Coverage Report

Created: 2025-11-07 06:36

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
0
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
0
    return ossl_seconds2time(60 * 60 * 2);
103
0
}
104
105
int tls1_new(SSL *s)
106
0
{
107
0
    if (!ssl3_new(s))
108
0
        return 0;
109
0
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
0
    return 1;
113
0
}
114
115
void tls1_free(SSL *s)
116
0
{
117
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
0
    if (sc == NULL)
120
0
        return;
121
122
0
    OPENSSL_free(sc->ext.session_ticket);
123
0
    ssl3_free(s);
124
0
}
125
126
int tls1_clear(SSL *s)
127
0
{
128
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
0
    if (sc == NULL)
131
0
        return 0;
132
133
0
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
0
    if (s->method->version == TLS_ANY_VERSION)
137
0
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
0
    return 1;
142
0
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed
198
};
199
200
static const unsigned char ecformats_all[] = {
201
    TLSEXT_ECPOINTFORMAT_uncompressed,
202
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
203
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
204
};
205
206
/* Group list string of the built-in pseudo group DEFAULT */
207
#define DEFAULT_GROUP_NAME "DEFAULT"
208
#define TLS_DEFAULT_GROUP_LIST \
209
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
210
211
static const uint16_t suiteb_curves[] = {
212
    OSSL_TLS_GROUP_ID_secp256r1,
213
    OSSL_TLS_GROUP_ID_secp384r1,
214
};
215
216
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
217
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
218
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
219
220
struct provider_ctx_data_st {
221
    SSL_CTX *ctx;
222
    OSSL_PROVIDER *provider;
223
};
224
225
0
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226
static OSSL_CALLBACK add_provider_groups;
227
static int add_provider_groups(const OSSL_PARAM params[], void *data)
228
0
{
229
0
    struct provider_ctx_data_st *pgd = data;
230
0
    SSL_CTX *ctx = pgd->ctx;
231
0
    const OSSL_PARAM *p;
232
0
    TLS_GROUP_INFO *ginf = NULL;
233
0
    EVP_KEYMGMT *keymgmt;
234
0
    unsigned int gid;
235
0
    unsigned int is_kem = 0;
236
0
    int ret = 0;
237
238
0
    if (ctx->group_list_max_len == ctx->group_list_len) {
239
0
        TLS_GROUP_INFO *tmp = NULL;
240
241
0
        if (ctx->group_list_max_len == 0)
242
0
            tmp = OPENSSL_malloc_array(TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
243
0
                                       sizeof(TLS_GROUP_INFO));
244
0
        else
245
0
            tmp = OPENSSL_realloc_array(ctx->group_list,
246
0
                                        ctx->group_list_max_len
247
0
                                        + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
248
0
                                        sizeof(TLS_GROUP_INFO));
249
0
        if (tmp == NULL)
250
0
            return 0;
251
0
        ctx->group_list = tmp;
252
0
        memset(tmp + ctx->group_list_max_len,
253
0
               0,
254
0
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255
0
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
256
0
    }
257
258
0
    ginf = &ctx->group_list[ctx->group_list_len];
259
260
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
261
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
262
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
263
0
        goto err;
264
0
    }
265
0
    ginf->tlsname = OPENSSL_strdup(p->data);
266
0
    if (ginf->tlsname == NULL)
267
0
        goto err;
268
269
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
270
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
272
0
        goto err;
273
0
    }
274
0
    ginf->realname = OPENSSL_strdup(p->data);
275
0
    if (ginf->realname == NULL)
276
0
        goto err;
277
278
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
279
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
280
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281
0
        goto err;
282
0
    }
283
0
    ginf->group_id = (uint16_t)gid;
284
285
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
286
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
0
    ginf->algorithm = OPENSSL_strdup(p->data);
291
0
    if (ginf->algorithm == NULL)
292
0
        goto err;
293
294
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
295
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
296
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
297
0
        goto err;
298
0
    }
299
300
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
301
0
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
302
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
303
0
        goto err;
304
0
    }
305
0
    ginf->is_kem = 1 & is_kem;
306
307
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
308
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
313
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
314
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
315
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316
0
        goto err;
317
0
    }
318
319
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
320
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
321
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322
0
        goto err;
323
0
    }
324
325
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
326
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
327
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
328
0
        goto err;
329
0
    }
330
    /*
331
     * Now check that the algorithm is actually usable for our property query
332
     * string. Regardless of the result we still return success because we have
333
     * successfully processed this group, even though we may decide not to use
334
     * it.
335
     */
336
0
    ret = 1;
337
0
    ERR_set_mark();
338
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
339
0
    if (keymgmt != NULL) {
340
        /* We have successfully fetched the algorithm, we can use the group. */
341
0
        ctx->group_list_len++;
342
0
        ginf = NULL;
343
0
        EVP_KEYMGMT_free(keymgmt);
344
0
    }
345
0
    ERR_pop_to_mark();
346
0
 err:
347
0
    if (ginf != NULL) {
348
0
        OPENSSL_free(ginf->tlsname);
349
0
        OPENSSL_free(ginf->realname);
350
0
        OPENSSL_free(ginf->algorithm);
351
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
352
0
    }
353
0
    return ret;
354
0
}
355
356
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
357
0
{
358
0
    struct provider_ctx_data_st pgd;
359
360
0
    pgd.ctx = vctx;
361
0
    pgd.provider = provider;
362
0
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
363
0
                                          add_provider_groups, &pgd);
364
0
}
365
366
int ssl_load_groups(SSL_CTX *ctx)
367
0
{
368
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
369
0
        return 0;
370
371
0
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
372
0
}
373
374
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
375
0
{
376
0
    return (sinf->keytype != NULL
377
0
            ? sinf->keytype
378
0
            : (sinf->sig_name != NULL
379
0
               ? sinf->sig_name
380
0
               : sinf->sigalg_name));
381
0
}
382
383
0
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
384
static OSSL_CALLBACK add_provider_sigalgs;
385
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
386
0
{
387
0
    struct provider_ctx_data_st *pgd = data;
388
0
    SSL_CTX *ctx = pgd->ctx;
389
0
    OSSL_PROVIDER *provider = pgd->provider;
390
0
    const OSSL_PARAM *p;
391
0
    TLS_SIGALG_INFO *sinf = NULL;
392
0
    EVP_KEYMGMT *keymgmt;
393
0
    const char *keytype;
394
0
    unsigned int code_point = 0;
395
0
    int ret = 0;
396
397
0
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
398
0
        TLS_SIGALG_INFO *tmp = NULL;
399
400
0
        if (ctx->sigalg_list_max_len == 0)
401
0
            tmp = OPENSSL_malloc_array(TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
402
0
                                       sizeof(TLS_SIGALG_INFO));
403
0
        else
404
0
            tmp = OPENSSL_realloc_array(ctx->sigalg_list,
405
0
                                        ctx->sigalg_list_max_len
406
0
                                        + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
407
0
                                        sizeof(TLS_SIGALG_INFO));
408
0
        if (tmp == NULL)
409
0
            return 0;
410
0
        ctx->sigalg_list = tmp;
411
0
        memset(tmp + ctx->sigalg_list_max_len, 0,
412
0
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
413
0
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
414
0
    }
415
416
0
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
417
418
    /* First, mandatory parameters */
419
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
420
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
421
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
422
0
        goto err;
423
0
    }
424
0
    OPENSSL_free(sinf->sigalg_name);
425
0
    sinf->sigalg_name = OPENSSL_strdup(p->data);
426
0
    if (sinf->sigalg_name == NULL)
427
0
        goto err;
428
429
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
430
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
431
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432
0
        goto err;
433
0
    }
434
0
    OPENSSL_free(sinf->name);
435
0
    sinf->name = OPENSSL_strdup(p->data);
436
0
    if (sinf->name == NULL)
437
0
        goto err;
438
439
0
    p = OSSL_PARAM_locate_const(params,
440
0
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
441
0
    if (p == NULL
442
0
        || !OSSL_PARAM_get_uint(p, &code_point)
443
0
        || code_point > UINT16_MAX) {
444
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
445
0
        goto err;
446
0
    }
447
0
    sinf->code_point = (uint16_t)code_point;
448
449
0
    p = OSSL_PARAM_locate_const(params,
450
0
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
451
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
452
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
453
0
        goto err;
454
0
    }
455
456
    /* Now, optional parameters */
457
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
458
0
    if (p == NULL) {
459
0
        sinf->sigalg_oid = NULL;
460
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
461
0
        goto err;
462
0
    } else {
463
0
        OPENSSL_free(sinf->sigalg_oid);
464
0
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
465
0
        if (sinf->sigalg_oid == NULL)
466
0
            goto err;
467
0
    }
468
469
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
470
0
    if (p == NULL) {
471
0
        sinf->sig_name = NULL;
472
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
473
0
        goto err;
474
0
    } else {
475
0
        OPENSSL_free(sinf->sig_name);
476
0
        sinf->sig_name = OPENSSL_strdup(p->data);
477
0
        if (sinf->sig_name == NULL)
478
0
            goto err;
479
0
    }
480
481
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
482
0
    if (p == NULL) {
483
0
        sinf->sig_oid = NULL;
484
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
485
0
        goto err;
486
0
    } else {
487
0
        OPENSSL_free(sinf->sig_oid);
488
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
489
0
        if (sinf->sig_oid == NULL)
490
0
            goto err;
491
0
    }
492
493
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
494
0
    if (p == NULL) {
495
0
        sinf->hash_name = NULL;
496
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
497
0
        goto err;
498
0
    } else {
499
0
        OPENSSL_free(sinf->hash_name);
500
0
        sinf->hash_name = OPENSSL_strdup(p->data);
501
0
        if (sinf->hash_name == NULL)
502
0
            goto err;
503
0
    }
504
505
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
506
0
    if (p == NULL) {
507
0
        sinf->hash_oid = NULL;
508
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
509
0
        goto err;
510
0
    } else {
511
0
        OPENSSL_free(sinf->hash_oid);
512
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
513
0
        if (sinf->hash_oid == NULL)
514
0
            goto err;
515
0
    }
516
517
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
518
0
    if (p == NULL) {
519
0
        sinf->keytype = NULL;
520
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
521
0
        goto err;
522
0
    } else {
523
0
        OPENSSL_free(sinf->keytype);
524
0
        sinf->keytype = OPENSSL_strdup(p->data);
525
0
        if (sinf->keytype == NULL)
526
0
            goto err;
527
0
    }
528
529
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
530
0
    if (p == NULL) {
531
0
        sinf->keytype_oid = NULL;
532
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
533
0
        goto err;
534
0
    } else {
535
0
        OPENSSL_free(sinf->keytype_oid);
536
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
537
0
        if (sinf->keytype_oid == NULL)
538
0
            goto err;
539
0
    }
540
541
    /* Optional, not documented prior to 3.5 */
542
0
    sinf->mindtls = sinf->maxdtls = -1;
543
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
544
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
545
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
546
0
        goto err;
547
0
    }
548
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
549
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
550
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
551
0
        goto err;
552
0
    }
553
    /* DTLS version numbers grow downward */
554
0
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
555
0
        ((sinf->maxdtls > sinf->mindtls))) {
556
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
557
0
        goto err;
558
0
    }
559
    /* No provider sigalgs are supported in DTLS, reset after checking. */
560
0
    sinf->mindtls = sinf->maxdtls = -1;
561
562
    /* The remaining parameters below are mandatory again */
563
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
564
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
565
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566
0
        goto err;
567
0
    }
568
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
569
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
570
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
571
0
        goto err;
572
0
    }
573
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
574
0
        ((sinf->maxtls < sinf->mintls))) {
575
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
576
0
        goto err;
577
0
    }
578
0
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
579
0
        ((sinf->mintls > TLS1_3_VERSION)))
580
0
        sinf->mintls = sinf->maxtls = -1;
581
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
582
0
        ((sinf->maxtls < TLS1_3_VERSION)))
583
0
        sinf->mintls = sinf->maxtls = -1;
584
585
    /* Ignore unusable sigalgs */
586
0
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
587
0
        ret = 1;
588
0
        goto err;
589
0
    }
590
591
    /*
592
     * Now check that the algorithm is actually usable for our property query
593
     * string. Regardless of the result we still return success because we have
594
     * successfully processed this signature, even though we may decide not to
595
     * use it.
596
     */
597
0
    ret = 1;
598
0
    ERR_set_mark();
599
0
    keytype = inferred_keytype(sinf);
600
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
601
0
    if (keymgmt != NULL) {
602
        /*
603
         * We have successfully fetched the algorithm - however if the provider
604
         * doesn't match this one then we ignore it.
605
         *
606
         * Note: We're cheating a little here. Technically if the same algorithm
607
         * is available from more than one provider then it is undefined which
608
         * implementation you will get back. Theoretically this could be
609
         * different every time...we assume here that you'll always get the
610
         * same one back if you repeat the exact same fetch. Is this a reasonable
611
         * assumption to make (in which case perhaps we should document this
612
         * behaviour)?
613
         */
614
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
615
            /*
616
             * We have a match - so we could use this signature;
617
             * Check proper object registration first, though.
618
             * Don't care about return value as this may have been
619
             * done within providers or previous calls to
620
             * add_provider_sigalgs.
621
             */
622
0
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
623
            /* sanity check: Without successful registration don't use alg */
624
0
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
625
0
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
626
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
627
0
                    goto err;
628
0
            }
629
0
            if (sinf->sig_name != NULL)
630
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
631
0
            if (sinf->keytype != NULL)
632
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
633
0
            if (sinf->hash_name != NULL)
634
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
635
0
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
636
0
                          (sinf->hash_name != NULL
637
0
                           ? OBJ_txt2nid(sinf->hash_name)
638
0
                           : NID_undef),
639
0
                          OBJ_txt2nid(keytype));
640
0
            ctx->sigalg_list_len++;
641
0
            sinf = NULL;
642
0
        }
643
0
        EVP_KEYMGMT_free(keymgmt);
644
0
    }
645
0
    ERR_pop_to_mark();
646
0
 err:
647
0
    if (sinf != NULL) {
648
0
        OPENSSL_free(sinf->name);
649
0
        sinf->name = NULL;
650
0
        OPENSSL_free(sinf->sigalg_name);
651
0
        sinf->sigalg_name = NULL;
652
0
        OPENSSL_free(sinf->sigalg_oid);
653
0
        sinf->sigalg_oid = NULL;
654
0
        OPENSSL_free(sinf->sig_name);
655
0
        sinf->sig_name = NULL;
656
0
        OPENSSL_free(sinf->sig_oid);
657
0
        sinf->sig_oid = NULL;
658
0
        OPENSSL_free(sinf->hash_name);
659
0
        sinf->hash_name = NULL;
660
0
        OPENSSL_free(sinf->hash_oid);
661
0
        sinf->hash_oid = NULL;
662
0
        OPENSSL_free(sinf->keytype);
663
0
        sinf->keytype = NULL;
664
0
        OPENSSL_free(sinf->keytype_oid);
665
0
        sinf->keytype_oid = NULL;
666
0
    }
667
0
    return ret;
668
0
}
669
670
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
671
0
{
672
0
    struct provider_ctx_data_st pgd;
673
674
0
    pgd.ctx = vctx;
675
0
    pgd.provider = provider;
676
0
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
677
0
                                   add_provider_sigalgs, &pgd);
678
    /*
679
     * Always OK, even if provider doesn't support the capability:
680
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
681
     */
682
0
    return 1;
683
0
}
684
685
int ssl_load_sigalgs(SSL_CTX *ctx)
686
0
{
687
0
    size_t i;
688
0
    SSL_CERT_LOOKUP lu;
689
690
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
691
0
        return 0;
692
693
    /* now populate ctx->ssl_cert_info */
694
0
    if (ctx->sigalg_list_len > 0) {
695
0
        OPENSSL_free(ctx->ssl_cert_info);
696
0
        ctx->ssl_cert_info = OPENSSL_calloc(ctx->sigalg_list_len, sizeof(lu));
697
0
        if (ctx->ssl_cert_info == NULL)
698
0
            return 0;
699
0
        for(i = 0; i < ctx->sigalg_list_len; i++) {
700
0
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
701
0
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
702
0
            ctx->ssl_cert_info[i].amask = SSL_aANY;
703
0
        }
704
0
    }
705
706
    /*
707
     * For now, leave it at this: legacy sigalgs stay in their own
708
     * data structures until "legacy cleanup" occurs.
