << 56);
284
0
}
285
286
static ossl_inline void store32(uint8_t *dst, uint32_t w)
287
0
{
288
0
    dst[0] = (uint8_t)(w >> 0);
289
0
    dst[1] = (uint8_t)(w >> 8);
290
0
    dst[2] = (uint8_t)(w >> 16);
291
0
    dst[3] = (uint8_t)(w >> 24);
292
0
}
293
294
static ossl_inline void store64(uint8_t *dst, uint64_t w)
295
0
{
296
0
    dst[0] = (uint8_t)(w >> 0);
297
0
    dst[1] = (uint8_t)(w >> 8);
298
0
    dst[2] = (uint8_t)(w >> 16);
299
0
    dst[3] = (uint8_t)(w >> 24);
300
0
    dst[4] = (uint8_t)(w >> 32);
301
0
    dst[5] = (uint8_t)(w >> 40);
302
0
    dst[6] = (uint8_t)(w >> 48);
303
0
    dst[7] = (uint8_t)(w >> 56);
304
0
}
305
306
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c)
307
0
{
308
0
    return (w >> c) | (w << (64 - c));
309
0
}
310
311
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y)
312
0
{
313
0
    const uint64_t m = 0xFFFFFFFFUL;
314
0
    return (x & m) * (y & m);
315
0
}
316
317
static void init_block_value(BLOCK *b, uint8_t in)
318
0
{
319
0
    memset(b->v, in, sizeof(b->v));
320
0
}
321
322
static void copy_block(BLOCK *dst, const BLOCK *src)
323
0
{
324
0
    memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
325
0
}
326
327
static void xor_block(BLOCK *dst, const BLOCK *src)
328
0
{
329
0
    int i;
330
331
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
332
0
        dst->v[i] ^= src->v[i];
333
0
}
334
335
static void load_block(BLOCK *dst, const void *input)
336
0
{
337
0
    unsigned i;
338
339
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
340
0
        dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
341
0
}
342
343
static void store_block(void *output, const BLOCK *src)
344
0
{
345
0
    unsigned i;
346
347
0
    for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
348
0
        store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
349
0
}
350
351
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx)
352
0
{
353
0
    uint32_t l;
354
0
    uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
355
356
    /*
357
     * Make the first and second block in each lane as G(H0||0||i)
358
     * or G(H0||1||i).
359
     */
360
0
    for (l = 0; l < ctx->lanes; ++l) {
361
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
362
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
363
0
        blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
364
0
                     blockhash, ARGON2_PREHASH_SEED_LENGTH);
365
0
        load_block(&ctx->memory[l * ctx->lane_length + 0],
366
0
                   blockhash_bytes);
367
0
        store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
368
0
        blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
369
0
                     blockhash, ARGON2_PREHASH_SEED_LENGTH);
370
0
        load_block(&ctx->memory[l * ctx->lane_length + 1],
371
0
                   blockhash_bytes);
372
0
    }
373
0
    OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
374
0
}
375
376
static void fill_block(const BLOCK *prev, const BLOCK *ref,
377
                       BLOCK *next, int with_xor)
378
0
{
379
0
    BLOCK blockR, tmp;
380
0
    unsigned i;
381
382
0
    copy_block(&blockR, ref);
383
0
    xor_block(&blockR, prev);
384
0
    copy_block(&tmp, &blockR);
385
386
0
    if (with_xor)
387
0
        xor_block(&tmp, next);
388
389
0
    for (i = 0; i < 8; ++i)
390
0
        PERMUTATION_P_COLUMN(blockR.v, i);
391
392
0
    for (i = 0; i < 8; ++i)
393
0
        PERMUTATION_P_ROW(blockR.v, i);
394
395
0
    copy_block(next, &tmp);
396
0
    xor_block(next, &blockR);
397
0
}
398
399
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
400
                           const BLOCK *zero_block)
401
0
{
402
0
    input_block->v[6]++;
403
0
    fill_block(zero_block, input_block, address_block, 0);
404
0
    fill_block(zero_block, address_block, address_block, 0);
405
0
}
406
407
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
408
                                 uint8_t slice)
409
0
{
410
0
    switch (ctx->type) {
411
0
    case ARGON2_I:
412
0
        return 1;
413
0
    case ARGON2_ID:
414
0
        return (pass == 0) && (slice < ARGON2_SYNC_POINTS / 2);
415
0
    case ARGON2_D:
416
0
    default:
417
0
        return 0;
418
0
    }
419
0
}
420
421
/*
422
 * Pass 0 (pass = 0):
423
 * This lane: all already finished segments plus already constructed blocks
424
 *            in this segment
425
 * Other lanes: all already finished segments
426
 *
427
 * Pass 1+:
428
 * This lane: (SYNC_POINTS - 1) last segments plus already constructed
429
 *            blocks in this segment
430
 * Other lanes: (SYNC_POINTS - 1) last segments
431
 */
432
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
433
                            uint8_t slice, uint32_t index,
434
                            uint32_t pseudo_rand, int same_lane)
435
0
{
436
0
    uint32_t ref_area_sz;
437
0
    uint64_t rel_pos;
438
0
    uint32_t start_pos, abs_pos;
439
440
0
    start_pos = 0;
441
0
    switch (pass) {
442
0
    case 0:
443
0
        if (slice == 0)
444
0
            ref_area_sz = index - 1;
445
0
        else if (same_lane)
446
0
            ref_area_sz = slice * ctx->segment_length + index - 1;
447
0
        else
448
0
            ref_area_sz = slice * ctx->segment_length +
449
0
                ((index == 0) ? (-1) : 0);
