Coverage Report

Created: 2025-10-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/providers/implementations/kdfs/scrypt.c
Line
Count
Source
1
/*
2
 * Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/common.h"
20
#include "internal/numbers.h"
21
#include "prov/implementations.h"
22
#include "prov/provider_ctx.h"
23
#include "prov/providercommon.h"
24
#include "prov/provider_util.h"
25
26
#ifndef OPENSSL_NO_SCRYPT
27
28
#include "providers/implementations/kdfs/scrypt.inc"
29
30
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
31
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
32
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
33
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
34
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
35
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
36
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
37
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
38
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
39
40
static int scrypt_alg(const char *pass, size_t passlen,
41
                      const unsigned char *salt, size_t saltlen,
42
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
43
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
44
                      OSSL_LIB_CTX *libctx, const char *propq);
45
46
typedef struct {
47
    OSSL_LIB_CTX *libctx;
48
    char *propq;
49
    unsigned char *pass;
50
    size_t pass_len;
51
    unsigned char *salt;
52
    size_t salt_len;
53
    uint64_t N;
54
    uint64_t r, p;
55
    uint64_t maxmem_bytes;
56
    EVP_MD *sha256;
57
} KDF_SCRYPT;
58
59
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
60
61
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
62
0
{
63
0
    KDF_SCRYPT *ctx;
64
65
0
    if (!ossl_prov_is_running())
66
0
        return NULL;
67
68
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
69
0
    if (ctx == NULL)
70
0
        return NULL;
71
0
    ctx->libctx = libctx;
72
0
    kdf_scrypt_init(ctx);
73
0
    return ctx;
74
0
}
75
76
static void *kdf_scrypt_new(void *provctx)
77
0
{
78
0
    return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
79
0
}
80
81
static void kdf_scrypt_free(void *vctx)
82
0
{
83
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
84
85
0
    if (ctx != NULL) {
86
0
        OPENSSL_free(ctx->propq);
87
0
        EVP_MD_free(ctx->sha256);
88
0
        kdf_scrypt_reset(ctx);
89
0
        OPENSSL_free(ctx);
90
0
    }
91
0
}
92
93
static void kdf_scrypt_reset(void *vctx)
94
0
{
95
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
96
97
0
    OPENSSL_free(ctx->salt);
98
0
    ctx->salt = NULL;
99
0
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
100
0
    ctx->pass = NULL;
101
0
    kdf_scrypt_init(ctx);
102
0
}
103
104
static void *kdf_scrypt_dup(void *vctx)
105
0
{
106
0
    const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
107
0
    KDF_SCRYPT *dest;
108
109
0
    dest = kdf_scrypt_new_inner(src->libctx);
110
0
    if (dest != NULL) {
111
0
        if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
112
0
            goto err;
113
0
        if (src->propq != NULL) {
114
0
            dest->propq = OPENSSL_strdup(src->propq);
115
0
            if (dest->propq == NULL)
116
0
                goto err;
117
0
        }
118
0
        if (!ossl_prov_memdup(src->salt, src->salt_len,
119
0
                              &dest->salt, &dest->salt_len)
120
0
                || !ossl_prov_memdup(src->pass, src->pass_len,
121
0
                                     &dest->pass , &dest->pass_len))
122
0
            goto err;
123
0
        dest->N = src->N;
124
0
        dest->r = src->r;
125
0
        dest->p = src->p;
126
0
        dest->maxmem_bytes = src->maxmem_bytes;
127
0
        dest->sha256 = src->sha256;
128
0
    }
129
0
    return dest;
130
131
0
 err:
132
0
    kdf_scrypt_free(dest);
133
0
    return NULL;
134
0
}
135
136
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
137
0
{
138
    /* Default values are the most conservative recommendation given in the
139
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
140
     * for this parameter choice (approx. 128 * r * N * p bytes).