709
     */
710
711
0
    return 1;
712
0
}
713
714
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
715
0
{
716
0
    size_t i;
717
718
0
    for (i = 0; i < ctx->group_list_len; i++) {
719
0
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
720
0
                || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
721
0
            return ctx->group_list[i].group_id;
722
0
    }
723
724
0
    return 0;
725
0
}
726
727
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
728
0
{
729
0
    size_t i;
730
731
0
    for (i = 0; i < ctx->group_list_len; i++) {
732
0
        if (ctx->group_list[i].group_id == group_id)
733
0
            return &ctx->group_list[i];
734
0
    }
735
736
0
    return NULL;
737
0
}
738
739
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
740
0
{
741
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
742
743
0
    if (tls_group_info == NULL)
744
0
        return NULL;
745
746
0
    return tls_group_info->tlsname;
747
0
}
748
749
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
750
0
{
751
0
    size_t i;
752
753
0
    if (group_id == 0)
754
0
        return NID_undef;
755
756
    /*
757
     * Return well known Group NIDs - for backwards compatibility. This won't
758
     * work for groups we don't know about.
759
     */
760
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
761
0
    {
762
0
        if (nid_to_group[i].group_id == group_id)
763
0
            return nid_to_group[i].nid;
764
0
    }
765
0
    if (!include_unknown)
766
0
        return NID_undef;
767
0
    return TLSEXT_nid_unknown | (int)group_id;
768
0
}
769
770
uint16_t tls1_nid2group_id(int nid)
771
0
{
772
0
    size_t i;
773
774
    /*
775
     * Return well known Group ids - for backwards compatibility. This won't
776
     * work for groups we don't know about.
777
     */
778
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
779
0
    {
780
0
        if (nid_to_group[i].nid == nid)
781
0
            return nid_to_group[i].group_id;
782
0
    }
783
784
0
    return 0;
785
0
}
786
787
/*
788
 * Set *pgroups to the supported groups list and *pgroupslen to
789
 * the number of groups supported.
790
 */
791
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
792
                               size_t *pgroupslen)
793
0
{
794
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
795
796
    /* For Suite B mode only include P-256, P-384 */
797
0
    switch (tls1_suiteb(s)) {
798
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
799
0
        *pgroups = suiteb_curves;
800
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
801
0
        break;
802
803
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
804
0
        *pgroups = suiteb_curves;
805
0
        *pgroupslen = 1;
806
0
        break;
807
808
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
809
0
        *pgroups = suiteb_curves + 1;
810
0
        *pgroupslen = 1;
811
0
        break;
812
813
0
    default:
814
0
        if (s->ext.supportedgroups == NULL) {
815
0
            *pgroups = sctx->ext.supportedgroups;
816
0
            *pgroupslen = sctx->ext.supportedgroups_len;
817
0
        } else {
818
0
            *pgroups = s->ext.supportedgroups;
819
0
            *pgroupslen = s->ext.supportedgroups_len;
820
0
        }
821
0
        break;
822
0
    }
823
0
}
824
825
/*
826
 * Some comments for the function below:
827
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
828
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
829
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
830
 * groups in this case.
831
 *
832
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
833
 * but the groupID to 0.
834
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
835
 * the "list of requested key share groups" is used, or the "list of supported groups" in
836
 * combination with setting add_only_one = 1 is applied.
837
 */
838
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
839
                                        size_t *pgroupslen)
840
0
{
841
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
842
843
0
    if (s->ext.supportedgroups == NULL) {
844
0
        *pgroups = sctx->ext.supportedgroups;
845
0
        *pgroupslen = sctx->ext.supportedgroups_len;
846
0
    } else {
847
0
        *pgroups = s->ext.keyshares;
848
0
        *pgroupslen = s->ext.keyshares_len;
849
0
    }
850
0
}
851
852
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
853
                           size_t *ptupleslen)
854
0
{
855
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
856
857
0
    if (s->ext.supportedgroups == NULL) {
858
0
        *ptuples = sctx->ext.tuples;
859
0
        *ptupleslen = sctx->ext.tuples_len;
860
0
    } else {
861
0
        *ptuples = s->ext.tuples;
862
0
        *ptupleslen = s->ext.tuples_len;
863
0
    }
864
0
}
865
866
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
867
                    int minversion, int maxversion,
868
                    int isec, int *okfortls13)
869
0
{
870
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
871
0
                                                       group_id);
872
0
    int ret;
873
0
    int group_minversion, group_maxversion;
874
875
0
    if (okfortls13 != NULL)
876
0
        *okfortls13 = 0;
877
878
0
    if (ginfo == NULL)
879
0
        return 0;
880
881
0
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
882
0
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
883
884
0
    if (group_minversion < 0 || group_maxversion < 0)
885
0
        return 0;
886
0
    if (group_maxversion == 0)
887
0
        ret = 1;
888
0
    else
889
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
890
0
    if (group_minversion > 0)
891
0
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
892
893
0
    if (!SSL_CONNECTION_IS_DTLS(s)) {
894
0
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
895
0
            *okfortls13 = (group_maxversion == 0)
896
0
                          || (group_maxversion >= TLS1_3_VERSION);
897
0
    }
898
0
    ret &= !isec
899
0
           || strcmp(ginfo->algorithm, "EC") == 0
900
0
           || strcmp(ginfo->algorithm, "X25519") == 0
901
0
           || strcmp(ginfo->algorithm, "X448") == 0;
902
903
0
    return ret;
904
0
}
905
906
/* See if group is allowed by security callback */
907
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
908
0
{
909
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
910
0
                                                       group);
911
0
    unsigned char gtmp[2];
912
913
0
    if (ginfo == NULL)
914
0
        return 0;
915
916
0
    gtmp[0] = group >> 8;
917
0
    gtmp[1] = group & 0xff;
918
0
    return ssl_security(s, op, ginfo->secbits,
919
0
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
920
0
}
921
922
/* Return 1 if "id" is in "list" */
923
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
924
0
{
925
0
    size_t i;
926
0
    for (i = 0; i < listlen; i++)
927
0
        if (list[i] == id)
928
0
            return 1;
929
0
    return 0;
930
0
}
931
932
typedef struct {
933
    TLS_GROUP_INFO *grp;
934
    size_t ix;
935
} TLS_GROUP_IX;
936
937
DEFINE_STACK_OF(TLS_GROUP_IX)
938
939
static void free_wrapper(TLS_GROUP_IX *a)
940
0
{
941
0
    OPENSSL_free(a);
942
0
}
943
944
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
945
                            const TLS_GROUP_IX *const *b)
946
0
{
947
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
948
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
949
0
    int ixcmpab = (*a)->ix < (*b)->ix;
950
0
    int ixcmpba = (*b)->ix < (*a)->ix;
951
952
    /* Ascending by group id */
953
0
    if (idcmpab != idcmpba)
954
0
        return (idcmpba - idcmpab);
955
    /* Ascending by original appearance index */
956
0
    return ixcmpba - ixcmpab;
957
0
}
958
959
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
960
                                 TLS_GROUP_INFO *grps, size_t num, long all,
961
                                 STACK_OF(OPENSSL_CSTRING) *out)
962
0
{
963
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
964
0
    TLS_GROUP_IX *gix;
965
0
    uint16_t id = 0;
966
0
    int ret = 0;
967
0
    int ix;
968
969
0
    if (grps == NULL || out == NULL || num > INT_MAX)
970
0
        return 0;
971
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
972
0
        return 0;
973
0
    for (ix = 0; ix < (int)num; ++ix, ++grps) {
974
0
        if (grps->mintls > 0 && max_proto_version > 0
975
0
             && grps->mintls > max_proto_version)
976
0
            continue;
977
0
        if (grps->maxtls > 0 && min_proto_version > 0
978
0
            && grps->maxtls < min_proto_version)
979
0
            continue;
980
981
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
982
0
            goto end;
983
0
        gix->grp = grps;
984
0
        gix->ix = ix;
985
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
986
0
            OPENSSL_free(gix);
987
0
            goto end;
988
0
        }
989
0
    }
990
991
0
    sk_TLS_GROUP_IX_sort(collect);
992
0
    num = sk_TLS_GROUP_IX_num(collect);
993
0
    for (ix = 0; ix < (int)num; ++ix) {
994
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
995
0
        if (!all && gix->grp->group_id == id)
996
0
            continue;
997
0
        id = gix->grp->group_id;
998
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
999
0
            goto end;
1000
0
    }
1001
0
    ret = 1;
1002
1003
0
 end:
1004
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
1005
0
    return ret;
1006
0
}
1007
1008
/*-
1009
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1010
 * if there is no match.
1011
 * For nmatch == -1, return number of matches
1012
 * For nmatch == -2, return the id of the group to use for
1013
 * a tmp key, or 0 if there is no match.
1014
 */
1015
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1016
0
{
1017
0
    const uint16_t *pref, *supp;
1018
0
    size_t num_pref, num_supp, i;
1019
0
    int k;
1020
0
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1021
1022
    /* Can't do anything on client side */
1023
0
    if (s->server == 0)
1024
0
        return 0;
1025
0
    if (nmatch == -2) {
1026
0
        if (tls1_suiteb(s)) {
1027
            /*
1028
             * For Suite B ciphersuite determines curve: we already know
1029
             * these are acceptable due to previous checks.
1030
             */
1031
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1032
1033
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1034
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1035
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1036
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1037
            /* Should never happen */
1038
0
            return 0;
1039
0
        }
1040
        /* If not Suite B just return first preference shared curve */
1041
0
        nmatch = 0;
1042
0
    }
1043
    /*
1044
     * If server preference set, our groups are the preference order
1045
     * otherwise peer decides.
1046
     */
1047
0
    if (s->options & SSL_OP_SERVER_PREFERENCE) {
1048
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1049
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1050
0
    } else {
1051
0
        tls1_get_peer_groups(s, &pref, &num_pref);
1052
0
        tls1_get_supported_groups(s, &supp, &num_supp);
1053
0
    }
1054
1055
0
    for (k = 0, i = 0; i < num_pref; i++) {
1056
0
        uint16_t id = pref[i];
1057
0
        const TLS_GROUP_INFO *inf;
1058
0
        int minversion, maxversion;
1059
1060
0
        if (!tls1_in_list(id, supp, num_supp)
1061
0
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1062
0
            continue;
1063
0
        inf = tls1_group_id_lookup(ctx, id);
1064
0
        if (!ossl_assert(inf != NULL))
1065
0
            return 0;
1066
1067
0
        minversion = SSL_CONNECTION_IS_DTLS(s)
1068
0
                         ? inf->mindtls : inf->mintls;
1069
0
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1070
0
                         ? inf->maxdtls : inf->maxtls;
1071
0
        if (maxversion == -1)
1072
0
            continue;
1073
0
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1074
0
            || (maxversion != 0
1075
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1076
0
            continue;
1077
1078
0
        if (nmatch == k)
1079
0
            return id;
1080
0
         k++;
1081
0
    }
1082
0
    if (nmatch == -1)
1083
0
        return k;
1084
    /* Out of range (nmatch > k). */
1085
0
    return 0;
1086
0
}
1087
1088
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1089
                    uint16_t **ksext, size_t *ksextlen,
1090
                    size_t **tplext, size_t *tplextlen,
1091
                    int *groups, size_t ngroups)
1092
0
{
1093
0
    uint16_t *glist = NULL, *kslist = NULL;
1094
0
    size_t *tpllist = NULL;
1095
0
    size_t i;
1096
    /*
1097
     * Bitmap of groups included to detect duplicates: two variables are added
1098
     * to detect duplicates as some values are more than 32.
1099
     */
1100
0
    unsigned long *dup_list = NULL;
1101
0
    unsigned long dup_list_egrp = 0;
1102
0
    unsigned long dup_list_dhgrp = 0;
1103
1104
0
    if (ngroups == 0) {
1105
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1106
0
        return 0;
1107
0
    }
1108
0
    if ((glist = OPENSSL_malloc_array(ngroups, sizeof(*glist))) == NULL)
1109
0
        goto err;
1110
0
    if ((kslist = OPENSSL_malloc_array(1, sizeof(*kslist))) == NULL)
1111
0
        goto err;
1112
0
    if ((tpllist = OPENSSL_malloc_array(1, sizeof(*tpllist))) == NULL)
1113
0
        goto err;
1114
0
    for (i = 0; i < ngroups; i++) {
1115
0
        unsigned long idmask;
1116
0
        uint16_t id;
1117
0
        id = tls1_nid2group_id(groups[i]);
1118
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1119
0
            goto err;
1120
0
        idmask = 1L << (id & 0x00FF);
1121
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1122
0
        if (!id || ((*dup_list) & idmask))
1123
0
            goto err;
1124
0
        *dup_list |= idmask;
1125
0
        glist[i] = id;
1126
0
    }
1127
0
    OPENSSL_free(*grpext);
1128
0
    OPENSSL_free(*ksext);
1129
0
    OPENSSL_free(*tplext);
1130
0
    *grpext = glist;
1131
0
    *grpextlen = ngroups;
1132
0
    kslist[0] = glist[0];
1133
0
    *ksext = kslist;
1134
0
    *ksextlen = 1;
1135
0
    tpllist[0] = ngroups;
1136
0
    *tplext = tpllist;
1137
0
    *tplextlen = 1;
1138
0
    return 1;
1139
0
err:
1140
0
    OPENSSL_free(glist);
1141
0
    OPENSSL_free(kslist);
1142
0
    OPENSSL_free(tpllist);
1143
0
    return 0;
1144
0
}
1145
1146
/*
1147
 * Definition of DEFAULT[_XYZ] pseudo group names.