450
0
        break;
451
0
    default:
452
0
        if (same_lane)
453
0
            ref_area_sz = ctx->lane_length - ctx->segment_length + index - 1;
454
0
        else
455
0
            ref_area_sz = ctx->lane_length - ctx->segment_length +
456
0
                ((index == 0) ? (-1) : 0);
457
0
        if (slice != ARGON2_SYNC_POINTS - 1)
458
0
            start_pos = (slice + 1) * ctx->segment_length;
459
0
        break;
460
0
    }
461
462
0
    rel_pos = pseudo_rand;
463
0
    rel_pos = rel_pos * rel_pos >> 32;
464
0
    rel_pos = ref_area_sz - 1 - (ref_area_sz * rel_pos >> 32);
465
0
    abs_pos = (start_pos + rel_pos) % ctx->lane_length;
466
467
0
    return abs_pos;
468
0
}
469
470
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
471
                         uint8_t slice)
472
0
{
473
0
    BLOCK *ref_block = NULL, *curr_block = NULL;
474
0
    BLOCK address_block, input_block, zero_block;
475
0
    uint64_t rnd, ref_index, ref_lane;
476
0
    uint32_t prev_offset;
477
0
    uint32_t start_idx;
478
0
    uint32_t j;
479
0
    uint32_t curr_offset; /* Offset of the current block */
480
481
0
    memset(&input_block, 0, sizeof(BLOCK));
482
483
0
    if (ctx == NULL)
484
0
        return;
485
486
0
    if (data_indep_addressing(ctx, pass, slice)) {
487
0
        init_block_value(&zero_block, 0);
488
0
        init_block_value(&input_block, 0);
489
490
0
        input_block.v[0] = pass;
491
0
        input_block.v[1] = lane;
492
0
        input_block.v[2] = slice;
493
0
        input_block.v[3] = ctx->memory_blocks;
494
0
        input_block.v[4] = ctx->passes;
495
0
        input_block.v[5] = ctx->type;
496
0
    }
497
498
0
    start_idx = 0;
499
500
    /* We've generated the first two blocks. Generate the 1st block of addrs. */
501
0
    if ((pass == 0) && (slice == 0)) {
502
0
        start_idx = 2;
503
0
        if (data_indep_addressing(ctx, pass, slice))
504
0
            next_addresses(&address_block, &input_block, &zero_block);
505
0
    }
506
507
0
    curr_offset = lane * ctx->lane_length + slice * ctx->segment_length
508
0
        + start_idx;
509
510
0
    if ((curr_offset % ctx->lane_length) == 0)
511
0
        prev_offset = curr_offset + ctx->lane_length - 1;
512
0
    else
513
0
        prev_offset = curr_offset - 1;
514
515
0
    for (j = start_idx; j < ctx->segment_length; ++j, ++curr_offset, ++prev_offset) {
516
0
        if (curr_offset % ctx->lane_length == 1)
517
0
            prev_offset = curr_offset - 1;
518
519
        /* Taking pseudo-random value from the previous block. */
520
0
        if (data_indep_addressing(ctx, pass, slice)) {
521
0
            if (j % ARGON2_ADDRESSES_IN_BLOCK == 0)
522
0
                next_addresses(&address_block, &input_block, &zero_block);
523
0
            rnd = address_block.v[j % ARGON2_ADDRESSES_IN_BLOCK];
524
0
        } else {
525
0
            rnd = ctx->memory[prev_offset].v[0];
526
0
        }
527
528
        /* Computing the lane of the reference block */
529
0
        ref_lane = ((rnd >> 32)) % ctx->lanes;
530
        /* Can not reference other lanes yet */
531
0
        if ((pass == 0) && (slice == 0))
532
0
            ref_lane = lane;
533
534
        /* Computing the number of possible reference block within the lane. */
535
0
        ref_index = index_alpha(ctx, pass, slice, j, rnd & 0xFFFFFFFF,
536
0
                                ref_lane == lane);
537
538
        /* Creating a new block */
539
0
        ref_block = ctx->memory + ctx->lane_length * ref_lane + ref_index;
540
0
        curr_block = ctx->memory + curr_offset;
541
0
        if (ARGON2_VERSION_10 == ctx->version) {
542
            /* Version 1.2.1 and earlier: overwrite, not XOR */
543
0
            fill_block(ctx->memory + prev_offset, ref_block, curr_block, 0);
544
0
            continue;
545
0
        }
546
547
0
        fill_block(ctx->memory + prev_offset, ref_block, curr_block,
548
0
                   pass == 0 ? 0 : 1);
549
0
    }
550
0
}
551
552
# if !defined(ARGON2_NO_THREADS)
553
554
static uint32_t fill_segment_thr(void *thread_data)
555
0
{
556
0
    ARGON2_THREAD_DATA *my_data;
557
558
0
    my_data = (ARGON2_THREAD_DATA *) thread_data;
559
0
    fill_segment(my_data->ctx, my_data->pos.pass, my_data->pos.lane,
560
0
                 my_data->pos.slice);
561
562
0
    return 0;
563
0
}
564
565
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx)
566
0
{
567
0
    uint32_t r, s, l, ll;
568
0
    void **t;
569
0
    ARGON2_THREAD_DATA *t_data;
570
571
0
    t = OPENSSL_calloc(ctx->lanes, sizeof(void *));
572
0
    t_data = OPENSSL_calloc(ctx->lanes, sizeof(ARGON2_THREAD_DATA));
573
574
0
    if (t == NULL || t_data == NULL)
575
0
        goto fail;
576
577
0
    for (r = 0; r < ctx->passes; ++r) {
578
0
        for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
579
0
            for (l = 0; l < ctx->lanes; ++l) {
580
0
                ARGON2_POS p;
581
0
                if (l >= ctx->threads) {
582
0
                    if (ossl_crypto_thread_join(t[l - ctx->threads], NULL) == 0)
583
0
                        goto fail;
584
0
                    if (ossl_crypto_thread_clean(t[l - ctx->threads]) == 0)
585
0
                        goto fail;
586
0
                    t[l] = NULL;
587
0
                }
588
589
0