141
     */
142
0
    ctx->N = 1 << 20;
143
0
    ctx->r = 8;
144
0
    ctx->p = 1;
145
0
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
146
0
}
147
148
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
149
                             const OSSL_PARAM *p)
150
0
{
151
0
    OPENSSL_clear_free(*buffer, *buflen);
152
0
    *buffer = NULL;
153
0
    *buflen = 0;
154
155
0
    if (p->data_size == 0) {
156
0
        if ((*buffer = OPENSSL_malloc(1)) == NULL)
157
0
            return 0;
158
0
    } else if (p->data != NULL) {
159
0
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
160
0
            return 0;
161
0
    }
162
0
    return 1;
163
0
}
164
165
static int set_digest(KDF_SCRYPT *ctx)
166
0
{
167
0
    EVP_MD_free(ctx->sha256);
168
0
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
169
0
    if (ctx->sha256 == NULL) {
170
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
171
0
        return 0;
172
0
    }
173
0
    return 1;
174
0
}
175
176
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
177
0
{
178
0
    OPENSSL_free(ctx->propq);
179
0
    ctx->propq = NULL;
180
0
    if (propq != NULL) {
181
0
        ctx->propq = OPENSSL_strdup(propq);
182
0
        if (ctx->propq == NULL)
183
0
            return 0;
184
0
    }
185
0
    return 1;
186
0
}
187
188
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
189
                             const OSSL_PARAM params[])
190
0
{
191
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
192
193
0
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
194
0
        return 0;
195
196
0
    if (ctx->pass == NULL) {
197
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
198
0
        return 0;
199
0
    }
200
201
0
    if (ctx->salt == NULL) {
202
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
203
0
        return 0;
204
0
    }
205
206
0
    if (ctx->sha256 == NULL && !set_digest(ctx))
207
0
        return 0;
208
209
0
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
210
0
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
211
0
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
212
0
                      ctx->libctx, ctx->propq);
213
0
}
214
215
static int is_power_of_two(uint64_t value)
216
0
{
217
0
    return (value != 0) && ((value & (value - 1)) == 0);
218
0
}
219
220
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
221
0
{
222
0
    struct scrypt_set_ctx_params_st p;
223
0
    KDF_SCRYPT *ctx = vctx;
224
0
    uint64_t u64_value;
225
226
0
    if (ctx == NULL || !scrypt_set_ctx_params_decoder(params, &p))
227
0
        return 0;
228
229
0
    if (p.pw != NULL && !scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p.pw))
230
0
        return 0;
231
232
0
    if (p.salt != NULL && !scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p.salt))
233
0
        return 0;
234
235
0
    if (p.n != NULL) {
236
0
        if (!OSSL_PARAM_get_uint64(p.n, &u64_value)
237
0
            || u64_value <= 1
238
0
            || !is_power_of_two(u64_value))
239
0
            return 0;
240
0
        ctx->N = u64_value;
241
0
    }
242
243
0
    if (p.r != NULL) {
244
0
        if (!OSSL_PARAM_get_uint64(p.r, &u64_value) || u64_value < 1)
245
0
            return 0;
246
0
        ctx->r = u64_value;
247
0
    }
248
249
0
    if (p.p != NULL) {
250
0
        if (!OSSL_PARAM_get_uint64(p.p, &u64_value) || u64_value < 1)
251
0
            return 0;
252
0
        ctx->p = u64_value;
253
0
    }
254
255
0
    if (p.maxmem != NULL) {
256
0
        if (!OSSL_PARAM_get_uint64(p.maxmem, &u64_value) || u64_value < 1)
257
0
            return 0;
258
0
        ctx->maxmem_bytes = u64_value;
259
0
    }
260
261
0
    if (p.propq != NULL) {
262
0
        if (p.propq->data_type != OSSL_PARAM_UTF8_STRING
263
0
            || !set_property_query(ctx, p.propq->data)
264
0
            || !set_digest(ctx))
265
0
            return 0;
266
0
    }
267
0
    return 1;
268
0
}
269
270
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
271
                                                        ossl_unused void *p_ctx)
272
0
{
273
0
    return scrypt_set_ctx_params_list;
274
0
}
275
276
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
277
0
{
278
0
    struct scrypt_get_ctx_params_st p;
279
0
    KDF_SCRYPT *ctx = vctx;
280
281
0
    if (ctx == NULL || !scrypt_get_ctx_params_decoder(params, &p))
282
0
        return 0;
283
284
0
    if (p.size != NULL && !OSSL_PARAM_set_size_t(p.size, SIZE_MAX))
285
0
            return 0;
286
0
    return 1;
287
0
}
288
289
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