1148
 * A pseudo group name is actually a full list of groups, including prefixes
1149
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1150
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1151
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1152
 */
1153
typedef struct {
1154
    const char *list_name; /* The name of this pseudo group */
1155
    const char *group_string; /* The group string of this pseudo group */
1156
} default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1157
1158
/* Built-in pseudo group-names must start with a (D or d) */
1159
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1160
1161
/* The list of all built-in pseudo-group-name structures */
1162
static const default_group_string_st default_group_strings[] = {
1163
    {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1164
    {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1165
};
1166
1167
/*
1168
 * Some GOST names are not resolved by tls1_group_name2id,
1169
 * hence we'll check for those manually
1170
 */
1171
typedef struct {
1172
    const char *group_name;
1173
    uint16_t groupID;
1174
} name2id_st;
1175
static const name2id_st name2id_arr[] = {
1176
    {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1177
    {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1178
    {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1179
    {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1180
    {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1181
    {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1182
    {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1183
};
1184
1185
/*
1186
 * Group list management:
1187
 * We establish three lists along with their related size counters:
1188
 * 1) List of (unique) groups
1189
 * 2) List of number of groups per group-priority-tuple
1190
 * 3) List of (unique) key share groups
1191
 */
1192
0
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1193
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1194
1195
/*
1196
 * Preparation of the prefix used to indicate the desire to send a key share,
1197
 * the characters used as separators between groups or tuples of groups, the
1198
 * character to indicate that an unknown group should be ignored, and the
1199
 * character to indicate that a group should be deleted from a list
1200
 */
1201
#ifndef TUPLE_DELIMITER_CHARACTER
1202
/* The prefix characters to indicate group tuple boundaries */
1203
0
# define TUPLE_DELIMITER_CHARACTER '/'
1204
#endif
1205
#ifndef GROUP_DELIMITER_CHARACTER
1206
/* The prefix characters to indicate group tuple boundaries */
1207
0
# define GROUP_DELIMITER_CHARACTER ':'
1208
#endif
1209
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1210
/* The prefix character to ignore unknown groups */
1211
0
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1212
#endif
1213
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1214
/* The prefix character to trigger a key share addition */
1215
0
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1216
#endif
1217
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1218
/* The prefix character to trigger a key share removal */
1219
0
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1220
#endif
1221
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1222
                                GROUP_DELIMITER_CHARACTER,
1223
                                IGNORE_UNKNOWN_GROUP_CHARACTER,
1224
                                KEY_SHARE_INDICATOR_CHARACTER,
1225
                                REMOVE_GROUP_INDICATOR_CHARACTER,
1226
                                '\0'};
1227
1228
/*
1229
 * High-level description of how group strings are analyzed:
1230
 * A first call back function (tuple_cb) is used to process group tuples, and a
1231
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1232
 * Those callback functions are (indirectly) called by CONF_parse_list with
1233
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1234
 * is used to keep track of the parsing results between the various calls
1235
 */
1236
1237
typedef struct {
1238
    SSL_CTX *ctx;
1239
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1240
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1241
    size_t gidcnt; /* Number of groups */
1242
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1243
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1244
    size_t tplcnt; /* Number of tuples */
1245
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1246
    size_t ksidmax; /* The memory allocation chunk size */
1247
    size_t ksidcnt; /* Number of key shares */
1248
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1249
    /* Variable to keep state between execution of callback or helper functions */
1250
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1251
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1252
} gid_cb_st;
1253
1254
/* Forward declaration of tuple callback function */
1255
static int tuple_cb(const char *tuple, int len, void *arg);
1256
1257
/*
1258
 * Extract and process the individual groups (and their prefixes if present)
1259
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1260
 * and must be appended by a \0 if used as \0-terminated string
1261
 */
1262
static int gid_cb(const char *elem, int len, void *arg)
1263
0
{
1264
0
    gid_cb_st *garg = arg;
1265
0
    size_t i, j, k;
1266
0
    uint16_t gid = 0;
1267
0
    int found_group = 0;
1268
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1269
0
    int retval = 1; /* We assume success */
1270
0
    char *current_prefix;
1271
0
    int ignore_unknown = 0;
1272
0
    int add_keyshare = 0;
1273
0
    int remove_group = 0;
1274
0
    size_t restored_prefix_index = 0;
1275
0
    char *restored_default_group_string;
1276
0
    int continue_while_loop = 1;
1277
1278
    /* Sanity checks */
1279
0
    if (garg == NULL || elem == NULL || len <= 0) {
1280
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1281
0
        return 0;
1282
0
    }
1283
1284
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1285
0
    while (continue_while_loop && len > 0
1286
0
           && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1287
0
               || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1288
1289
0
        switch (*current_prefix) {
1290
0
        case TUPLE_DELIMITER_CHARACTER:
1291
            /* tuple delimiter not allowed here -> syntax error */
1292
0
            return -1;
1293
0
            break;
1294
0
        case GROUP_DELIMITER_CHARACTER:
1295
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1296
0
            break;
1297
0
        case KEY_SHARE_INDICATOR_CHARACTER:
1298
0
            if (add_keyshare)
1299
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1300
0
            add_keyshare = 1;
1301
0
            ++elem;
1302
0
            --len;
1303
0
            break;
1304
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1305
0
            if (remove_group)
1306
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1307
0
            remove_group = 1;
1308
0
            ++elem;
1309
0
            --len;
1310
0
            break;
1311
0
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1312
0
            if (ignore_unknown)
1313
0
                return -1; /* Only single ? allowed -> syntax error */
1314
0
            ignore_unknown = 1;
1315
0
            ++elem;
1316
0
            --len;
1317
0
            break;
1318
0
        default:
1319
            /*
1320
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1321
             * list of groups) should be added
1322
             */
1323
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1324
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1325
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1326
                    /*
1327
                     * We're asked to insert an entire list of groups from a
1328
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1329
                     * recursively calling this function (indirectly via
1330
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1331
                     * group string like a tuple which is appended to the current tuple
1332
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1333
                     * controls append tuple vs start new tuple.
1334
                     */
1335
1336
0
                    if (ignore_unknown || remove_group)
1337
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1338
1339
                    /*
1340
                     * First, we restore any keyshare prefix in a new zero-terminated string
1341
                     * (if not already present)
1342
                     */
1343
0
                    restored_default_group_string =
1344
0
                        OPENSSL_malloc(1 /* max prefix length */ +
1345
0
                                       strlen(default_group_strings[i].group_string) +
1346
0
                                       1 /* \0 */);
1347
0
                    if (restored_default_group_string == NULL)
1348
0
                        return 0;
1349
0
                    if (add_keyshare
1350
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1351
0
                        && default_group_strings[i].group_string[0]
1352
0
                        != KEY_SHARE_INDICATOR_CHARACTER)
1353
0
                        restored_default_group_string[restored_prefix_index++] =
1354
0
                            KEY_SHARE_INDICATOR_CHARACTER;
1355
1356
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1357
0
                           default_group_strings[i].group_string,
1358
0
                           strlen(default_group_strings[i].group_string));
1359
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) +
1360
0
                                                  restored_prefix_index] = '\0';
1361
                    /* We execute the recursive call */
1362
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1363
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1364
0
                    garg->tuple_mode = 0;
1365
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1366
0
                    retval = CONF_parse_list(restored_default_group_string,
1367
0
                                             TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1368
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1369
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1370
                    /* We don't need the \0-terminated string anymore */
1371
0
                    OPENSSL_free(restored_default_group_string);
1372
1373
0
                    return retval;
1374
0
                }
1375
0
            }
1376
            /*
1377
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1378
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1379
             * name can continue as usual (= the while loop checking prefixes can end)
1380
             */
1381
0
            continue_while_loop = 0;
1382
0
            break;
1383
0
        }
1384
0
    }
1385
1386
0
    if (len == 0)
1387
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1388
1389
0
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1390
0
        ignore_unknown = 1;
1391
1392
    /* Memory management in case more groups are present compared to initial allocation */
1393
0
    if (garg->gidcnt == garg->gidmax) {
1394
0
        uint16_t *tmp =
1395
0
            OPENSSL_realloc_array(garg->gid_arr,
1396
0
                                  garg->gidmax + GROUPLIST_INCREMENT,
1397
0
                                  sizeof(*garg->gid_arr));
1398
1399
0
        if (tmp == NULL)
1400
0
            return 0;
1401
1402
0
        garg->gidmax += GROUPLIST_INCREMENT;
1403
0
        garg->gid_arr = tmp;
1404
0
    }
1405
    /* Memory management for key share groups */
1406
0
    if (garg->ksidcnt == garg->ksidmax) {
1407
0
        uint16_t *tmp =
1408
0
            OPENSSL_realloc_array(garg->ksid_arr,
1409
0
                                  garg->ksidmax + GROUPLIST_INCREMENT,
1410
0
                                  sizeof(*garg->ksid_arr));
1411
1412
0
        if (tmp == NULL)
1413
0
            return 0;
1414
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1415
0
        garg->ksid_arr = tmp;
1416
0
    }
1417
1418
0
    if (len > (int)(sizeof(etmp) - 1))
1419
0
        return -1; /* group name to long  -> syntax error */
1420
1421
    /*
1422
     * Prepare addition or removal of a single group by converting
1423
     * a group name into its groupID equivalent
1424
     */
1425
1426
    /* Create a \0-terminated string and get the gid for this group if possible */
1427
0
    memcpy(etmp, elem, len);
1428
0
    etmp[len] = 0;
1429
1430
    /* Get the groupID */
1431
0
    gid = tls1_group_name2id(garg->ctx, etmp);
1432
    /*
1433
     * Handle the case where no valid groupID was returned
1434
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1435
     */
1436
0
    if (gid == 0) {
1437
        /* Is it one of the GOST groups ? */
1438
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1439
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1440
0
                gid = name2id_arr[i].groupID;
1441
0
                break;
1442
0
            }
1443
0
        }
1444
0
        if (gid == 0) { /* still not found */
1445
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1446
0
            retval = ignore_unknown;
1447
0
            goto done;
1448
0
        }
1449
0
    }
1450
1451
    /* Make sure that at least one provider is supporting this groupID */
1452
0
    found_group = 0;
1453
0
    for (j = 0; j < garg->ctx->group_list_len; j++)
1454
0
        if (garg->ctx->group_list[j].group_id == gid) {
1455
0
            found_group = 1;
1456
0
            break;
1457
0
        }
1458
1459
    /*
1460
     * No provider supports this group - ignore if
1461
     * ignore_unknown; trigger error otherwise
1462
     */
1463
0
    if (found_group == 0) {
1464
0
        retval = ignore_unknown;
1465
0
        goto done;
1466
0
    }
1467
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1468
0
    if (remove_group) {
1469
        /* Is the current group specified anywhere in the entire list so far? */
1470
0
        found_group = 0;
1471
0
        for (i = 0; i < garg->gidcnt; i++)
1472
0
            if (garg->gid_arr[i] == gid) {
1473
0
                found_group = 1;
1474
0
                break;
1475
0
            }
1476
        /* The group to remove is at position i in the list of (zero indexed) groups */
1477
0
        if (found_group) {
1478
            /* We remove that group from its position (which is at i)... */
1479
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1480
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1481
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1482
1483
            /*
1484
             * We also must update the number of groups either in a previous tuple (which we
1485
             * must identify and check whether it becomes empty due to the deletion) or in
1486
             * the current tuple, pending where the deleted group resides
1487
             */
1488
0
            k = 0;
1489
0
            for (j = 0; j < garg->tplcnt; j++) {
1490
0
                k += garg->tuplcnt_arr[j];
1491
                /* Remark: i is zero-indexed, k is one-indexed */
1492
0
                if (k > i) { /* remove from one of the previous tuples */
1493
0
                    garg->tuplcnt_arr[j]--;
1494
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1495
0
                }
1496
0
            }
1497
0
            if (k <= i) /* remove from current tuple */
1498
0
                garg->tuplcnt_arr[j]--;
1499
1500
            /* We also remove the group from the list of keyshares (if present) */
1501
0
            found_group = 0;
1502
0
            for (i = 0; i < garg->ksidcnt; i++)
1503
0
                if (garg->ksid_arr[i] == gid) {
1504
0
                    found_group = 1;
1505
0
                    break;
1506
0
                }
1507
0
            if (found_group) {
1508
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1509
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1510
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1511
                /* ... and update the book keeping */
1512
0
                garg->ksidcnt--;
1513
0
            }
1514
0
        }
1515
0
    } else { /* Processing addition of a single new group */
1516
1517
        /* Check for duplicates */
1518
0
        for (i = 0; i < garg->gidcnt; i++)
1519
0
            if (garg->gid_arr[i] == gid) {
1520
                /* Duplicate group anywhere in the list of groups - ignore */
1521
0
                goto done;
1522
0
            }
1523
1524
        /* Add the current group to the 'flat' list of groups */
1525
0
        garg->gid_arr[garg->gidcnt++] = gid;
1526
        /* and update the book keeping for the number of groups in current tuple */
1527
0
        garg->tuplcnt_arr[garg->tplcnt]++;
1528
1529
        /* We memorize if needed that we want to add a key share for the current group */
1530
0
        if (add_keyshare)
1531
0
            garg->ksid_arr[garg->ksidcnt++] = gid;
1532
0
    }
1533
1534
0
done:
1535
0
    return retval;
1536
0
}
1537
1538
/* Extract and process a tuple of groups */
1539
static int tuple_cb(const char *tuple, int len, void *arg)
1540
0
{
1541
0
    gid_cb_st *garg = arg;
1542
0
    int retval = 1; /* We assume success */
1543
0
    char *restored_tuple_string;
1544
1545
    /* Sanity checks */
1546
0
    if (garg == NULL || tuple == NULL || len <= 0) {
1547
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1548
0
        return 0;
1549
0
    }
1550
1551
    /* Memory management for tuples */
1552
0
    if (garg->tplcnt == garg->tplmax) {
1553
0
        size_t *tmp =
1554
0
            OPENSSL_realloc_array(garg->tuplcnt_arr,
1555
0
                                  garg->tplmax + GROUPLIST_INCREMENT,
1556
0
                                  sizeof(*garg->tuplcnt_arr));
1557
1558
0
        if (tmp == NULL)
1559
0
            return 0;
1560
0
        garg->tplmax += GROUPLIST_INCREMENT;
1561
0
        garg->tuplcnt_arr = tmp;
1562
0
    }
1563
1564
    /* Convert to \0-terminated string */
1565
0
    restored_tuple_string = OPENSSL_malloc(len + 1 /* \0 */);
1566
0
    if (restored_tuple_string == NULL)
1567
0
        return 0;
1568
0
    memcpy(restored_tuple_string, tuple, len);
1569
0
    restored_tuple_string[len] = '\0';
1570
1571
    /* Analyze group list of this tuple */
1572
0
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1573
1574
    /* We don't need the \o-terminated string anymore */
1575
0
    OPENSSL_free(restored_tuple_string);
1576
1577
0
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1578
0
        if (garg->tuple_mode) {
1579
            /* We 'close' the tuple */
1580
0
            garg->tplcnt++;
1581
0
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1582
0
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1583
0
        }
1584
0
    }
1585
1586
0
    return retval;
1587
0
}
1588
1589
/*
1590
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1591
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1592
 * (1) add a key share for this group, (2) ignore the group if unknown to the current
1593
 * context, (3) delete a previous occurrence of the group in the current tuple.