                p.pass = r;
590
0
                p.lane = l;
591
0
                p.slice = (uint8_t)s;
592
0
                p.index = 0;
593
594
0
                t_data[l].ctx = ctx;
595
0
                memcpy(&(t_data[l].pos), &p, sizeof(ARGON2_POS));
596
0
                t[l] = ossl_crypto_thread_start(ctx->libctx, &fill_segment_thr,
597
0
                                                (void *) &t_data[l]);
598
0
                if (t[l] == NULL) {
599
0
                    for (ll = 0; ll < l; ++ll) {
600
0
                        if (ossl_crypto_thread_join(t[ll], NULL) == 0)
601
0
                            goto fail;
602
0
                        if (ossl_crypto_thread_clean(t[ll]) == 0)
603
0
                            goto fail;
604
0
                        t[ll] = NULL;
605
0
                    }
606
0
                    goto fail;
607
0
                }
608
0
            }
609
0
            for (l = ctx->lanes - ctx->threads; l < ctx->lanes; ++l) {
610
0
                if (ossl_crypto_thread_join(t[l], NULL) == 0)
611
0
                    goto fail;
612
0
                if (ossl_crypto_thread_clean(t[l]) == 0)
613
0
                    goto fail;
614
0
                t[l] = NULL;
615
0
            }
616
0
        }
617
0
    }
618
619
0
    OPENSSL_free(t_data);
620
0
    OPENSSL_free(t);
621
622
0
    return 1;
623
624
0
fail:
625
0
    if (t_data != NULL)
626
0
        OPENSSL_free(t_data);
627
0
    if (t != NULL)
628
0
        OPENSSL_free(t);
629
0
    return 0;
630
0
}
631
632
# endif /* !defined(ARGON2_NO_THREADS) */
633
634
static int fill_mem_blocks_st(KDF_ARGON2 *ctx)
635
0
{
636
0
    uint32_t r, s, l;
637
638
0
    for (r = 0; r < ctx->passes; ++r)
639
0
        for (s = 0; s < ARGON2_SYNC_POINTS; ++s)
640
0
            for (l = 0; l < ctx->lanes; ++l)
641
0
                fill_segment(ctx, r, l, s);
642
0
    return 1;
643
0
}
644
645
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx)
646
0
{
647
0
# if !defined(ARGON2_NO_THREADS)
648
0
    return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : fill_mem_blocks_mt(ctx);
649
# else
650
    return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : 0;
651
# endif
652
0
}
653
654
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx)
655
0
{
656
0
    EVP_MD_CTX *mdctx;
657
0
    uint8_t value[sizeof(uint32_t)];
658
0
    unsigned int tmp;
659
0
    uint32_t args[7];
660
661
0
    if (ctx == NULL || blockhash == NULL)
662
0
        return;
663
664
0
    args[0] = ctx->lanes;
665
0
    args[1] = ctx->outlen;
666
0
    args[2] = ctx->m_cost;
667
0
    args[3] = ctx->t_cost;
668
0
    args[4] = ctx->version;
669
0
    args[5] = (uint32_t) ctx->type;
670
0
    args[6] = ctx->pwdlen;
671
672
0
    mdctx = EVP_MD_CTX_create();
673
0
    if (mdctx == NULL || EVP_DigestInit_ex(mdctx, ctx->md, NULL) != 1)
674
0
        goto fail;
675
676
0
    for (tmp = 0; tmp < sizeof(args) / sizeof(uint32_t); ++tmp) {
677
0
        store32((uint8_t *) &value, args[tmp]);
678
0
        if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
679
0
            goto fail;
680
0
    }
681
682
0
    if (ctx->pwd != NULL) {
683
0
        if (EVP_DigestUpdate(mdctx, ctx->pwd, ctx->pwdlen) != 1)
684
0
            goto fail;
685
0
        if (ctx->early_clean) {
686
0
            OPENSSL_cleanse(ctx->pwd, ctx->pwdlen);
687
0
            ctx->pwdlen = 0;
688
0
        }
689
0
    }
690
691
0
    store32((uint8_t *) &value, ctx->saltlen);
692
693
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
694
0
        goto fail;
695
696
0
    if (ctx->salt != NULL)
697
0
        if (EVP_DigestUpdate(mdctx, ctx->salt, ctx->saltlen) != 1)
698
0
            goto fail;
699
700
0
    store32((uint8_t *) &value, ctx->secretlen);
701
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
702
0
        goto fail;
703
704
0
    if (ctx->secret != NULL) {
705
0
        if (EVP_DigestUpdate(mdctx, ctx->secret, ctx->secretlen) != 1)
706
0
            goto fail;
707
0
        if (ctx->early_clean) {
708
0
            OPENSSL_cleanse(ctx->secret, ctx->secretlen);
709
0
            ctx->secretlen = 0;
710
0
        }
711
0
    }
712
713
0
    store32((uint8_t *) &value, ctx->adlen);
714
0
    if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
715
0
        goto fail;
716
717
0
    if (ctx->ad != NULL)
718
0
        if (EVP_DigestUpdate(mdctx, ctx->ad, ctx->adlen) != 1)
719
0
            goto fail;
720
721
0
    tmp = ARGON2_PREHASH_DIGEST_LENGTH;
722
0
    if (EVP_DigestFinal_ex(mdctx, blockhash, &tmp) != 1)
723
0
        goto fail;
724
725
0
fail:
726
0
    EVP_MD_CTX_destroy(mdctx);
727
0
}
728
729
static int initialize(KDF_ARGON2 *ctx)
730
0
{
731
0
    uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
732
733
0
    if (ctx == NULL)
734
0
        return 0;
735
736
0
    if (ctx->memory_blocks * sizeof(BLOCK) / sizeof(BLOCK) != ctx->memory_blocks)
737
0
        return 0;
738
739
0
    if (ctx->type != ARGON2_D)
740
0
        ctx->memory = OPENSSL_secure_calloc(ctx->memory_blocks, sizeof(BLOCK));
741
0
    else
742
0
        ctx->memory = OPENSSL_calloc(ctx->memory_blocks, sizeof(BLOCK));
743
744
0
    if (ctx->memory == NULL) {
745
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
746
0
                       "cannot allocate required memory");
747
0