290
                                                        ossl_unused void *p_ctx)
291
0
{
292
0
    return scrypt_get_ctx_params_list;
293
0
}
294
295
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
296
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
297
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
298
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
299
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
300
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
301
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
302
      (void(*)(void))kdf_scrypt_settable_ctx_params },
303
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
304
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
305
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
306
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
307
    OSSL_DISPATCH_END
308
};
309
310
0
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
311
static void salsa208_word_specification(uint32_t inout[16])
312
0
{
313
0
    int i;
314
0
    uint32_t x[16];
315
316
0
    memcpy(x, inout, sizeof(x));
317
0
    for (i = 8; i > 0; i -= 2) {
318
0
        x[4] ^= R(x[0] + x[12], 7);
319
0
        x[8] ^= R(x[4] + x[0], 9);
320
0
        x[12] ^= R(x[8] + x[4], 13);
321
0
        x[0] ^= R(x[12] + x[8], 18);
322
0
        x[9] ^= R(x[5] + x[1], 7);
323
0
        x[13] ^= R(x[9] + x[5], 9);
324
0
        x[1] ^= R(x[13] + x[9], 13);
325
0
        x[5] ^= R(x[1] + x[13], 18);
326
0
        x[14] ^= R(x[10] + x[6], 7);
327
0
        x[2] ^= R(x[14] + x[10], 9);
328
0
        x[6] ^= R(x[2] + x[14], 13);
329
0
        x[10] ^= R(x[6] + x[2], 18);
330
0
        x[3] ^= R(x[15] + x[11], 7);
331
0
        x[7] ^= R(x[3] + x[15], 9);
332
0
        x[11] ^= R(x[7] + x[3], 13);
333
0
        x[15] ^= R(x[11] + x[7], 18);
334
0
        x[1] ^= R(x[0] + x[3], 7);
335
0
        x[2] ^= R(x[1] + x[0], 9);
336
0
        x[3] ^= R(x[2] + x[1], 13);
337
0
        x[0] ^= R(x[3] + x[2], 18);
338
0
        x[6] ^= R(x[5] + x[4], 7);
339
0
        x[7] ^= R(x[6] + x[5], 9);
340
0
        x[4] ^= R(x[7] + x[6], 13);
341
0
        x[5] ^= R(x[4] + x[7], 18);
342
0
        x[11] ^= R(x[10] + x[9], 7);
343
0
        x[8] ^= R(x[11] + x[10], 9);
344
0
        x[9] ^= R(x[8] + x[11], 13);
345
0
        x[10] ^= R(x[9] + x[8], 18);
346
0
        x[12] ^= R(x[15] + x[14], 7);
347
0
        x[13] ^= R(x[12] + x[15], 9);
348
0
        x[14] ^= R(x[13] + x[12], 13);
349
0
        x[15] ^= R(x[14] + x[13], 18);
350
0
    }
351
0
    for (i = 0; i < 16; ++i)
352
0
        inout[i] += x[i];
353
0
    OPENSSL_cleanse(x, sizeof(x));
354
0
}
355
356
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
357
0
{
358
0
    uint64_t i, j;
359
0
    uint32_t X[16], *pB;
360
361
0
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
362
0
    pB = B;
363
0
    for (i = 0; i < r * 2; i++) {
364
0
        for (j = 0; j < 16; j++)
365
0
            X[j] ^= *pB++;
366
0
        salsa208_word_specification(X);
367
0
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
368
0
    }
369
0
    OPENSSL_cleanse(X, sizeof(X));
370
0
}
371
372
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
373
                        uint32_t *X, uint32_t *T, uint32_t *V)
374
0
{
375
0
    unsigned char *pB;
376
0
    uint32_t *pV;
377
0
    uint64_t i, k;
378
379
    /* Convert from little endian input */
380
0
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
381
0
        *pV = *pB++;
382
0
        *pV |= *pB++ << 8;
383
0
        *pV |= *pB++ << 16;
384
0
        *pV |= (uint32_t)*pB++ << 24;
385
0
    }
386
387
0
    for (i = 1; i < N; i++, pV += 32 * r)
388
0
        scryptBlockMix(pV, pV - 32 * r, r);
389
390
0
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
391
392
0
    for (i = 0; i < N; i++) {
393
0
        uint32_t j;
394
0
        j = X[16 * (2 * r - 1)] % N;
395
0
        pV = V + 32 * r * j;
396
0
        for (k = 0; k < 32 * r; k++)
397
0
            T[k] = X[k] ^ *pV++;
398
0
        scryptBlockMix(X, T, r);
399
0
    }
400
    /* Convert output to little endian */
401
0
    for (i = 0, pB = B; i < 32 * r; i++) {
402
0
        uint32_t xtmp = X[i];
403
0
        *pB++ = xtmp & 0xff;
404
0
        *pB++ = (xtmp >> 8) & 0xff;
405
0
        *pB++ = (xtmp >> 16) & 0xff;
406
0
        *pB++ = (xtmp >> 24) & 0xff;
407
0
    }
408
0
}
409
410
#ifndef SIZE_MAX
411
# define SIZE_MAX    ((size_t)-1)
412
#endif
413
414
/*
415
 * Maximum power of two that will fit in uint64_t: this should work on
416
 * most (all?) platforms.