1594
 *
1595
 * The list parsing is done in two hierarchical steps: The top-level step extracts the
1596
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1597
 * parse and process the groups inside a tuple
1598
 */
1599
int tls1_set_groups_list(SSL_CTX *ctx,
1600
                         uint16_t **grpext, size_t *grpextlen,
1601
                         uint16_t **ksext, size_t *ksextlen,
1602
                         size_t **tplext, size_t *tplextlen,
1603
                         const char *str)
1604
0
{
1605
0
    size_t i = 0, j;
1606
0
    int ret = 0, parse_ret = 0;
1607
0
    gid_cb_st gcb;
1608
1609
    /* Sanity check */
1610
0
    if (ctx == NULL) {
1611
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1612
0
        return 0;
1613
0
    }
1614
1615
0
    memset(&gcb, 0, sizeof(gcb));
1616
0
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1617
0
    gcb.ignore_unknown_default = 0;
1618
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1619
0
    gcb.tplmax = GROUPLIST_INCREMENT;
1620
0
    gcb.ksidmax = GROUPLIST_INCREMENT;
1621
0
    gcb.ctx = ctx;
1622
1623
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1624
0
    gcb.gid_arr = OPENSSL_malloc_array(gcb.gidmax, sizeof(*gcb.gid_arr));
1625
0
    if (gcb.gid_arr == NULL)
1626
0
        goto end;
1627
0
    gcb.tuplcnt_arr = OPENSSL_malloc_array(gcb.tplmax, sizeof(*gcb.tuplcnt_arr));
1628
0
    if (gcb.tuplcnt_arr == NULL)
1629
0
        goto end;
1630
0
    gcb.tuplcnt_arr[0] = 0;
1631
0
    gcb.ksid_arr = OPENSSL_malloc_array(gcb.ksidmax, sizeof(*gcb.ksid_arr));
1632
0
    if (gcb.ksid_arr == NULL)
1633
0
        goto end;
1634
1635
0
    while (str[0] != '\0' && isspace((unsigned char)*str))
1636
0
        str++;
1637
0
    if (str[0] == '\0')
1638
0
        goto empty_list;
1639
1640
    /*
1641
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1642
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1643
     */
1644
0
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1645
1646
0
    if (parse_ret == 0)
1647
0
        goto end;
1648
0
    if (parse_ret == -1) {
1649
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1650
0
                       "Syntax error in '%s'", str);
1651
0
        goto end;
1652
0
    }
1653
1654
    /*
1655
     * We check whether a tuple was completely emptied by using "-" prefix
1656
     * excessively, in which case we remove the tuple
1657
     */
1658
0
    for (i = j = 0; j < gcb.tplcnt; j++) {
1659
0
        if (gcb.tuplcnt_arr[j] == 0)
1660
0
            continue;
1661
        /* If there's a gap, move to first unfilled slot */
1662
0
        if (j == i)
1663
0
            ++i;
1664
0
        else
1665
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1666
0
    }
1667
0
    gcb.tplcnt = i;
1668
1669
0
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1670
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1671
0
                       "To many keyshares requested in '%s' (max = %d)",
1672
0
                       str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1673
0
        goto end;
1674
0
    }
1675
1676
    /*
1677
     * For backward compatibility we let the rest of the code know that a key share
1678
     * for the first valid group should be added if no "*" prefix was used anywhere
1679
     */
1680
0
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1681
        /*
1682
         * No key share group prefix character was used, hence we indicate that a single
1683
         * key share should be sent and flag that it should come from the supported_groups list
1684
         */
1685
0
        gcb.ksidcnt = 1;
1686
0
        gcb.ksid_arr[0] = 0;
1687
0
    }
1688
1689
0
 empty_list:
1690
    /*
1691
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1692
     * to NULL only does a syntax check, hence we're done here and report success
1693
     */
1694
0
    if (grpext == NULL || ksext == NULL || tplext == NULL ||
1695
0
        grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1696
0
        ret = 1;
1697
0
        goto end;
1698
0
    }
1699
1700
    /*
1701
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1702
     * can just go ahead and set the results (after disposing the existing)
1703
     */
1704
0
    OPENSSL_free(*grpext);
1705
0
    *grpext = gcb.gid_arr;
1706
0
    *grpextlen = gcb.gidcnt;
1707
0
    OPENSSL_free(*ksext);
1708
0
    *ksext = gcb.ksid_arr;
1709
0
    *ksextlen = gcb.ksidcnt;
1710
0
    OPENSSL_free(*tplext);
1711
0
    *tplext = gcb.tuplcnt_arr;
1712
0
    *tplextlen = gcb.tplcnt;
1713
1714
0
    return 1;
1715
1716
0
 end:
1717
0
    OPENSSL_free(gcb.gid_arr);
1718
0
    OPENSSL_free(gcb.tuplcnt_arr);
1719
0
    OPENSSL_free(gcb.ksid_arr);
1720
0
    return ret;
1721
0
}
1722
1723
/* Check a group id matches preferences */
1724
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1725
                        int check_own_groups)
1726
0
    {
1727
0
    const uint16_t *groups;
1728
0
    size_t groups_len;
1729
1730
0
    if (group_id == 0)
1731
0
        return 0;
1732
1733
    /* Check for Suite B compliance */
1734
0
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1735
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1736
1737
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1738
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1739
0
                return 0;
1740
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1741
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1742
0
                return 0;
1743
0
        } else {
1744
            /* Should never happen */
1745
0
            return 0;
1746
0
        }
1747
0
    }
1748
1749
0
    if (check_own_groups) {
1750
        /* Check group is one of our preferences */
1751
0
        tls1_get_supported_groups(s, &groups, &groups_len);
1752
0
        if (!tls1_in_list(group_id, groups, groups_len))
1753
0
            return 0;
1754
0
    }
1755
1756
0
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1757
0
        return 0;
1758
1759
    /* For clients, nothing more to check */
1760
0
    if (!s->server)
1761
0
        return 1;
1762
1763
    /* Check group is one of peers preferences */
1764
0
    tls1_get_peer_groups(s, &groups, &groups_len);
1765
1766
    /*
1767
     * RFC 4492 does not require the supported elliptic curves extension
1768
     * so if it is not sent we can just choose any curve.
1769
     * It is invalid to send an empty list in the supported groups
1770
     * extension, so groups_len == 0 always means no extension.
1771
     */
1772
0
    if (groups_len == 0)
1773
0
            return 1;
1774
0
    return tls1_in_list(group_id, groups, groups_len);
1775
0
}
1776
1777
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1778
                         size_t *num_formats)
1779
0
{
1780
    /*
1781
     * If we have a custom point format list use it otherwise use default
1782
     */
1783
0
    if (s->ext.ecpointformats) {
1784
0
        *pformats = s->ext.ecpointformats;
1785
0
        *num_formats = s->ext.ecpointformats_len;
1786
0
    } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
1787
0
        *pformats = ecformats_all;
1788
        /* For Suite B we don't support char2 fields */
1789
0
        if (tls1_suiteb(s))
1790
0
            *num_formats = sizeof(ecformats_all) - 1;
1791
0
        else
1792
0
            *num_formats = sizeof(ecformats_all);
1793
0
    } else {
1794
0
        *pformats = ecformats_default;
1795
0
        *num_formats = sizeof(ecformats_default);
1796
0
    }
1797
0
}
1798
1799
/* Check a key is compatible with compression extension */
1800
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1801
0
{
1802
0
    unsigned char comp_id;
1803
0
    size_t i;
1804
0
    int point_conv;
1805
1806
    /* If not an EC key nothing to check */
1807
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1808
0
        return 1;
1809
1810
1811
    /* Get required compression id */
1812
0
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1813
0
    if (point_conv == 0)
1814
0
        return 0;
1815
0
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1816
0
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1817
0
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1818
        /*
1819
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1820
         * this check.
1821
         */
1822
0
        return 1;
1823
0
    } else {
1824
0
        int field_type = EVP_PKEY_get_field_type(pkey);
1825
1826
0
        if (field_type == NID_X9_62_prime_field)
1827
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1828
0
        else if (field_type == NID_X9_62_characteristic_two_field)
1829
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1830
0
        else
1831
0
            return 0;
1832
0
    }
1833
    /*
1834
     * If point formats extension present check it, otherwise everything is
1835
     * supported (see RFC4492).
1836
     */
1837
0
    if (s->ext.peer_ecpointformats == NULL)
1838
0
        return 1;
1839
1840
0
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1841
0
        if (s->ext.peer_ecpointformats[i] == comp_id)
1842
0
            return 1;
1843
0
    }
1844
0
    return 0;
1845
0
}
1846
1847
/* Return group id of a key */
1848
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1849
0
{
1850
0
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1851
1852
0
    if (curve_nid == NID_undef)
1853
0
        return 0;
1854
0
    return tls1_nid2group_id(curve_nid);
1855
0
}
1856
1857
/*
1858
 * Check cert parameters compatible with extensions: currently just checks EC
1859
 * certificates have compatible curves and compression.
1860
 */
1861
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1862
0
{
1863
0
    uint16_t group_id;
1864
0
    EVP_PKEY *pkey;
1865
0
    pkey = X509_get0_pubkey(x);
1866
0
    if (pkey == NULL)
1867
0
        return 0;
1868
    /* If not EC nothing to do */
1869
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1870
0
        return 1;
1871
    /* Check compression */
1872
0
    if (!tls1_check_pkey_comp(s, pkey))
1873
0
        return 0;
1874
0
    group_id = tls1_get_group_id(pkey);
1875
    /*
1876
     * For a server we allow the certificate to not be in our list of supported
1877
     * groups.
1878
     */
1879
0
    if (!tls1_check_group_id(s, group_id, !s->server))
1880
0
        return 0;
1881
    /*
1882
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1883
     * SHA384+P-384.
1884
     */
1885
0
    if (check_ee_md && tls1_suiteb(s)) {
1886
0
        int check_md;
1887
0
        size_t i;
1888
1889
        /* Check to see we have necessary signing algorithm */
1890
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1891
0
            check_md = NID_ecdsa_with_SHA256;
1892
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1893
0
            check_md = NID_ecdsa_with_SHA384;
1894
0
        else
1895
0
            return 0;           /* Should never happen */
1896
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1897
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1898
0
                return 1;
1899
0
        }
1900
0
        return 0;
1901
0
    }
1902
0
    return 1;
1903
0
}
1904
1905
/*
1906
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1907
 * @s: SSL connection
1908
 * @cid: Cipher ID we're considering using
1909
 *
1910
 * Checks that the kECDHE cipher suite we're considering using
1911
 * is compatible with the client extensions.
1912
 *
1913
 * Returns 0 when the cipher can't be used or 1 when it can.
1914
 */
1915
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1916
0
{
1917
    /* If not Suite B just need a shared group */
1918
0
    if (!tls1_suiteb(s))
1919
0
        return tls1_shared_group(s, 0) != 0;
1920
    /*
1921
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1922
     * curves permitted.
1923
     */
1924
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1925
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1926
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1927
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1928
1929
0
    return 0;
1930
0
}
1931
1932
/* Default sigalg schemes */
1933
static const uint16_t tls12_sigalgs[] = {
1934
    TLSEXT_SIGALG_mldsa65,
1935
    TLSEXT_SIGALG_mldsa87,
1936
    TLSEXT_SIGALG_mldsa44,
1937
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1938
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1939
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1940
    TLSEXT_SIGALG_ed25519,
1941
    TLSEXT_SIGALG_ed448,
1942
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1943
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1944
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1945
1946
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1947
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1948
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1949
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1950
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1951
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1952
1953
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1954
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1955
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1956
1957
    TLSEXT_SIGALG_ecdsa_sha224,
1958
    TLSEXT_SIGALG_ecdsa_sha1,
1959
1960
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1961
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1962
1963
    TLSEXT_SIGALG_dsa_sha224,
1964
    TLSEXT_SIGALG_dsa_sha1,
1965
1966
    TLSEXT_SIGALG_dsa_sha256,
1967
    TLSEXT_SIGALG_dsa_sha384,
1968
    TLSEXT_SIGALG_dsa_sha512,
1969
1970
#ifndef OPENSSL_NO_GOST
1971
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1972
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1973
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1974
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1975
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1976
#endif
1977
};
1978
1979
1980
static const uint16_t suiteb_sigalgs[] = {
1981
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1982
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1983
};
1984
1985
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1986
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1987
     "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1988
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1989
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1990
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1991
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1992
     "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1993
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1994
     NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1995
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1996
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1997
     "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1998
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1999
     NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
2000
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2001
2002
    {TLSEXT_SIGALG_ed25519_name,
2003
     NULL, TLSEXT_SIGALG_ed25519,
2004
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
2005
     NID_undef, NID_undef, 1, 0,
2006
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2007
    {TLSEXT_SIGALG_ed448_name,
2008
     NULL, TLSEXT_SIGALG_ed448,
2009
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
2010
     NID_undef, NID_undef, 1, 0,
2011
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2012
2013
    {TLSEXT_SIGALG_ecdsa_sha224_name,
2014
     "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2015
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2016
     NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2017
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2018
    {TLSEXT_SIGALG_ecdsa_sha1_name,
2019
     "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2020
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2021
     NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2022
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2023
2024
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2025
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2026
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2027
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2028
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2029
     TLS1_3_VERSION, 0, -1, -1},
2030
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2031
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2032
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2033
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2034
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2035
     TLS1_3_VERSION, 0, -1, -1},
2036
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2037
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2038
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2039
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2040
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2041
     TLS1_3_VERSION, 0, -1, -1},
2042
2043
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2044
     "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2045
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2046
     NID_undef, NID_undef, 1, 0,
2047
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2048
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2049
     "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2050
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2051
     NID_undef, NID_undef, 1, 0,
2052
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2053
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2054
     "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2055
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2056
     NID_undef, NID_undef, 1, 0,
2057
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2058
2059
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2060
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2061
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2062
     NID_undef, NID_undef, 1, 0,
2063
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2064
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2065
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2066
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2067
     NID_undef, NID_undef, 1, 0,
2068
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2069
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2070
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2071
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2072
     NID_undef, NID_undef, 1, 0,
2073
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2074
2075
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2076
     "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2077
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2078
     NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2079
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2080
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2081
     "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2082
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2083
     NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2084
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2085
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2086
     "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2087
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2088
     NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2089
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2090
2091
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2092
     "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2093
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2094
     NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2095
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2096
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2097
     "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2098
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2099
     NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2100
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2101
2102
    {TLSEXT_SIGALG_dsa_sha256_name,
2103
     "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2104
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105
     NID_dsa_with_SHA256, NID_undef, 1, 0,
2106
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2107
    {TLSEXT_SIGALG_dsa_sha384_name,
2108
     "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2109
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2110
     NID_undef, NID_undef, 1, 0,
2111
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2112
    {TLSEXT_SIGALG_dsa_sha512_name,
2113
     "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2114
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2115
     NID_undef, NID_undef, 1, 0,
2116
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2117
    {TLSEXT_SIGALG_dsa_sha224_name,
2118
     "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2119
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2120
     NID_undef, NID_undef, 1, 0,
2121
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2122
    {TLSEXT_SIGALG_dsa_sha1_name,
2123
     "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2124
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2125
     NID_dsaWithSHA1, NID_undef, 1, 0,
2126
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2127
2128
#ifndef OPENSSL_NO_GOST
2129
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2130
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2131
     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2132
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2133
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2134
     NID_undef, NID_undef, 1, 0,
2135
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2136
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2137
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2138
     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2139
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2140
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2141
     NID_undef, NID_undef, 1, 0,
2142
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2143
2144
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2145
     NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2146
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2147
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2148
     NID_undef, NID_undef, 1, 0,
2149
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2150
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2151
     NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2152
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2153
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2154
     NID_undef, NID_undef, 1, 0,
2155
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2156
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2157
     NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2158
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2159
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2160
     NID_undef, NID_undef, 1, 0,
2161
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2162
#endif
2163
};
2164
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2165
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2166
    "rsa_pkcs1_md5_sha1", NULL, 0,
2167
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2168
     EVP_PKEY_RSA, SSL_PKEY_RSA,
2169
     NID_undef, NID_undef, 1, 0,
2170
     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2171
};
2172
2173
/*
2174
 * Default signature algorithm values used if signature algorithms not present.
2175
 * From RFC5246. Note: order must match certificate index order.