        return 0;
748
0
    }
749
750
0
    initial_hash(blockhash, ctx);
751
0
    OPENSSL_cleanse(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
752
0
                    ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH);
753
0
    fill_first_blocks(blockhash, ctx);
754
0
    OPENSSL_cleanse(blockhash, ARGON2_PREHASH_SEED_LENGTH);
755
756
0
    return 1;
757
0
}
758
759
static void finalize(const KDF_ARGON2 *ctx, void *out)
760
0
{
761
0
    BLOCK blockhash;
762
0
    uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
763
0
    uint32_t last_block_in_lane;
764
0
    uint32_t l;
765
766
0
    if (ctx == NULL)
767
0
        return;
768
769
0
    copy_block(&blockhash, ctx->memory + ctx->lane_length - 1);
770
771
    /* XOR the last blocks */
772
0
    for (l = 1; l < ctx->lanes; ++l) {
773
0
        last_block_in_lane = l * ctx->lane_length + (ctx->lane_length - 1);
774
0
        xor_block(&blockhash, ctx->memory + last_block_in_lane);
775
0
    }
776
777
    /* Hash the result */
778
0
    store_block(blockhash_bytes, &blockhash);
779
0
    blake2b_long(ctx->md, ctx->mac, out, ctx->outlen, blockhash_bytes,
780
0
                 ARGON2_BLOCK_SIZE);
781
0
    OPENSSL_cleanse(blockhash.v, ARGON2_BLOCK_SIZE);
782
0
    OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
783
784
0
    if (ctx->type != ARGON2_D)
785
0
        OPENSSL_secure_clear_free(ctx->memory,
786
0
                                  ctx->memory_blocks * sizeof(BLOCK));
787
0
    else
788
0
        OPENSSL_clear_free(ctx->memory,
789
0
                           ctx->memory_blocks * sizeof(BLOCK));
790
0
}
791
792
static int blake2b_mac(EVP_MAC *mac, void *out, size_t outlen, const void *in,
793
                       size_t inlen, const void *key, size_t keylen)
794
0
{
795
0
    int ret = 0;
796
0
    size_t par_n = 0, out_written;
797
0
    EVP_MAC_CTX *ctx = NULL;
798
0
    OSSL_PARAM par[3];
799
800
0
    if ((ctx = EVP_MAC_CTX_new(mac)) == NULL)
801
0
        goto fail;
802
803
0
    par[par_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
804
0
                                                     (void *) key, keylen);
805
0
    par[par_n++] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &outlen);
806
0
    par[par_n++] = OSSL_PARAM_construct_end();
807
808
0
    ret = EVP_MAC_CTX_set_params(ctx, par) == 1
809
0
        && EVP_MAC_init(ctx, NULL, 0, NULL) == 1
810
0
        && EVP_MAC_update(ctx, in, inlen) == 1
811
0
        && EVP_MAC_final(ctx, out, (size_t *) &out_written, outlen) == 1;
812
813
0
fail:
814
0
    EVP_MAC_CTX_free(ctx);
815
0
    return ret;
816
0
}
817
818
static int blake2b_md(EVP_MD *md, void *out, size_t outlen, const void *in,
819
                      size_t inlen)
820
0
{
821
0
    int ret = 0;
822
0
    EVP_MD_CTX *ctx = NULL;
823
0
    OSSL_PARAM par[2];
824
825
0
    if ((ctx = EVP_MD_CTX_create()) == NULL)
826
0
        return 0;
827
828
0
    par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen);
829
0
    par[1] = OSSL_PARAM_construct_end();
830
831
0
    ret = EVP_DigestInit_ex2(ctx, md, par) == 1
832
0
        && EVP_DigestUpdate(ctx, in, inlen) == 1
833
0
        && EVP_DigestFinal_ex(ctx, out, NULL) == 1;
834
835
0
    EVP_MD_CTX_free(ctx);
836
0
    return ret;
837
0
}
838
839
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
840
                   const void *in, size_t inlen, const void *key, size_t keylen)
841
0
{
842
0
    if (out == NULL || outlen == 0)
843
0
        return 0;
844
845
0
    if (key == NULL || keylen == 0)
846
0
        return blake2b_md(md, out, outlen, in, inlen);
847
848
0
    return blake2b_mac(mac, out, outlen, in, inlen, key, keylen);
849
0
}
850
851
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
852
                        size_t outlen, const void *in, size_t inlen)
853
0
{
854
0
    int ret = 0;
855
0
    EVP_MD_CTX *ctx = NULL;
856
0
    uint32_t outlen_curr;
857
0
    uint8_t outbuf[BLAKE2B_OUTBYTES];
858
0
    uint8_t inbuf[BLAKE2B_OUTBYTES];
859
0
    uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
860
0
    OSSL_PARAM par[2];
861
0
    size_t outlen_md;
862
863
0
    if (out == NULL || outlen == 0)
864
0
        return 0;
865
866
    /* Ensure little-endian byte order */
867
0
    store32(outlen_bytes, (uint32_t)outlen);
868
869
0
    if ((ctx = EVP_MD_CTX_create()) == NULL)
870
0
        return 0;
871
872
0
    outlen_md = (outlen <= BLAKE2B_OUTBYTES) ? outlen : BLAKE2B_OUTBYTES;
873
0
    par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen_md);
874
0
    par[1] = OSSL_PARAM_construct_end();
875
876
0
    ret = EVP_DigestInit_ex2(ctx, md, par) == 1
877
0
        && EVP_DigestUpdate(ctx, outlen_bytes, sizeof(outlen_bytes)) == 1
878
0
        && EVP_DigestUpdate(ctx, in, inlen) == 1
879
0
        && EVP_DigestFinal_ex(ctx, (outlen > BLAKE2B_OUTBYTES) ? outbuf : out,
880
0
                              NULL) == 1;
881
882
0
    if (ret == 0)
883
0
        goto fail;
884
885
0
    if (outlen > BLAKE2B_OUTBYTES) {
886
0
        memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
887
0
        out += BLAKE2B_OUTBYTES / 2;
888
0
        outlen_curr = (uint32_t) outlen - BLAKE2B_OUTBYTES / 2;
889
890
0
        while (outlen_curr > BLAKE2B_OUTBYTES) {
891
0
            memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