417
 */
418
419
0
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
420
421
/*
422
 * Maximum value of p * r:
423
 * p <= ((2^32-1) * hLen) / MFLen =>
424
 * p <= ((2^32-1) * 32) / (128 * r) =>
425
 * p * r <= (2^30-1)
426
 */
427
428
0
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
429
430
static int scrypt_alg(const char *pass, size_t passlen,
431
                      const unsigned char *salt, size_t saltlen,
432
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
433
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
434
                      OSSL_LIB_CTX *libctx, const char *propq)
435
0
{
436
0
    int rv = 0;
437
0
    unsigned char *B;
438
0
    uint32_t *X, *V, *T;
439
0
    uint64_t i, Blen, Vlen;
440
441
    /* Sanity check parameters */
442
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
443
0
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
444
0
        return 0;
445
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
446
0
    if (p > SCRYPT_PR_MAX / r) {
447
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
448
0
        return 0;
449
0
    }
450
451
    /*
452
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
453
     * automatically satisfied since N <= UINT64_MAX.
454
     */
455
456
0
    if (16 * r <= LOG2_UINT64_MAX) {
457
0
        if (N >= (((uint64_t)1) << (16 * r))) {
458
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
459
0
            return 0;
460
0
        }
461
0
    }
462
463
    /* Memory checks: check total allocated buffer size fits in uint64_t */
464
465
    /*
466
     * B size in section 5 step 1.S
467
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
468
     * p * r < SCRYPT_PR_MAX
469
     */
470
0
    Blen = p * 128 * r;
471
    /*
472
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
473
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
474
     */
475
0
    if (Blen > INT_MAX) {
476
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
477
0
        return 0;
478
0
    }
479
480
    /*
481
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
482
     * This is combined size V, X and T (section 4)
483
     */
484
0
    i = UINT64_MAX / (32 * sizeof(uint32_t));
485
0
    if (N + 2 > i / r) {
486
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
487
0
        return 0;
488
0
    }
489
0
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
490
491
    /* check total allocated size fits in uint64_t */
492
0
    if (Blen > UINT64_MAX - Vlen) {
493
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
494
0
        return 0;
495
0
    }
496
497
    /* Check that the maximum memory doesn't exceed a size_t limits */
498
0
    if (maxmem > SIZE_MAX)
499
0
        maxmem = SIZE_MAX;
500
501
0
    if (Blen + Vlen > maxmem) {
502
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
503
0
        return 0;
504
0
    }
505
506
    /* If no key return to indicate parameters are OK */
507
0
    if (key == NULL)
508
0
        return 1;
509
510
0
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
511
0
    if (B == NULL)
512
0
        return 0;
513
0
    X = (uint32_t *)(B + Blen);
514
0
    T = X + 32 * r;
515
0
    V = T + 32 * r;
516
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, (int)passlen, salt, (int)saltlen, 1,
517
0
                                  sha256, (int)Blen, B, libctx, propq) == 0)
518
0
        goto err;
519
520
0
    for (i = 0; i < p; i++)
521
0
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
522
523
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, (int)passlen, B, (int)Blen, 1, sha256,
524
0
                                  (int)keylen, key, libctx, propq) == 0)
525
0
        goto err;
526
0
    rv = 1;
527
0
 err:
528
0
    if (rv == 0)
529
0
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
530
531
0
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
532
0
    return rv;
533
0
}
534
535
#endif