2176
 */
2177
static const uint16_t tls_default_sigalg[] = {
2178
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2179
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2180
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2181
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2182
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2183
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2184
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2185
    0, /* SSL_PKEY_ED25519 */
2186
    0, /* SSL_PKEY_ED448 */
2187
};
2188
2189
int ssl_setup_sigalgs(SSL_CTX *ctx)
2190
0
{
2191
0
    size_t i, cache_idx, sigalgs_len, enabled;
2192
0
    const SIGALG_LOOKUP *lu;
2193
0
    SIGALG_LOOKUP *cache = NULL;
2194
0
    uint16_t *tls12_sigalgs_list = NULL;
2195
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2196
0
    int istls;
2197
0
    int ret = 0;
2198
2199
0
    if (ctx == NULL)
2200
0
        goto err;
2201
2202
0
    istls = !SSL_CTX_IS_DTLS(ctx);
2203
2204
0
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2205
2206
0
    cache = OPENSSL_calloc(sigalgs_len, sizeof(const SIGALG_LOOKUP));
2207
0
    if (cache == NULL || tmpkey == NULL)
2208
0
        goto err;
2209
2210
0
    tls12_sigalgs_list = OPENSSL_calloc(sigalgs_len, sizeof(uint16_t));
2211
0
    if (tls12_sigalgs_list == NULL)
2212
0
        goto err;
2213
2214
0
    ERR_set_mark();
2215
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2216
0
    for (i = 0, lu = sigalg_lookup_tbl;
2217
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2218
0
        EVP_PKEY_CTX *pctx;
2219
2220
0
        cache[i] = *lu;
2221
2222
        /*
2223
         * Check hash is available.
2224
         * This test is not perfect. A provider could have support
2225
         * for a signature scheme, but not a particular hash. However the hash
2226
         * could be available from some other loaded provider. In that case it
2227
         * could be that the signature is available, and the hash is available
2228
         * independently - but not as a combination. We ignore this for now.
2229
         */
2230
0
        if (lu->hash != NID_undef
2231
0
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2232
0
            cache[i].available = 0;
2233
0
            continue;
2234
0
        }
2235
2236
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2237
0
            cache[i].available = 0;
2238
0
            continue;
2239
0
        }
2240
0
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2241
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2242
0
        if (pctx == NULL)
2243
0
            cache[i].available = 0;
2244
0
        EVP_PKEY_CTX_free(pctx);
2245
0
    }
2246
2247
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2248
0
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2249
0
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2250
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2251
0
        cache[cache_idx].name = si.name;
2252
0
        cache[cache_idx].name12 = si.sigalg_name;
2253
0
        cache[cache_idx].sigalg = si.code_point;
2254
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
2255
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2256
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2257
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2258
0
        cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
2259
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2260
0
        cache[cache_idx].curve = NID_undef;
2261
0
        cache[cache_idx].mintls = TLS1_3_VERSION;
2262
0
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2263
0
        cache[cache_idx].mindtls = -1;
2264
0
        cache[cache_idx].maxdtls = -1;
2265
        /* Compatibility with TLS 1.3 is checked on load */
2266
0
        cache[cache_idx].available = istls;
2267
0
        cache[cache_idx].advertise = 0;
2268
0
        cache_idx++;
2269
0
    }
2270
0
    ERR_pop_to_mark();
2271
2272
0
    enabled = 0;
2273
0
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2274
0
        SIGALG_LOOKUP *ent = cache;
2275
0
        size_t j;
2276
2277
0
        for (j = 0; j < sigalgs_len; ent++, j++) {
2278
0
            if (ent->sigalg != tls12_sigalgs[i])
2279
0
                continue;
2280
            /* Dedup by marking cache entry as default enabled. */
2281
0
            if (ent->available && !ent->advertise) {
2282
0
                ent->advertise = 1;
2283
0
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2284
0
            }
2285
0
            break;
2286
0
        }
2287
0
    }
2288
2289
    /* Append any provider sigalgs not yet handled */
2290
0
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2291
0
        SIGALG_LOOKUP *ent = &cache[i];
2292
2293
0
        if (ent->available && !ent->advertise)
2294
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2295
0
    }
2296
2297
0
    ctx->sigalg_lookup_cache = cache;
2298
0
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2299
0
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2300
0
    ctx->tls12_sigalgs_len = enabled;
2301
0
    cache = NULL;
2302
0
    tls12_sigalgs_list = NULL;
2303
2304
0
    ret = 1;
2305
0
 err:
2306
0
    OPENSSL_free(cache);
2307
0
    OPENSSL_free(tls12_sigalgs_list);
2308
0
    EVP_PKEY_free(tmpkey);
2309
0
    return ret;
2310
0
}
2311
2312
0
#define SIGLEN_BUF_INCREMENT 100
2313
2314
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2315
0
{
2316
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2317
0
    const SIGALG_LOOKUP *lu;
2318
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2319
0
    char *retval = OPENSSL_malloc(maxretlen);
2320
2321
0
    if (retval == NULL)
2322
0
        return NULL;
2323
2324
    /* ensure retval string is NUL terminated */
2325
0
    retval[0] = (char)0;
2326
2327
0
    for (i = 0, lu = sigalg_lookup_tbl;
2328
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2329
0
        EVP_PKEY_CTX *pctx;
2330
0
        int enabled = 1;
2331
2332
0
        ERR_set_mark();
2333
        /* Check hash is available in some provider. */
2334
0
        if (lu->hash != NID_undef) {
2335
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2336
2337
            /* If unable to create we assume the hash algorithm is unavailable */
2338
0
            if (hash == NULL) {
2339
0
                enabled = 0;
2340
0
                ERR_pop_to_mark();
2341
0
                continue;
2342
0
            }
2343
0
            EVP_MD_free(hash);
2344
0
        }
2345
2346
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2347
0
            enabled = 0;
2348
0
            ERR_pop_to_mark();
2349
0
            continue;
2350
0
        }
2351
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2352
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2353
0
        if (pctx == NULL)
2354
0
            enabled = 0;
2355
0
        ERR_pop_to_mark();
2356
0
        EVP_PKEY_CTX_free(pctx);
2357
2358
0
        if (enabled) {
2359
0
            const char *sa = lu->name;
2360
2361
0
            if (sa != NULL) {
2362
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2363
0
                    char *tmp;
2364
2365
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2366
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2367
0
                    if (tmp == NULL) {
2368
0
                        OPENSSL_free(retval);
2369
0
                        return NULL;
2370
0
                    }
2371
0
                    retval = tmp;
2372
0
                }
2373
0
                if (strlen(retval) > 0)
2374
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2375
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2376
0
            } else {
2377
                /* lu->name must not be NULL */
2378
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2379
0
            }
2380
0
        }
2381
0
    }
2382
2383
0
    EVP_PKEY_free(tmpkey);
2384
0
    return retval;
2385
0
}
2386
2387
/* Lookup TLS signature algorithm */
2388
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2389
                                               uint16_t sigalg)
2390
0
{
2391
0
    size_t i;
2392
0
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2393
2394
0
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2395
0
        if (lu->sigalg == sigalg) {
2396
0
            if (!lu->available)
2397
0
                return NULL;
2398
0
            return lu;
2399
0
        }
2400
0
    }
2401
0
    return NULL;
2402
0
}
2403
2404
/* Lookup hash: return 0 if invalid or not enabled */
2405
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2406
0
{
2407
0
    const EVP_MD *md;
2408
2409
0
    if (lu == NULL)
2410
0
        return 0;
2411
    /* lu->hash == NID_undef means no associated digest */
2412
0
    if (lu->hash == NID_undef) {
2413
0
        md = NULL;
2414
0
    } else {
2415
0
        md = ssl_md(ctx, lu->hash_idx);
2416
0
        if (md == NULL)
2417
0
            return 0;
2418
0
    }
2419
0
    if (pmd)
2420
0
        *pmd = md;
2421
0
    return 1;
2422
0
}
2423
2424
/*
2425
 * Check if key is large enough to generate RSA-PSS signature.
2426
 *
2427
 * The key must greater than or equal to 2 * hash length + 2.
2428
 * SHA512 has a hash length of 64 bytes, which is incompatible
2429
 * with a 128 byte (1024 bit) key.
2430
 */
2431
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2432
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2433
                                      const SIGALG_LOOKUP *lu)
2434
0
{
2435
0
    const EVP_MD *md;
2436
2437
0
    if (pkey == NULL)
2438
0
        return 0;
2439
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2440
0
        return 0;
2441
0
    if (EVP_MD_get_size(md) <= 0)
2442
0
        return 0;
2443
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2444
0
        return 0;
2445
0
    return 1;
2446
0
}
2447
2448
/*
2449
 * Returns a signature algorithm when the peer did not send a list of supported
2450
 * signature algorithms. The signature algorithm is fixed for the certificate
2451
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2452
 * certificate type from |s| will be used.
2453
 * Returns the signature algorithm to use, or NULL on error.
2454
 */
2455
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2456
                                                   int idx)
2457
0
{
2458
0
    if (idx == -1) {
2459
0
        if (s->server) {
2460
0
            size_t i;
2461
2462
            /* Work out index corresponding to ciphersuite */
2463
0
            for (i = 0; i < s->ssl_pkey_num; i++) {
2464
0
                const SSL_CERT_LOOKUP *clu
2465
0
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2466
2467
0
                if (clu == NULL)
2468
0
                    continue;
2469
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2470
0
                    idx = (int)i;
2471
0
                    break;
2472
0
                }
2473
0
            }
2474
2475
            /*
2476
             * Some GOST ciphersuites allow more than one signature algorithms
2477
             * */
2478
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2479
0
                int real_idx;
2480
2481
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2482
0
                     real_idx--) {
2483
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2484
0
                        idx = real_idx;
2485
0
                        break;
2486
0
                    }
2487
0
                }
2488
0
            }
2489
            /*
2490
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2491
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2492
             */
2493
0
            else if (idx == SSL_PKEY_GOST12_256) {
2494
0
                int real_idx;
2495
2496
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2497
0
                     real_idx--) {
2498
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2499
0
                         idx = real_idx;
2500
0
                         break;
2501
0
                     }
2502
0
                }
2503
0
            }
2504
0
        } else {
2505
0
            idx = (int)(s->cert->key - s->cert->pkeys);
2506
0
        }
2507
0
    }
2508
0
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2509
0
        return NULL;
2510
2511
0
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2512
0
        const SIGALG_LOOKUP *lu =
2513
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2514
0
                               tls_default_sigalg[idx]);
2515
2516
0
        if (lu == NULL)
2517
0
            return NULL;
2518
0
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2519
0
            return NULL;
2520
0
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2521
0
            return NULL;
2522
0
        return lu;
2523
0
    }
2524
0
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2525
0
        return NULL;
2526
0
    return &legacy_rsa_sigalg;
2527
0
}
2528
/* Set peer sigalg based key type */
2529
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2530
0
{
2531
0
    size_t idx;
2532
0
    const SIGALG_LOOKUP *lu;
2533
2534
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2535
0
        return 0;
2536
0
    lu = tls1_get_legacy_sigalg(s, (int)idx);
2537
0
    if (lu == NULL)
2538
0
        return 0;
2539
0
    s->s3.tmp.peer_sigalg = lu;
2540
0
    return 1;
2541
0
}
2542
2543
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2544
0
{
2545
    /*
2546
     * If Suite B mode use Suite B sigalgs only, ignore any other
2547
     * preferences.
2548
     */
2549
0
    switch (tls1_suiteb(s)) {
2550
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2551
0
        *psigs = suiteb_sigalgs;
2552
0
        return OSSL_NELEM(suiteb_sigalgs);
2553
2554
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2555
0
        *psigs = suiteb_sigalgs;
2556
0
        return 1;
2557
2558
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2559
0
        *psigs = suiteb_sigalgs + 1;
2560
0
        return 1;
2561
0
    }
2562
    /*
2563
     *  We use client_sigalgs (if not NULL) if we're a server
2564
     *  and sending a certificate request or if we're a client and
2565
     *  determining which shared algorithm to use.
2566
     */
2567
0
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2568
0
        *psigs = s->cert->client_sigalgs;
2569
0
        return s->cert->client_sigalgslen;
2570
0
    } else if (s->cert->conf_sigalgs) {
2571
0
        *psigs = s->cert->conf_sigalgs;
2572
0
        return s->cert->conf_sigalgslen;
2573
0
    } else {
2574
0
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2575
0
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2576
0
    }
2577
0
}
2578
2579
/*
2580
 * Called by servers only. Checks that we have a sig alg that supports the
2581
 * specified EC curve.
2582
 */
2583
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2584
0
{
2585
0
   const uint16_t *sigs;
2586
0
   size_t siglen, i;
2587
2588
0
    if (s->cert->conf_sigalgs) {
2589
0
        sigs = s->cert->conf_sigalgs;
2590
0
        siglen = s->cert->conf_sigalgslen;
2591
0
    } else {
2592
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2593
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2594
0
    }
2595
2596
0
    for (i = 0; i < siglen; i++) {
2597
0
        const SIGALG_LOOKUP *lu =
2598
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2599
2600
0
        if (lu == NULL)
2601
0
            continue;
2602
0
        if (lu->sig == EVP_PKEY_EC
2603
0
                && lu->curve != NID_undef
2604
0
                && curve == lu->curve)
2605
0
            return 1;
2606
0
    }
2607
2608
0
    return 0;
2609
0
}
2610
2611
/*
2612
 * Return the number of security bits for the signature algorithm, or 0 on
2613
 * error.
2614
 */
2615
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2616
0
{
2617
0
    const EVP_MD *md = NULL;
2618
0
    int secbits = 0;
2619
2620
0
    if (!tls1_lookup_md(ctx, lu, &md))
2621
0
        return 0;
2622
0
    if (md != NULL)
2623
0
    {
2624
0
        int md_type = EVP_MD_get_type(md);
2625
2626
        /* Security bits: half digest bits */
2627
0
        secbits = EVP_MD_get_size(md) * 4;
2628
0
        if (secbits <= 0)
2629
0
            return 0;
2630
        /*
2631
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2632
         * they're no longer accepted at security level 1. The real values don't
2633
         * really matter as long as they're lower than 80, which is our
2634
         * security level 1.
2635
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2636
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2637
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2638
         * puts a chosen-prefix attack for MD5 at 2^39.
2639
         */
2640
0
        if (md_type == NID_sha1)
2641
0
            secbits = 64;
2642
0
        else if (md_type == NID_md5_sha1)
2643
0
            secbits = 67;
2644
0
        else if (md_type == NID_md5)
2645
0
            secbits = 39;
2646
0
    } else {
2647
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2648
0
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2649
0
            secbits = 128;
2650
0
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2651
0
            secbits = 224;
2652
0
    }
2653
    /*
2654
     * For provider-based sigalgs we have secbits information available
2655
     * in the (provider-loaded) sigalg_list structure
2656
     */
2657
0
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2658
0
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2659
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2660
0
    }
2661
0
    return secbits;
2662
0
}
2663
2664
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2665
0
{
2666
0
    int minversion, maxversion;
2667
0
    int minproto, maxproto;
2668
2669
0
    if (!lu->available)
2670
0
        return 0;
2671
2672
0
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2673
0
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2674
0
            minproto = sc->min_proto_version;
2675
0
            maxproto = sc->max_proto_version;
2676
0
        } else {
2677
0
            maxproto = minproto = sc->version;
2678
0
        }
2679
0
        minversion = lu->mindtls;
2680
0
        maxversion = lu->maxdtls;
2681
0
    } else {
2682
0
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2683
0
            minproto = sc->min_proto_version;
2684
0
            maxproto = sc->max_proto_version;
2685
0
        } else {
2686
0
            maxproto = minproto = sc->version;
2687
0
        }
2688
0
        minversion = lu->mintls;
2689
0
        maxversion = lu->maxtls;
2690
0
    }
2691
0
    if (minversion == -1 || maxversion == -1
2692
0
        || (minversion != 0 && maxproto != 0
2693
0
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2694
0
        || (maxversion != 0 && minproto != 0
2695
0
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2696
0
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2697
0
        return 0;
2698
0
    return 1;
2699
0
}
2700
2701
/*
2702
 * Check signature algorithm is consistent with sent supported signature
2703
 * algorithms and if so set relevant digest and signature scheme in
2704
 * s.