892
0
            if (blake2b(md, mac, outbuf, BLAKE2B_OUTBYTES, inbuf,
893
0
                        BLAKE2B_OUTBYTES, NULL, 0) != 1)
894
0
                goto fail;
895
0
            memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
896
0
            out += BLAKE2B_OUTBYTES / 2;
897
0
            outlen_curr -= BLAKE2B_OUTBYTES / 2;
898
0
        }
899
900
0
        memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
901
0
        if (blake2b(md, mac, outbuf, outlen_curr, inbuf, BLAKE2B_OUTBYTES,
902
0
                    NULL, 0) != 1)
903
0
            goto fail;
904
0
        memcpy(out, outbuf, outlen_curr);
905
0
    }
906
0
    ret = 1;
907
908
0
fail:
909
0
    EVP_MD_CTX_free(ctx);
910
0
    return ret;
911
0
}
912
913
static void kdf_argon2_init(KDF_ARGON2 *c, ARGON2_TYPE type)
914
0
{
915
0
    OSSL_LIB_CTX *libctx;
916
917
0
    libctx = c->libctx;
918
0
    memset(c, 0, sizeof(*c));
919
920
0
    c->libctx = libctx;
921
0
    c->outlen = ARGON2_DEFAULT_OUTLEN;
922
0
    c->t_cost = ARGON2_DEFAULT_T_COST;
923
0
    c->m_cost = ARGON2_DEFAULT_M_COST;
924
0
    c->lanes = ARGON2_DEFAULT_LANES;
925
0
    c->threads = ARGON2_DEFAULT_THREADS;
926
0
    c->version = ARGON2_DEFAULT_VERSION;
927
0
    c->type = type;
928
0
}
929
930
static void *kdf_argon2d_new(void *provctx)
931
0
{
932
0
    KDF_ARGON2 *ctx;
933
934
0
    if (!ossl_prov_is_running())
935
0
        return NULL;
936
937
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
938
0
    if (ctx == NULL) {
939
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
940
0
        return NULL;
941
0
    }
942
943
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
944
945
0
    kdf_argon2_init(ctx, ARGON2_D);
946
0
    return ctx;
947
0
}
948
949
static void *kdf_argon2i_new(void *provctx)
950
0
{
951
0
    KDF_ARGON2 *ctx;
952
953
0
    if (!ossl_prov_is_running())
954
0
        return NULL;
955
956
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
957
0
    if (ctx == NULL) {
958
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
959
0
        return NULL;
960
0
    }
961
962
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
963
964
0
    kdf_argon2_init(ctx, ARGON2_I);
965
0
    return ctx;
966
0
}
967
968
static void *kdf_argon2id_new(void *provctx)
969
0
{
970
0
    KDF_ARGON2 *ctx;
971
972
0
    if (!ossl_prov_is_running())
973
0
        return NULL;
974
975
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
976
0
    if (ctx == NULL) {
977
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
978
0
        return NULL;
979
0
    }
980
981
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
982
983
0
    kdf_argon2_init(ctx, ARGON2_ID);
984
0
    return ctx;
985
0
}
986
987
static void kdf_argon2_free(void *vctx)
988
0
{
989
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *)vctx;
990
991
0
    if (ctx == NULL)
992
0
        return;
993
994
0
    if (ctx->pwd != NULL)
995
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
996
997
0
    if (ctx->salt != NULL)
998
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
999
1000
0
    if (ctx->secret != NULL)
1001
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1002
1003
0
    if (ctx->ad != NULL)
1004
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1005
1006
0
    EVP_MD_free(ctx->md);
1007
0
    EVP_MAC_free(ctx->mac);
1008
1009
0
    OPENSSL_free(ctx->propq);
1010
1011
0
    memset(ctx, 0, sizeof(*ctx));
1012
1013
0
    OPENSSL_free(ctx);
1014
0
}
1015
1016
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
1017
                             const OSSL_PARAM params[])
1018
0
{
1019
0
    KDF_ARGON2 *ctx;
1020
0
    uint32_t memory_blocks, segment_length;
1021
0
    OSSL_PARAM *size_param;
1022
1023
0
    ctx = (KDF_ARGON2 *)vctx;
1024
1025
0
    if (!ossl_prov_is_running()
1026
0
            || !argon2_set_ctx_params(vctx, params, &size_param))
1027
0
        return 0;
1028
1029
0
    if (ctx->mac == NULL)
1030
0
        ctx->mac = EVP_MAC_fetch(ctx->libctx, "blake2bmac", ctx->propq);
1031
0
    if (ctx->mac == NULL) {
1032
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MAC,
1033
0
                       "cannot fetch blake2bmac");
1034
0
        return 0;
1035
0
    }
1036
1037
0
    if (ctx->md == NULL)
1038
0
        ctx->md = EVP_MD_fetch(ctx->libctx, "blake2b512", ctx->propq);
1039
0
    if (ctx->md == NULL) {
1040
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST,
1041
0
                       "cannot fetch blake2b512");
1042
0
        return 0;
1043
0
    }
1044
1045
0
    if (ctx->salt == NULL || ctx->saltlen == 0) {
1046
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
1047
0
        return 0;
1048
0
    }
1049
1050
0
    if (outlen != ctx->outlen) {
1051
        /* User set a size that was too short so raise an error */
1052
0
        if (size_param != NULL) {
1053
0
            ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
1054
0
            return 0;
1055
0
        }
1056
0
        if (!kdf_argon2_ctx_set_out_length(ctx, (uint32_t) outlen))
1057
0
            return 0;
1058
0
    }
1059
1060
0
    switch (ctx->type) {
1061
0
    case ARGON2_D:
1062
0
    case ARGON2_I:
1063
0
    case ARGON2_ID:
1064
0
        break;
1065
0
    default:
1066
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE, "invalid Argon2 type");