2705
 */
2706
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2707
0
{
2708
0
    const uint16_t *sent_sigs;
2709
0
    const EVP_MD *md = NULL;
2710
0
    char sigalgstr[2];
2711
0
    size_t sent_sigslen, i, cidx;
2712
0
    int pkeyid = -1;
2713
0
    const SIGALG_LOOKUP *lu;
2714
0
    int secbits = 0;
2715
2716
0
    pkeyid = EVP_PKEY_get_id(pkey);
2717
2718
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
2719
        /* Disallow DSA for TLS 1.3 */
2720
0
        if (pkeyid == EVP_PKEY_DSA) {
2721
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2722
0
            return 0;
2723
0
        }
2724
        /* Only allow PSS for TLS 1.3 */
2725
0
        if (pkeyid == EVP_PKEY_RSA)
2726
0
            pkeyid = EVP_PKEY_RSA_PSS;
2727
0
    }
2728
2729
    /* Is this code point available and compatible with the protocol */
2730
0
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2731
0
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2732
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2733
0
        return 0;
2734
0
    }
2735
2736
    /* If we don't know the pkey nid yet go and find it */
2737
0
    if (pkeyid == EVP_PKEY_KEYMGMT) {
2738
0
        const SSL_CERT_LOOKUP *scl =
2739
0
            ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2740
2741
0
        if (scl == NULL) {
2742
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2743
0
            return 0;
2744
0
        }
2745
0
        pkeyid = scl->pkey_nid;
2746
0
    }
2747
2748
    /* Should never happen */
2749
0
    if (pkeyid == -1) {
2750
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2751
0
        return -1;
2752
0
    }
2753
2754
    /*
2755
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2756
     * is consistent with signature: RSA keys can be used for RSA-PSS
2757
     */
2758
0
    if ((SSL_CONNECTION_IS_TLS13(s)
2759
0
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2760
0
        || (pkeyid != lu->sig
2761
0
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2762
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2763
0
        return 0;
2764
0
    }
2765
    /* Check the sigalg is consistent with the key OID */
2766
0
    if (!ssl_cert_lookup_by_nid(
2767
0
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2768
0
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2769
0
            || lu->sig_idx != (int)cidx) {
2770
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2771
0
        return 0;
2772
0
    }
2773
2774
0
    if (pkeyid == EVP_PKEY_EC) {
2775
2776
        /* Check point compression is permitted */
2777
0
        if (!tls1_check_pkey_comp(s, pkey)) {
2778
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2779
0
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2780
0
            return 0;
2781
0
        }
2782
2783
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2784
0
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2785
0
            int curve = ssl_get_EC_curve_nid(pkey);
2786
2787
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2788
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2789
0
                return 0;
2790
0
            }
2791
0
        }
2792
0
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2793
            /* Check curve matches extensions */
2794
0
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2795
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2796
0
                return 0;
2797
0
            }
2798
0
            if (tls1_suiteb(s)) {
2799
                /* Check sigalg matches a permissible Suite B value */
2800
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2801
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2802
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2803
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2804
0
                    return 0;
2805
0
                }
2806
0
            }
2807
0
        }
2808
0
    } else if (tls1_suiteb(s)) {
2809
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2810
0
        return 0;
2811
0
    }
2812
2813
    /* Check signature matches a type we sent */
2814
0
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2815
0
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2816
0
        if (sig == *sent_sigs)
2817
0
            break;
2818
0
    }
2819
    /* Allow fallback to SHA1 if not strict mode */
2820
0
    if (i == sent_sigslen && (lu->hash != NID_sha1
2821
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2822
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2823
0
        return 0;
2824
0
    }
2825
0
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2826
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2827
0
        return 0;
2828
0
    }
2829
    /*
2830
     * Make sure security callback allows algorithm. For historical
2831
     * reasons we have to pass the sigalg as a two byte char array.
2832
     */
2833
0
    sigalgstr[0] = (sig >> 8) & 0xff;
2834
0
    sigalgstr[1] = sig & 0xff;
2835
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2836
0
    if (secbits == 0 ||
2837
0
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2838
0
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2839
0
                      (void *)sigalgstr)) {
2840
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2841
0
        return 0;
2842
0
    }
2843
    /* Store the sigalg the peer uses */
2844
0
    s->s3.tmp.peer_sigalg = lu;
2845
0
    return 1;
2846
0
}
2847
2848
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2849
0
{
2850
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2851
2852
0
    if (sc == NULL)
2853
0
        return 0;
2854
2855
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2856
0
        return 0;
2857
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2858
0
    return 1;
2859
0
}
2860
2861
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2862
0
{
2863
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2864
2865
0
    if (sc == NULL)
2866
0
        return 0;
2867
2868
0
    if (sc->s3.tmp.sigalg == NULL)
2869
0
        return 0;
2870
0
    *pnid = sc->s3.tmp.sigalg->sig;
2871
0
    return 1;
2872
0
}
2873
2874
/*
2875
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2876
 * supported, doesn't appear in supported signature algorithms, isn't supported
2877
 * by the enabled protocol versions or by the security level.
2878
 *
2879
 * This function should only be used for checking which ciphers are supported
2880
 * by the client.
2881
 *
2882
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2883
 */
2884
int ssl_set_client_disabled(SSL_CONNECTION *s)
2885
0
{
2886
0
    s->s3.tmp.mask_a = 0;
2887
0
    s->s3.tmp.mask_k = 0;
2888
0
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2889
0
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2890
0
                                &s->s3.tmp.max_ver, NULL) != 0)
2891
0
        return 0;
2892
0
#ifndef OPENSSL_NO_PSK
2893
    /* with PSK there must be client callback set */
2894
0
    if (!s->psk_client_callback) {
2895
0
        s->s3.tmp.mask_a |= SSL_aPSK;
2896
0
        s->s3.tmp.mask_k |= SSL_PSK;
2897
0
    }
2898
0
#endif                          /* OPENSSL_NO_PSK */
2899
0
#ifndef OPENSSL_NO_SRP
2900
0
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2901
0
        s->s3.tmp.mask_a |= SSL_aSRP;
2902
0
        s->s3.tmp.mask_k |= SSL_kSRP;
2903
0
    }
2904
0
#endif
2905
0
    return 1;
2906
0
}
2907
2908
/*
2909
 * ssl_cipher_disabled - check that a cipher is disabled or not
2910
 * @s: SSL connection that you want to use the cipher on
2911
 * @c: cipher to check
2912
 * @op: Security check that you want to do
2913
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2914
 *
2915
 * Returns 1 when it's disabled, 0 when enabled.
2916
 */
2917
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2918
                        int op, int ecdhe)
2919
0
{
2920
0
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2921
0
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2922
2923
0
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2924
0
        || c->algorithm_auth & s->s3.tmp.mask_a)
2925
0
        return 1;
2926
0
    if (s->s3.tmp.max_ver == 0)
2927
0
        return 1;
2928
2929
0
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2930
        /* For QUIC, only allow these ciphersuites. */
2931
0
        switch (SSL_CIPHER_get_id(c)) {
2932
0
        case TLS1_3_CK_AES_128_GCM_SHA256:
2933
0
        case TLS1_3_CK_AES_256_GCM_SHA384:
2934
0
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2935
0
            break;
2936
0
        default:
2937
0
            return 1;
2938
0
        }
2939
2940
    /*
2941
     * For historical reasons we will allow ECHDE to be selected by a server
2942
     * in SSLv3 if we are a client
2943
     */
2944
0
    if (minversion == TLS1_VERSION
2945
0
            && ecdhe
2946
0
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2947
0
        minversion = SSL3_VERSION;
2948
2949
0
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2950
0
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2951
0
        return 1;
2952
2953
0
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2954
0
}
2955
2956
int tls_use_ticket(SSL_CONNECTION *s)
2957
0
{
2958
0
    if ((s->options & SSL_OP_NO_TICKET))
2959
0
        return 0;
2960
0
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2961
0
}
2962
2963
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2964
0
{
2965
0
    size_t i;
2966
2967
    /* Clear any shared signature algorithms */
2968
0
    OPENSSL_free(s->shared_sigalgs);
2969
0
    s->shared_sigalgs = NULL;
2970
0
    s->shared_sigalgslen = 0;
2971
2972
    /* Clear certificate validity flags */
2973
0
    if (s->s3.tmp.valid_flags)
2974
0
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2975
0
    else
2976
0
        s->s3.tmp.valid_flags = OPENSSL_calloc(s->ssl_pkey_num, sizeof(uint32_t));
2977
0
    if (s->s3.tmp.valid_flags == NULL) {
2978
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2979
0
        return 0;
2980
0
    }
2981
    /*
2982
     * If peer sent no signature algorithms check to see if we support
2983
     * the default algorithm for each certificate type
2984
     */
2985
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2986
0
            && s->s3.tmp.peer_sigalgs == NULL) {
2987
0
        const uint16_t *sent_sigs;
2988
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2989
2990
0
        for (i = 0; i < s->ssl_pkey_num; i++) {
2991
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
2992
0
            size_t j;
2993
2994
0
            if (lu == NULL)
2995
0
                continue;
2996
            /* Check default matches a type we sent */
2997
0
            for (j = 0; j < sent_sigslen; j++) {
2998
0
                if (lu->sigalg == sent_sigs[j]) {
2999
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
3000
0
                        break;
3001
0
                }
3002
0
            }
3003
0
        }
3004
0
        return 1;
3005
0
    }
3006
3007
0
    if (!tls1_process_sigalgs(s)) {
3008
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
3009
0
        return 0;
3010
0
    }
3011
0
    if (s->shared_sigalgs != NULL)
3012
0
        return 1;
3013
3014
    /* Fatal error if no shared signature algorithms */
3015
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3016
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
3017
0
    return 0;
3018
0
}
3019
3020
/*-
3021
 * Gets the ticket information supplied by the client if any.
3022
 *
3023
 *   hello: The parsed ClientHello data
3024
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
3025
 *       point to the resulting session.
3026
 */
3027
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3028
                                             CLIENTHELLO_MSG *hello,
3029
                                             SSL_SESSION **ret)
3030
0
{
3031
0
    size_t size;
3032
0
    RAW_EXTENSION *ticketext;
3033
3034
0
    *ret = NULL;
3035
0
    s->ext.ticket_expected = 0;
3036
3037
    /*
3038
     * If tickets disabled or not supported by the protocol version
3039
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3040
     * resumption.
3041
     */
3042
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3043
0
        return SSL_TICKET_NONE;
3044
3045
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3046
0
    if (!ticketext->present)
3047
0
        return SSL_TICKET_NONE;
3048
3049
0
    size = PACKET_remaining(&ticketext->data);
3050
3051
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3052
0
                              hello->session_id, hello->session_id_len, ret);
3053
0
}
3054
3055
/*-
3056
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3057
 *
3058
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3059
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3060
 * session tickets and one will never be decrypted, nor will
3061
 * s->ext.ticket_expected be set to 1.
3062
 *
3063
 * Side effects:
3064
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3065
 *   a new session ticket to the client because the client indicated support
3066
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3067
 *   a session ticket or we couldn't use the one it gave us, or if
3068
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3069
 *   Otherwise, s->ext.ticket_expected is set to 0.
3070
 *
3071
 *   etick: points to the body of the session ticket extension.
3072
 *   eticklen: the length of the session tickets extension.
3073
 *   sess_id: points at the session ID.
3074
 *   sesslen: the length of the session ID.
3075
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3076
 *       point to the resulting session.
3077
 */
3078
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3079
                                     const unsigned char *etick,
3080
                                     size_t eticklen,
3081
                                     const unsigned char *sess_id,
3082
                                     size_t sesslen, SSL_SESSION **psess)
3083
0
{
3084
0
    SSL_SESSION *sess = NULL;
3085
0
    unsigned char *sdec;
3086
0
    const unsigned char *p;
3087
0
    int slen, ivlen, renew_ticket = 0, declen;
3088
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3089
0
    size_t mlen;
3090
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3091
0
    SSL_HMAC *hctx = NULL;
3092
0
    EVP_CIPHER_CTX *ctx = NULL;
3093
0
    SSL_CTX *tctx = s->session_ctx;
3094
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3095
3096
0
    if (eticklen == 0) {
3097
        /*
3098
         * The client will accept a ticket but doesn't currently have
3099
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3100
         */
3101
0
        ret = SSL_TICKET_EMPTY;
3102
0
        goto end;
3103
0
    }
3104
0
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3105
        /*
3106
         * Indicate that the ticket couldn't be decrypted rather than
3107
         * generating the session from ticket now, trigger
3108
         * abbreviated handshake based on external mechanism to
3109
         * calculate the master secret later.
3110
         */
3111
0
        ret = SSL_TICKET_NO_DECRYPT;
3112
0
        goto end;
3113
0
    }
3114
3115
    /* Need at least keyname + iv */
3116
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3117
0
        ret = SSL_TICKET_NO_DECRYPT;
3118
0
        goto end;
3119
0
    }
3120
3121
    /* Initialize session ticket encryption and HMAC contexts */
3122
0
    hctx = ssl_hmac_new(tctx);
3123
0
    if (hctx == NULL) {
3124
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3125
0
        goto end;
3126
0
    }
3127
0
    ctx = EVP_CIPHER_CTX_new();
3128
0
    if (ctx == NULL) {
3129
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3130
0
        goto end;
3131
0
    }
3132
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3133
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3134
#else
3135
    if (tctx->ext.ticket_key_evp_cb != NULL)
3136
#endif
3137
0
    {
3138
0
        unsigned char *nctick = (unsigned char *)etick;
3139
0
        int rv = 0;
3140
3141
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3142
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3143
0
                                             nctick,
3144
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
3145
0
                                             ctx,
3146
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
3147
0
                                             0);
3148
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3149
0
        else if (tctx->ext.ticket_key_cb != NULL)
3150
            /* if 0 is returned, write an empty ticket */
3151
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3152
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
3153
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3154
0
#endif
3155
0
        if (rv < 0) {
3156
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3157
0
            goto end;
3158
0
        }
3159
0
        if (rv == 0) {
3160
0
            ret = SSL_TICKET_NO_DECRYPT;
3161
0
            goto end;
3162
0
        }
3163
0
        if (rv == 2)
3164
0
            renew_ticket = 1;
3165
0
    } else {
3166
0
        EVP_CIPHER *aes256cbc = NULL;
3167
3168
        /* Check key name matches */
3169
0
        if (memcmp(etick, tctx->ext.tick_key_name,
3170
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
3171
0
            ret = SSL_TICKET_NO_DECRYPT;
3172
0
            goto end;
3173
0
        }
3174
3175
0
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3176
0
                                     sctx->propq);
3177
0
        if (aes256cbc == NULL
3178
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3179
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
3180
0
                             "SHA256") <= 0
3181
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3182
0
                                  tctx->ext.secure->tick_aes_key,
3183
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3184
0
            EVP_CIPHER_free(aes256cbc);
3185
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3186
0
            goto end;
3187
0
        }
3188
0
        EVP_CIPHER_free(aes256cbc);
3189
0
        if (SSL_CONNECTION_IS_TLS13(s))
3190
0
            renew_ticket = 1;
3191
0
    }
3192
    /*
3193
     * Attempt to process session ticket, first conduct sanity and integrity
3194
     * checks on ticket.