1067
0
        return 0;
1068
0
    }
1069
1070
0
    if (ctx->threads > 1) {
1071
# ifdef ARGON2_NO_THREADS
1072
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1073
                       "requested %u threads, single-threaded mode supported only",
1074
                       ctx->threads);
1075
        return 0;
1076
# else
1077
0
        if (ctx->threads > ossl_get_avail_threads(ctx->libctx)) {
1078
0
            ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1079
0
                           "requested %u threads, available: %u",
1080
0
                           ctx->threads, ossl_get_avail_threads(ctx->libctx));
1081
0
            return 0;
1082
0
        }
1083
0
# endif
1084
0
        if (ctx->threads > ctx->lanes) {
1085
0
            ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1086
0
                           "requested more threads (%u) than lanes (%u)",
1087
0
                           ctx->threads, ctx->lanes);
1088
0
            return 0;
1089
0
        }
1090
0
    }
1091
1092
0
    if (ctx->m_cost < 8 * ctx->lanes) {
1093
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
1094
0
                       "m_cost must be greater or equal than 8 times the number of lanes");
1095
0
        return 0;
1096
0
    }
1097
1098
0
    memory_blocks = ctx->m_cost;
1099
0
    if (memory_blocks < 2 * ARGON2_SYNC_POINTS * ctx->lanes)
1100
0
        memory_blocks = 2 * ARGON2_SYNC_POINTS * ctx->lanes;
1101
1102
    /* Ensure that all segments have equal length */
1103
0
    segment_length = memory_blocks / (ctx->lanes * ARGON2_SYNC_POINTS);
1104
0
    memory_blocks = segment_length * (ctx->lanes * ARGON2_SYNC_POINTS);
1105
1106
0
    ctx->memory = NULL;
1107
0
    ctx->memory_blocks = memory_blocks;
1108
0
    ctx->segment_length = segment_length;
1109
0
    ctx->passes = ctx->t_cost;
1110
0
    ctx->lane_length = segment_length * ARGON2_SYNC_POINTS;
1111
1112
0
    if (initialize(ctx) != 1)
1113
0
        return 0;
1114
1115
0
    if (fill_memory_blocks(ctx) != 1)
1116
0
        return 0;
1117
1118
0
    finalize(ctx, out);
1119
1120
0
    return 1;
1121
0
}
1122
1123
static void kdf_argon2_reset(void *vctx)
1124
0
{
1125
0
    OSSL_LIB_CTX *libctx;
1126
0
    KDF_ARGON2 *ctx;
1127
0
    ARGON2_TYPE type;
1128
1129
0
    ctx = (KDF_ARGON2 *) vctx;
1130
0
    type = ctx->type;
1131
0
    libctx = ctx->libctx;
1132
1133
0
    EVP_MD_free(ctx->md);
1134
0
    EVP_MAC_free(ctx->mac);
1135
1136
0
    OPENSSL_free(ctx->propq);
1137
1138
0
    if (ctx->pwd != NULL)
1139
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1140
1141
0
    if (ctx->salt != NULL)
1142
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1143
1144
0
    if (ctx->secret != NULL)
1145
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1146
1147
0
    if (ctx->ad != NULL)
1148
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1149
1150
0
    memset(ctx, 0, sizeof(*ctx));
1151
0
    ctx->libctx = libctx;
1152
0
    kdf_argon2_init(ctx, type);
1153
0
}
1154
1155
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads)
1156
0
{
1157
0
    if (threads < ARGON2_MIN_THREADS) {
1158
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1159
0
                       "min threads: %u", ARGON2_MIN_THREADS);
1160
0
        return 0;
1161
0
    }
1162
1163
0
    if (threads > ARGON2_MAX_THREADS) {
1164
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1165
0
                       "max threads: %u", ARGON2_MAX_THREADS);
1166
0
        return 0;
1167
0
    }
1168
1169
0
    ctx->threads = threads;
1170
0
    return 1;
1171
0
}
1172
1173
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes)
1174
0
{
1175
0
    if (lanes > ARGON2_MAX_LANES) {
1176
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1177
0
                       "max lanes: %u", ARGON2_MAX_LANES);
1178
0
        return 0;
1179
0
    }
1180
1181
0
    if (lanes < ARGON2_MIN_LANES) {
1182
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1183
0
                       "min lanes: %u", ARGON2_MIN_LANES);
1184
0
        return 0;
1185
0
    }
1186
1187
0
    ctx->lanes = lanes;
1188
0
    return 1;
1189
0
}
1190
1191
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost)
1192
0
{
1193
    /* ARGON2_MAX_MEMORY == max m_cost value, so skip check  */
1194
1195
0
    if (t_cost < ARGON2_MIN_TIME) {
1196
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT,
1197
0
                       "min: %u", ARGON2_MIN_TIME);
1198
0
        return 0;
1199
0
    }
1200
1201
0
    ctx->t_cost = t_cost;
1202
0
    return 1;
1203
0
}
1204
1205
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost)
1206
0
{
1207
    /* ARGON2_MAX_MEMORY == max m_cost value, so skip check */
1208
1209
0
    if (m_cost < ARGON2_MIN_MEMORY) {
1210
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE, "min: %u",
1211
0
                       ARGON2_MIN_MEMORY);
1212
0
        return 0;
1213
0
    }
1214
1215
0
    ctx->m_cost = m_cost;
1216
0
    return 1;
1217
0
}
1218
1219
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen)
1220
0
{
1221
    /*
1222
     * ARGON2_MAX_OUT_LENGTH == max outlen value, so upper bounds checks
1223
     * are always satisfied; to suppress compiler if statement tautology
1224
     * warnings, these checks are skipped.
1225
     */
1226
1227
0
    if (outlen < ARGON2_MIN_OUT_LENGTH) {
1228
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH, "min: %u",
1229
0
                       ARGON2_MIN_OUT_LENGTH);
1230
0
        return 0;
1231
0
    }
1232
1233
0
    ctx->outlen = outlen;
1234
0
    return 1;
1235
0
}
1236
1237
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1238
0
{
1239
0
    size_t buflen;
1240
1241
0
    if (p->data == NULL)
1242
0
        return 0;
1243
1244
0
    if (ctx->secret != NULL) {
1245
0
        OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1246
0
        ctx->secret = NULL;
1247
0
        ctx->secretlen = 0U;
1248
0
    }
1249
1250
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->secret, 0, &buflen))
1251
0
        return 0;
1252
1253
0
    if (buflen > ARGON2_MAX_SECRET) {
1254
0
        OPENSSL_free(ctx->secret);
1255
0
        ctx->secret = NULL;
1256
0
        ctx->secretlen = 0U;
1257
0
        return 0;
1258
0
    }
1259
1260
0
    ctx->secretlen = (uint32_t) buflen;
1261
0
    return 1;
1262
0
}
1263
1264
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1265
0
{
1266
0
    size_t buflen;
1267
1268
0
    if (p->data == NULL)
1269
0
        return 0;
1270
1271
0
    if (ctx->pwd != NULL) {
1272
0
        OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1273
0
        ctx->pwd = NULL;
1274
0
        ctx->pwdlen = 0U;
1275
0
    }
1276
1277
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->pwd, 0, &buflen))
1278
0
        return 0;
1279
1280
0
    if (buflen > ARGON2_MAX_PWD_LENGTH) {
1281
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1282
0
                       ARGON2_MAX_PWD_LENGTH);
1283
0
        goto fail;
1284
0
    }
1285
1286
0
    ctx->pwdlen = (uint32_t) buflen;
1287
0
    return 1;
1288
1289
0
fail:
1290
0
    OPENSSL_free(ctx->pwd);
1291
0
    ctx->pwd = NULL;
1292
0
    ctx->pwdlen = 0U;
1293
0
    return 0;
1294
0
}
1295
1296
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1297
0
{
1298
0
    size_t buflen;
1299
1300
0
    if (p->data == NULL)
1301
0
        return 0;
1302
1303
0
    if (ctx->salt != NULL) {
1304
0
        OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1305
0
        ctx->salt = NULL;
1306
0
        ctx->saltlen = 0U;
1307
0
    }
1308
1309
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, &buflen))
1310
0
        return 0;
1311
1312
0
    if (buflen < ARGON2_MIN_SALT_LENGTH) {
1313
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "min: %u",
1314
0
                       ARGON2_MIN_SALT_LENGTH);
1315
0
        goto fail;
1316
0
    }
1317
1318
0
    if (buflen > ARGON2_MAX_SALT_LENGTH) {
1319
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1320
0
                       ARGON2_MAX_SALT_LENGTH);
1321
0
        goto fail;
1322
0
    }
1323
1324
0
    ctx->saltlen = (uint32_t) buflen;
1325
0
    return 1;
1326
1327
0
fail:
1328
0
    OPENSSL_free(ctx->salt);
1329
0
    ctx->salt = NULL;
1330
0
    ctx->saltlen = 0U;
1331
0
    return 0;
1332
0
}
1333
1334
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1335
0
{
1336
0
    size_t buflen;
1337
1338
0
    if (p->data == NULL)
1339
0
        return 0;
1340
1341
0
    if (ctx->ad != NULL) {
1342
0
        OPENSSL_clear_free(ctx->ad, ctx->adlen);
1343
0
        ctx->ad = NULL;
1344
0
        ctx->adlen = 0U;
1345
0
    }
1346
1347
0
    if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->ad, 0, &buflen))
1348
0
        return 0;
1349
1350
0
    if (buflen > ARGON2_MAX_AD_LENGTH) {
1351
0
        OPENSSL_free(ctx->ad);
1352
0
        ctx->ad = NULL;
1353
0
        ctx->adlen = 0U;
1354
0
        return 0;
1355
0
    }
1356
1357
0
    ctx->adlen = (uint32_t) buflen;
1358
0
    return 1;
1359
0
}
1360
1361
static void kdf_argon2_ctx_set_flag_early_clean(KDF_ARGON2 *ctx, uint32_t f)
1362
0
{
1363
0
    ctx->early_clean = !!(f);
1364
0
}
1365
1366
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version)
1367
0
{
1368
0
    switch (version) {
1369
0
    case ARGON2_VERSION_10:
1370
0
    case ARGON2_VERSION_13:
1371
0
        ctx->version = version;
1372
0
        return 1;
1373
0
    default:
1374
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE,
1375
0
                       "invalid Argon2 version");
1376
0
        return 0;
1377
0
    }
1378
0
}
1379
1380
static int set_property_query(KDF_ARGON2 *ctx, const char *propq)
1381
0
{
1382
0
    OPENSSL_free(ctx->propq);
1383
0
    ctx->propq = NULL;
1384
0
    if (propq != NULL) {
1385
0
        ctx->propq = OPENSSL_strdup(propq);
1386
0
        if (ctx->propq == NULL)
1387
0
            return 0;
1388
0
    }
1389
0
    EVP_MD_free(ctx->md);
1390
0
    ctx->md = NULL;
1391
0
    EVP_MAC_free(ctx->mac);
1392
0
    ctx->mac = NULL;
1393
0
    return 1;
1394
0
}
1395
1396
static int argon2_set_ctx_params(KDF_ARGON2 *ctx, const OSSL_PARAM params[],
1397
                                 OSSL_PARAM **size_param_ptr)
1398
0
{
1399
0
    struct argon2_set_ctx_params_st p;
1400
0
    uint32_t u32_value;
1401
1402
0
    if (ctx == NULL || !argon2_set_ctx_params_decoder(params, &p))
1403
0
        return 0;
1404
1405
0
    if (p.pw != NULL && !kdf_argon2_ctx_set_pwd(ctx, p.pw))
1406
0
        return 0;
1407
1408
0
    if (p.salt != NULL && !kdf_argon2_ctx_set_salt(ctx, p.salt))
1409
0