3195
     */
3196
0
    mlen = ssl_hmac_size(hctx);
3197
0
    if (mlen == 0) {
3198
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3199
0
        goto end;
3200
0
    }
3201
3202
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3203
0
    if (ivlen < 0) {
3204
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3205
0
        goto end;
3206
0
    }
3207
3208
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3209
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3210
0
        ret = SSL_TICKET_NO_DECRYPT;
3211
0
        goto end;
3212
0
    }
3213
0
    eticklen -= mlen;
3214
    /* Check HMAC of encrypted ticket */
3215
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3216
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3217
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3218
0
        goto end;
3219
0
    }
3220
3221
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3222
0
        ret = SSL_TICKET_NO_DECRYPT;
3223
0
        goto end;
3224
0
    }
3225
    /* Attempt to decrypt session data */
3226
    /* Move p after IV to start of encrypted ticket, update length */
3227
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3228
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3229
0
    sdec = OPENSSL_malloc(eticklen);
3230
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3231
0
                                          (int)eticklen) <= 0) {
3232
0
        OPENSSL_free(sdec);
3233
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3234
0
        goto end;
3235
0
    }
3236
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3237
0
        OPENSSL_free(sdec);
3238
0
        ret = SSL_TICKET_NO_DECRYPT;
3239
0
        goto end;
3240
0
    }
3241
0
    slen += declen;
3242
0
    p = sdec;
3243
3244
0
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3245
0
    slen -= (int)(p - sdec);
3246
0
    OPENSSL_free(sdec);
3247
0
    if (sess) {
3248
        /* Some additional consistency checks */
3249
0
        if (slen != 0) {
3250
0
            SSL_SESSION_free(sess);
3251
0
            sess = NULL;
3252
0
            ret = SSL_TICKET_NO_DECRYPT;
3253
0
            goto end;
3254
0
        }
3255
        /*
3256
         * The session ID, if non-empty, is used by some clients to detect
3257
         * that the ticket has been accepted. So we copy it to the session
3258
         * structure. If it is empty set length to zero as required by
3259
         * standard.
3260
         */
3261
0
        if (sesslen) {
3262
0
            memcpy(sess->session_id, sess_id, sesslen);
3263
0
            sess->session_id_length = sesslen;
3264
0
        }
3265
0
        if (renew_ticket)
3266
0
            ret = SSL_TICKET_SUCCESS_RENEW;
3267
0
        else
3268
0
            ret = SSL_TICKET_SUCCESS;
3269
0
        goto end;
3270
0
    }
3271
0
    ERR_clear_error();
3272
    /*
3273
     * For session parse failure, indicate that we need to send a new ticket.
3274
     */
3275
0
    ret = SSL_TICKET_NO_DECRYPT;
3276
3277
0
 end:
3278
0
    EVP_CIPHER_CTX_free(ctx);
3279
0
    ssl_hmac_free(hctx);
3280
3281
    /*
3282
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3283
     * detected above. The callback is responsible for checking |ret| before it
3284
     * performs any action
3285
     */
3286
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
3287
0
            && (ret == SSL_TICKET_EMPTY
3288
0
                || ret == SSL_TICKET_NO_DECRYPT
3289
0
                || ret == SSL_TICKET_SUCCESS
3290
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
3291
0
        size_t keyname_len = eticklen;
3292
0
        int retcb;
3293
3294
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3295
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3296
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3297
0
                                                  sess, etick, keyname_len,
3298
0
                                                  ret,
3299
0
                                                  s->session_ctx->ticket_cb_data);
3300
0
        switch (retcb) {
3301
0
        case SSL_TICKET_RETURN_ABORT:
3302
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3303
0
            break;
3304
3305
0
        case SSL_TICKET_RETURN_IGNORE:
3306
0
            ret = SSL_TICKET_NONE;
3307
0
            SSL_SESSION_free(sess);
3308
0
            sess = NULL;
3309
0
            break;
3310
3311
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3312
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3313
0
                ret = SSL_TICKET_NO_DECRYPT;
3314
            /* else the value of |ret| will already do the right thing */
3315
0
            SSL_SESSION_free(sess);
3316
0
            sess = NULL;
3317
0
            break;
3318
3319
0
        case SSL_TICKET_RETURN_USE:
3320
0
        case SSL_TICKET_RETURN_USE_RENEW:
3321
0
            if (ret != SSL_TICKET_SUCCESS
3322
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
3323
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3324
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3325
0
                ret = SSL_TICKET_SUCCESS;
3326
0
            else
3327
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3328
0
            break;
3329
3330
0
        default:
3331
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3332
0
        }
3333
0
    }
3334
3335
0
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3336
0
        switch (ret) {
3337
0
        case SSL_TICKET_NO_DECRYPT:
3338
0
        case SSL_TICKET_SUCCESS_RENEW:
3339
0
        case SSL_TICKET_EMPTY:
3340
0
            s->ext.ticket_expected = 1;
3341
0
        }
3342
0
    }
3343
3344
0
    *psess = sess;
3345
3346
0
    return ret;
3347
0
}
3348
3349
/* Check to see if a signature algorithm is allowed */
3350
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3351
                                const SIGALG_LOOKUP *lu)
3352
0
{
3353
0
    unsigned char sigalgstr[2];
3354
0
    int secbits;
3355
3356
0
    if (lu == NULL || !lu->available)
3357
0
        return 0;
3358
    /* DSA is not allowed in TLS 1.3 */
3359
0
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3360
0
        return 0;
3361
    /*
3362
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3363
     * spec
3364
     */
3365
0
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3366
0
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3367
0
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3368
0
            || lu->hash_idx == SSL_MD_MD5_IDX
3369
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3370
0
        return 0;
3371
3372
    /* See if public key algorithm allowed */
3373
0
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3374
0
        return 0;
3375
3376
0
    if (lu->sig == NID_id_GostR3410_2012_256
3377
0
            || lu->sig == NID_id_GostR3410_2012_512
3378
0
            || lu->sig == NID_id_GostR3410_2001) {
3379
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3380
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3381
0
            return 0;
3382
0
        if (!s->server
3383
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3384
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3385
0
            int i, num;
3386
0
            STACK_OF(SSL_CIPHER) *sk;
3387
3388
            /*
3389
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3390
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3391
             * ciphersuites enabled.
3392
             */
3393
3394
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3395
0
                return 0;
3396
3397
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3398
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3399
0
            for (i = 0; i < num; i++) {
3400
0
                const SSL_CIPHER *c;
3401
3402
0
                c = sk_SSL_CIPHER_value(sk, i);
3403
                /* Skip disabled ciphers */
3404
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3405
0
                    continue;
3406
3407
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3408
0
                    break;
3409
0
            }
3410
0
            if (i == num)
3411
0
                return 0;
3412
0
        }
3413
0
    }
3414
3415
    /* Finally see if security callback allows it */
3416
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3417
0
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3418
0
    sigalgstr[1] = lu->sigalg & 0xff;
3419
0
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3420
0
}
3421
3422
/*
3423
 * Get a mask of disabled public key algorithms based on supported signature
3424
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3425
 * disabled.
3426
 */
3427
3428
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3429
0
{
3430
0
    const uint16_t *sigalgs;
3431
0
    size_t i, sigalgslen;
3432
0
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3433
    /*
3434
     * Go through all signature algorithms seeing if we support any
3435
     * in disabled_mask.
3436
     */
3437
0
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3438
0
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3439
0
        const SIGALG_LOOKUP *lu =
3440
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3441
0
        const SSL_CERT_LOOKUP *clu;
3442
3443
0
        if (lu == NULL)
3444
0
            continue;
3445
3446
0
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3447
0
                                     SSL_CONNECTION_GET_CTX(s));
3448
0
        if (clu == NULL)
3449
0
                continue;
3450
3451
        /* If algorithm is disabled see if we can enable it */
3452
0
        if ((clu->amask & disabled_mask) != 0
3453
0
                && tls12_sigalg_allowed(s, op, lu))
3454
0
            disabled_mask &= ~clu->amask;
3455
0
    }
3456
0
    *pmask_a |= disabled_mask;
3457
0
}
3458
3459
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3460
                       const uint16_t *psig, size_t psiglen)
3461
0
{
3462
0
    size_t i;
3463
0
    int rv = 0;
3464
3465
0
    for (i = 0; i < psiglen; i++, psig++) {
3466
0
        const SIGALG_LOOKUP *lu =
3467
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3468
3469
0
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3470
0
            continue;
3471
0
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3472
0
            return 0;
3473
        /*
3474
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3475
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3476
         */
3477
0
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3478
0
            || (lu->sig != EVP_PKEY_RSA
3479
0
                && lu->hash != NID_sha1
3480
0
                && lu->hash != NID_sha224)))
3481
0
            rv = 1;
3482
0
    }
3483
0
    if (rv == 0)
3484
0
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3485
0
    return rv;
3486
0
}
3487
3488
/* Given preference and allowed sigalgs set shared sigalgs */
3489
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3490
                                   const SIGALG_LOOKUP **shsig,
3491
                                   const uint16_t *pref, size_t preflen,
3492
                                   const uint16_t *allow, size_t allowlen)
3493
0
{
3494
0
    const uint16_t *ptmp, *atmp;
3495
0
    size_t i, j, nmatch = 0;
3496
0
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3497
0
        const SIGALG_LOOKUP *lu =
3498
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3499
3500
        /* Skip disabled hashes or signature algorithms */
3501
0
        if (lu == NULL
3502
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3503
0
            continue;
3504
0
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3505
0
            if (*ptmp == *atmp) {
3506
0
                nmatch++;
3507
0
                if (shsig)
3508
0
                    *shsig++ = lu;
3509
0
                break;
3510
0
            }
3511
0
        }
3512
0
    }
3513
0
    return nmatch;
3514
0
}
3515
3516
/* Set shared signature algorithms for SSL structures */
3517
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3518
0
{
3519
0
    const uint16_t *pref, *allow, *conf;
3520
0
    size_t preflen, allowlen, conflen;
3521
0
    size_t nmatch;
3522
0
    const SIGALG_LOOKUP **salgs = NULL;
3523
0
    CERT *c = s->cert;
3524
0
    unsigned int is_suiteb = tls1_suiteb(s);
3525
3526
0
    OPENSSL_free(s->shared_sigalgs);
3527
0
    s->shared_sigalgs = NULL;
3528
0
    s->shared_sigalgslen = 0;
3529
    /* If client use client signature algorithms if not NULL */
3530
0
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3531
0
        conf = c->client_sigalgs;
3532
0
        conflen = c->client_sigalgslen;
3533
0
    } else if (c->conf_sigalgs && !is_suiteb) {
3534
0
        conf = c->conf_sigalgs;
3535
0
        conflen = c->conf_sigalgslen;
3536
0
    } else
3537
0
        conflen = tls12_get_psigalgs(s, 0, &conf);
3538
0
    if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
3539
0
        pref = conf;
3540
0
        preflen = conflen;
3541
0
        allow = s->s3.tmp.peer_sigalgs;
3542
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3543
0
    } else {
3544
0
        allow = conf;
3545
0
        allowlen = conflen;
3546
0
        pref = s->s3.tmp.peer_sigalgs;
3547
0
        preflen = s->s3.tmp.peer_sigalgslen;
3548
0
    }
3549
0
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3550
0
    if (nmatch) {
3551
0
        if ((salgs = OPENSSL_malloc_array(nmatch, sizeof(*salgs))) == NULL)
3552
0
            return 0;
3553
0
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3554
0
    } else {
3555
0
        salgs = NULL;
3556
0
    }
3557
0
    s->shared_sigalgs = salgs;
3558
0
    s->shared_sigalgslen = nmatch;
3559
0
    return 1;
3560
0
}
3561
3562
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3563
0
{
3564
0
    unsigned int stmp;
3565
0
    size_t size, i;
3566
0
    uint16_t *buf;
3567
3568
0
    size = PACKET_remaining(pkt);
3569
3570
    /* Invalid data length */
3571
0
    if (size == 0 || (size & 1) != 0)
3572
0
        return 0;
3573
3574
0
    size >>= 1;
3575
3576
0
    if ((buf = OPENSSL_malloc_array(size, sizeof(*buf))) == NULL)
3577
0
        return 0;
3578
0
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3579
0
        buf[i] = stmp;
3580
3581
0
    if (i != size) {
3582
0
        OPENSSL_free(buf);
3583
0
        return 0;
3584
0
    }
3585
3586
0
    OPENSSL_free(*pdest);
3587
0
    *pdest = buf;
3588
0
    *pdestlen = size;
3589
3590
0
    return 1;
3591
0
}
3592
3593
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3594
0
{
3595
    /* Extension ignored for inappropriate versions */
3596
0
    if (!SSL_USE_SIGALGS(s))
3597
0
        return 1;
3598
    /* Should never happen */
3599
0
    if (s->cert == NULL)
3600
0
        return 0;
3601
3602
0
    if (cert)
3603
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3604
0
                             &s->s3.tmp.peer_cert_sigalgslen);
3605
0
    else
3606
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3607
0
                             &s->s3.tmp.peer_sigalgslen);
3608
3609
0
}
3610
3611
/* Set preferred digest for each key type */
3612
3613
int tls1_process_sigalgs(SSL_CONNECTION *s)
3614
0
{
3615
0
    size_t i;
3616
0
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3617
3618
0
    if (!tls1_set_shared_sigalgs(s))
3619
0
        return 0;
3620
3621
0
    for (i = 0; i < s->ssl_pkey_num; i++)
3622
0
        pvalid[i] = 0;
3623
3624
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3625
0
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3626
0
        int idx = sigptr->sig_idx;
3627
3628
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3629
0
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3630
0
            continue;
3631
        /* If not disabled indicate we can explicitly sign */
3632
0
        if (pvalid[idx] == 0
3633
0
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3634
0
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3635
0
    }
3636
0
    return 1;
3637
0
}
3638
3639
int SSL_get_sigalgs(SSL *s, int idx,
3640
                    int *psign, int *phash, int *psignhash,
3641
                    unsigned char *rsig, unsigned char *rhash)
3642
0
{
3643
0
    uint16_t *psig;
3644
0
    size_t numsigalgs;
3645
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3646
3647
0
    if (sc == NULL)
3648
0
        return 0;
3649
3650
0
    psig = sc->s3.tmp.peer_sigalgs;
3651
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3652
3653
0
    if (psig == NULL || numsigalgs > INT_MAX)
3654
0
        return 0;
3655
0
    if (idx >= 0) {
3656
0
        const SIGALG_LOOKUP *lu;
3657
3658
0
        if (idx >= (int)numsigalgs)
3659
0
            return 0;
3660
0
        psig += idx;
3661
0
        if (rhash != NULL)
3662
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3663
0
        if (rsig != NULL)
3664
0
            *rsig = (unsigned char)(*psig & 0xff);
3665
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3666
0
        if (psign != NULL)
3667
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3668
0
        if (phash != NULL)
3669
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3670
0
        if (psignhash != NULL)
3671
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3672
0
    }
3673
0
    return (int)numsigalgs;
3674
0
}
3675
3676
int SSL_get_shared_sigalgs(SSL *s, int idx,
3677
                           int *psign, int *phash, int *psignhash,
3678
                           unsigned char *rsig, unsigned char *rhash)
3679
0
{
3680
0
    const SIGALG_LOOKUP *shsigalgs;
3681
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3682
3683
0
    if (sc == NULL)
3684
0
        return 0;
3685
3686
0
    if (sc->shared_sigalgs == NULL
3687
0
        || idx < 0
3688
0
        || idx >= (int)sc->shared_sigalgslen
3689
0
        || sc->shared_sigalgslen > INT_MAX)
3690
0
        return 0;
3691
0
    shsigalgs = sc->shared_sigalgs[idx];
3692
0
    if (phash != NULL)
3693
0
        *phash = shsigalgs->hash;
3694
0
    if (psign != NULL)
3695
0
        *psign = shsigalgs->sig;
3696
0
    if (psignhash != NULL)
3697
0
        *psignhash = shsigalgs->sigandhash;
3698
0
    if (rsig != NULL)
3699
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3700
0
    if (rhash != NULL)
3701
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3702
0
    return (int)sc->shared_sigalgslen;
3703
0
}
3704
3705
/* Maximum possible number of unique entries in sigalgs array */
3706
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3707
3708
typedef struct {
3709
    size_t sigalgcnt;
3710
    /* TLSEXT_SIGALG_XXX values */
3711
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3712
    SSL_CTX *ctx;
3713
} sig_cb_st;
3714
3715
static void get_sigorhash(int *psig, int *phash, const char *str)
3716
0
{
3717
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3718
0
        *psig = EVP_PKEY_RSA;
3719
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3720
0
               || OPENSSL_strcasecmp(str, "PSS") == 0) {
3721
0
        *psig = EVP_PKEY_RSA_PSS;
3722
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3723
0
        *psig = EVP_PKEY_DSA;
3724
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3725
0
        *psig = EVP_PKEY_EC;
3726
0
    } else {
3727
0
        *phash = OBJ_sn2nid(str);
3728
0
        if (*phash == NID_undef)
3729
0
            *phash = OBJ_ln2nid(str);
3730
0
    }
3731
0
}
3732
/* Maximum length of a signature algorithm string component */
3733
#define TLS_MAX_SIGSTRING_LEN   40
3734
3735
static int sig_cb(const char *elem, int len, void *arg)
3736
0
{
3737
0
    sig_cb_st *sarg = arg;
3738
0
    size_t i = 0;
3739
0
    const SIGALG_LOOKUP *s;
3740
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3741
0
    const char *iana, *alias;
3742
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3743
0
    int ignore_unknown = 0;
3744
3745
0
    if (elem == NULL)
3746
0
        return 0;
3747
0
    if (elem[0] == '?') {
3748
0
        ignore_unknown = 1;
3749
0
        ++elem;
3750
0
        --len;
3751
0
    }
3752
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3753
0
        return 0;
3754
0
    if (len > (int)(sizeof(etmp) - 1))
3755
0
        return 0;
3756
0
    memcpy(etmp, elem, len);
3757
0
    etmp[len] = 0;
3758
0
    p = strchr(etmp, '+');
3759
    /*
3760
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3761
     * if there's no '+' in the provided name, look for the new-style combined
3762
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3763
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3764
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3765
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3766
     * in the table.