        return 0;
1410
1411
0
    if (p.secret != NULL && !kdf_argon2_ctx_set_secret(ctx, p.secret))
1412
0
        return 0;
1413
1414
0
    if (p.ad != NULL && !kdf_argon2_ctx_set_ad(ctx, p.ad))
1415
0
        return 0;
1416
1417
0
    if ((*size_param_ptr = p.size) != NULL) {
1418
0
        if (!OSSL_PARAM_get_uint32(p.size, &u32_value))
1419
0
            return 0;
1420
0
        if (!kdf_argon2_ctx_set_out_length(ctx, u32_value))
1421
0
            return 0;
1422
0
    }
1423
1424
0
    if (p.iter != NULL) {
1425
0
        if (!OSSL_PARAM_get_uint32(p.iter, &u32_value))
1426
0
            return 0;
1427
0
        if (!kdf_argon2_ctx_set_t_cost(ctx, u32_value))
1428
0
            return 0;
1429
0
    }
1430
1431
0
    if (p.thrds != NULL) {
1432
0
        if (!OSSL_PARAM_get_uint32(p.thrds, &u32_value))
1433
0
            return 0;
1434
0
        if (!kdf_argon2_ctx_set_threads(ctx, u32_value))
1435
0
            return 0;
1436
0
    }
1437
1438
0
    if (p.lanes != NULL) {
1439
0
        if (!OSSL_PARAM_get_uint32(p.lanes, &u32_value))
1440
0
            return 0;
1441
0
        if (!kdf_argon2_ctx_set_lanes(ctx, u32_value))
1442
0
            return 0;
1443
0
    }
1444
1445
0
    if (p.mem != NULL) {
1446
0
        if (!OSSL_PARAM_get_uint32(p.mem, &u32_value))
1447
0
            return 0;
1448
0
        if (!kdf_argon2_ctx_set_m_cost(ctx, u32_value))
1449
0
            return 0;
1450
0
    }
1451
1452
0
    if (p.eclean != NULL) {
1453
0
        if (!OSSL_PARAM_get_uint32(p.eclean, &u32_value))
1454
0
            return 0;
1455
0
        kdf_argon2_ctx_set_flag_early_clean(ctx, u32_value);
1456
0
    }
1457
1458
0
    if (p.vers != NULL) {
1459
0
        if (!OSSL_PARAM_get_uint32(p.vers, &u32_value))
1460
0
            return 0;
1461
0
        if (!kdf_argon2_ctx_set_version(ctx, u32_value))
1462
0
            return 0;
1463
0
    }
1464
1465
0
    if (p.propq != NULL) {
1466
0
        if (p.propq->data_type != OSSL_PARAM_UTF8_STRING
1467
0
            || !set_property_query(ctx, p.propq->data))
1468
0
            return 0;
1469
0
    }
1470
1471
0
    return 1;
1472
0
}
1473
1474
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
1475
0
{
1476
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *) vctx;
1477
0
    OSSL_PARAM *size_param;
1478
1479
0
    return argon2_set_ctx_params(ctx, params, &size_param);
1480
0
}
1481
1482
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
1483
                                                        ossl_unused void *p_ctx)
1484
0
{
1485
0
    return argon2_set_ctx_params_list;
1486
0
}
1487
1488
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[])
1489
0
{
1490
0
    struct argon2_get_ctx_params_st p;
1491
0
    KDF_ARGON2 *ctx = (KDF_ARGON2 *) vctx;
1492
1493
0
    if (ctx == NULL || !argon2_get_ctx_params_decoder(params, &p))
1494
0
        return 0;
1495
1496
0
    if (p.size != NULL && !OSSL_PARAM_set_size_t(p.size, SIZE_MAX))
1497
0
        return 0;
1498
1499
0
    return -2;
1500
0
}
1501
1502
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
1503
                                                        ossl_unused void *p_ctx)
1504
0
{
1505
0
    return argon2_get_ctx_params_list;
1506
0
}
1507
1508
const OSSL_DISPATCH ossl_kdf_argon2i_functions[] = {
1509
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2i_new },
1510
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1511
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1512
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1513
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1514
      (void(*)(void))kdf_argon2_settable_ctx_params },
1515
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1516
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1517
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1518
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1519
    OSSL_DISPATCH_END
1520
};
1521
1522
const OSSL_DISPATCH ossl_kdf_argon2d_functions[] = {
1523
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2d_new },
1524
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1525
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1526
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1527
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1528
      (void(*)(void))kdf_argon2_settable_ctx_params },
1529
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1530
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1531
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1532
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1533
    OSSL_DISPATCH_END
1534
};
1535
1536
const OSSL_DISPATCH ossl_kdf_argon2id_functions[] = {
1537
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2id_new },
1538
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1539
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1540
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1541
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1542
      (void(*)(void))kdf_argon2_settable_ctx_params },
1543
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1544
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1545
      (void(*)(void))kdf_argon2_gettable_ctx_params },
1546
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1547
    OSSL_DISPATCH_END
1548
};
1549
1550
#endif