3767
     */
3768
0
    if (p == NULL) {
3769
0
        if (sarg->ctx != NULL) {
3770
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3771
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3772
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3773
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3774
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3775
                    /* Ignore known, but unavailable sigalgs. */
3776
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3777
0
                        return 1;
3778
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3779
0
                        sarg->ctx->sigalg_lookup_cache[i].sigalg;
3780
0
                    goto found;
3781
0
                }
3782
0
            }
3783
0
        } else {
3784
            /* Syntax checks use the built-in sigalgs */
3785
0
            for (i = 0, s = sigalg_lookup_tbl;
3786
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3787
0
                iana = s->name;
3788
0
                alias = s->name12;
3789
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3790
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3791
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3792
0
                    goto found;
3793
0
                }
3794
0
            }
3795
0
        }
3796
0
    } else {
3797
0
        *p = 0;
3798
0
        p++;
3799
0
        if (*p == 0)
3800
0
            return 0;
3801
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3802
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3803
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3804
0
            if (sarg->ctx != NULL) {
3805
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3806
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3807
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3808
                        /* Ignore known, but unavailable sigalgs. */
3809
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3810
0
                            return 1;
3811
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3812
0
                        goto found;
3813
0
                    }
3814
0
                }
3815
0
            } else {
3816
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3817
0
                    s = &sigalg_lookup_tbl[i];
3818
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3819
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3820
0
                        goto found;
3821
0
                    }
3822
0
                }
3823
0
            }
3824
0
        }
3825
0
    }
3826
    /* Ignore unknown algorithms if ignore_unknown */
3827
0
    return ignore_unknown;
3828
3829
0
 found:
3830
    /* Ignore duplicates */
3831
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3832
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3833
0
            sarg->sigalgcnt--;
3834
0
            return 1;
3835
0
        }
3836
0
    }
3837
0
    return 1;
3838
0
}
3839
3840
/*
3841
 * Set supported signature algorithms based on a colon separated list of the
3842
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3843
 */
3844
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3845
0
{
3846
0
    sig_cb_st sig;
3847
0
    sig.sigalgcnt = 0;
3848
3849
0
    if (ctx != NULL)
3850
0
        sig.ctx = ctx;
3851
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3852
0
        return 0;
3853
0
    if (sig.sigalgcnt == 0) {
3854
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3855
0
                       "No valid signature algorithms in '%s'", str);
3856
0
        return 0;
3857
0
    }
3858
0
    if (c == NULL)
3859
0
        return 1;
3860
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3861
0
}
3862
3863
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3864
                     int client)
3865
0
{
3866
0
    uint16_t *sigalgs;
3867
3868
0
    if ((sigalgs = OPENSSL_malloc_array(salglen, sizeof(*sigalgs))) == NULL)
3869
0
        return 0;
3870
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3871
3872
0
    if (client) {
3873
0
        OPENSSL_free(c->client_sigalgs);
3874
0
        c->client_sigalgs = sigalgs;
3875
0
        c->client_sigalgslen = salglen;
3876
0
    } else {
3877
0
        OPENSSL_free(c->conf_sigalgs);
3878
0
        c->conf_sigalgs = sigalgs;
3879
0
        c->conf_sigalgslen = salglen;
3880
0
    }
3881
3882
0
    return 1;
3883
0
}
3884
3885
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3886
0
{
3887
0
    uint16_t *sigalgs, *sptr;
3888
0
    size_t i;
3889
3890
0
    if (salglen & 1)
3891
0
        return 0;
3892
0
    if ((sigalgs = OPENSSL_malloc_array(salglen / 2, sizeof(*sigalgs))) == NULL)
3893
0
        return 0;
3894
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3895
0
        size_t j;
3896
0
        const SIGALG_LOOKUP *curr;
3897
0
        int md_id = *psig_nids++;
3898
0
        int sig_id = *psig_nids++;
3899
3900
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3901
0
             j++, curr++) {
3902
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3903
0
                *sptr++ = curr->sigalg;
3904
0
                break;
3905
0
            }
3906
0
        }
3907
3908
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3909
0
            goto err;
3910
0
    }
3911
3912
0
    if (client) {
3913
0
        OPENSSL_free(c->client_sigalgs);
3914
0
        c->client_sigalgs = sigalgs;
3915
0
        c->client_sigalgslen = salglen / 2;
3916
0
    } else {
3917
0
        OPENSSL_free(c->conf_sigalgs);
3918
0
        c->conf_sigalgs = sigalgs;
3919
0
        c->conf_sigalgslen = salglen / 2;
3920
0
    }
3921
3922
0
    return 1;
3923
3924
0
 err:
3925
0
    OPENSSL_free(sigalgs);
3926
0
    return 0;
3927
0
}
3928
3929
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3930
0
{
3931
0
    int sig_nid, use_pc_sigalgs = 0;
3932
0
    size_t i;
3933
0
    const SIGALG_LOOKUP *sigalg;
3934
0
    size_t sigalgslen;
3935
3936
    /*-
3937
     * RFC 8446, section 4.2.3:
3938
     *
3939
     * The signatures on certificates that are self-signed or certificates
3940
     * that are trust anchors are not validated, since they begin a
3941
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3942
     * begins a certification path MAY use a signature algorithm that is not
3943
     * advertised as being supported in the "signature_algorithms"
3944
     * extension.
3945
     */
3946
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3947
0
        return 1;
3948
0
    sig_nid = X509_get_signature_nid(x);
3949
0
    if (default_nid)
3950
0
        return sig_nid == default_nid ? 1 : 0;
3951
3952
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3953
        /*
3954
         * If we're in TLSv1.3 then we only get here if we're checking the
3955
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3956
         * otherwise we default to normal sigalgs.
3957
         */
3958
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3959
0
        use_pc_sigalgs = 1;
3960
0
    } else {
3961
0
        sigalgslen = s->shared_sigalgslen;
3962
0
    }
3963
0
    for (i = 0; i < sigalgslen; i++) {
3964
0
        int mdnid, pknid;
3965
3966
0
        sigalg = use_pc_sigalgs
3967
0
                 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3968
0
                                      s->s3.tmp.peer_cert_sigalgs[i])
3969
0
                 : s->shared_sigalgs[i];
3970
0
        if (sigalg == NULL)
3971
0
            continue;
3972
0
        if (sig_nid == sigalg->sigandhash)
3973
0
            return 1;
3974
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3975
0
            continue;
3976
        /*
3977
         * Accept RSA PKCS#1 signatures in certificates when the signature
3978
         * algorithms include RSA-PSS with a matching digest algorithm.
3979
         *
3980
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3981
         * points, and we're doing strict checking of the certificate chain (in
3982
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3983
         * certificates in the chain, but the TLS requirement on PSS should not
3984
         * extend to certificates.  Though the peer can in fact list the legacy
3985
         * sigalgs for just this purpose, it is not likely that a better chain
3986
         * signed with RSA-PSS is available.
3987
         */
3988
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3989
0
            continue;
3990
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3991
0
            return 1;
3992
0
    }
3993
0
    return 0;
3994
0
}
3995
3996
/* Check to see if a certificate issuer name matches list of CA names */
3997
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3998
0
{
3999
0
    const X509_NAME *nm;
4000
0
    int i;
4001
0
    nm = X509_get_issuer_name(x);
4002
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
4003
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
4004
0
            return 1;
4005
0
    }
4006
0
    return 0;
4007
0
}
4008
4009
/*
4010
 * Check certificate chain is consistent with TLS extensions and is usable by
4011
 * server. This servers two purposes: it allows users to check chains before
4012
 * passing them to the server and it allows the server to check chains before
4013
 * attempting to use them.
4014
 */
4015
4016
/* Flags which need to be set for a certificate when strict mode not set */
4017
4018
#define CERT_PKEY_VALID_FLAGS \
4019
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4020
/* Strict mode flags */
4021
#define CERT_PKEY_STRICT_FLAGS \
4022
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4023
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4024
4025
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4026
                     STACK_OF(X509) *chain, int idx)
4027
0
{
4028
0
    int i;
4029
0
    int rv = 0;
4030
0
    int check_flags = 0, strict_mode;
4031
0
    CERT_PKEY *cpk = NULL;
4032
0
    CERT *c = s->cert;
4033
0
    uint32_t *pvalid;
4034
0
    unsigned int suiteb_flags = tls1_suiteb(s);
4035
4036
    /*
4037
     * Meaning of idx:
4038
     * idx == -1 means SSL_check_chain() invocation
4039
     * idx == -2 means checking client certificate chains
4040
     * idx >= 0 means checking SSL_PKEY index
4041
     *
4042
     * For RPK, where there may be no cert, we ignore -1
4043
     */
4044
0
    if (idx != -1) {
4045
0
        if (idx == -2) {
4046
0
            cpk = c->key;
4047
0
            idx = (int)(cpk - c->pkeys);
4048
0
        } else
4049
0
            cpk = c->pkeys + idx;
4050
0
        pvalid = s->s3.tmp.valid_flags + idx;
4051
0
        x = cpk->x509;
4052
0
        pk = cpk->privatekey;
4053
0
        chain = cpk->chain;
4054
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4055
0
        if (tls12_rpk_and_privkey(s, idx)) {
4056
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4057
0
                return 0;
4058
0
            *pvalid = rv = CERT_PKEY_RPK;
4059
0
            return rv;
4060
0
        }
4061
        /* If no cert or key, forget it */
4062
0
        if (x == NULL || pk == NULL)
4063
0
            goto end;
4064
0
    } else {
4065
0
        size_t certidx;
4066
4067
0
        if (x == NULL || pk == NULL)
4068
0
            return 0;
4069
4070
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4071
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
4072
0
            return 0;
4073
0
        idx = (int)certidx;
4074
0
        pvalid = s->s3.tmp.valid_flags + idx;
4075
4076
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4077
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4078
0
        else
4079
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4080
0
        strict_mode = 1;
4081
0
    }
4082
4083
0
    if (suiteb_flags) {
4084
0
        int ok;
4085
0
        if (check_flags)
4086
0
            check_flags |= CERT_PKEY_SUITEB;
4087
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4088
0
        if (ok == X509_V_OK)
4089
0
            rv |= CERT_PKEY_SUITEB;
4090
0
        else if (!check_flags)
4091
0
            goto end;
4092
0
    }
4093
4094
    /*
4095
     * Check all signature algorithms are consistent with signature
4096
     * algorithms extension if TLS 1.2 or later and strict mode.
4097
     */
4098
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4099
0
        && strict_mode) {
4100
0
        int default_nid;
4101
0
        int rsign = 0;
4102
4103
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4104
0
                || s->s3.tmp.peer_sigalgs != NULL) {
4105
0
            default_nid = 0;
4106
        /* If no sigalgs extension use defaults from RFC5246 */
4107
0
        } else {
4108
0
            switch (idx) {
4109
0
            case SSL_PKEY_RSA:
4110
0
                rsign = EVP_PKEY_RSA;
4111
0
                default_nid = NID_sha1WithRSAEncryption;
4112
0
                break;
4113
4114
0
            case SSL_PKEY_DSA_SIGN:
4115
0
                rsign = EVP_PKEY_DSA;
4116
0
                default_nid = NID_dsaWithSHA1;
4117
0
                break;
4118
4119
0
            case SSL_PKEY_ECC:
4120
0
                rsign = EVP_PKEY_EC;
4121
0
                default_nid = NID_ecdsa_with_SHA1;
4122
0
                break;
4123
4124
0
            case SSL_PKEY_GOST01:
4125
0
                rsign = NID_id_GostR3410_2001;
4126
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4127
0
                break;
4128
4129
0
            case SSL_PKEY_GOST12_256:
4130
0
                rsign = NID_id_GostR3410_2012_256;
4131
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4132
0
                break;
4133
4134
0
            case SSL_PKEY_GOST12_512:
4135
0
                rsign = NID_id_GostR3410_2012_512;
4136
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4137
0
                break;
4138
4139
0
            default:
4140
0
                default_nid = -1;
4141
0
                break;
4142
0
            }
4143
0
        }
4144
        /*
4145
         * If peer sent no signature algorithms extension and we have set
4146
         * preferred signature algorithms check we support sha1.
4147
         */
4148
0
        if (default_nid > 0 && c->conf_sigalgs) {
4149
0
            size_t j;
4150
0
            const uint16_t *p = c->conf_sigalgs;
4151
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4152
0
                const SIGALG_LOOKUP *lu =
4153
0
                    tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4154
4155
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4156
0
                    break;
4157
0
            }
4158
0
            if (j == c->conf_sigalgslen) {
4159
0
                if (check_flags)
4160
0
                    goto skip_sigs;
4161
0
                else
4162
0
                    goto end;
4163
0
            }
4164
0
        }
4165
        /* Check signature algorithm of each cert in chain */
4166
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4167
            /*
4168
             * We only get here if the application has called SSL_check_chain(),
4169
             * so check_flags is always set.
4170
             */
4171
0
            if (find_sig_alg(s, x, pk) != NULL)
4172
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4173
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4174
0
            if (!check_flags)
4175
0
                goto end;
4176
0
        } else
4177
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4178
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4179
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4180
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4181
0
                if (check_flags) {
4182
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4183
0
                    break;
4184
0
                } else
4185
0
                    goto end;
4186
0
            }
4187
0
        }
4188
0
    }
4189
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4190
0
    else if (check_flags)
4191
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4192
0
 skip_sigs:
4193
    /* Check cert parameters are consistent */
4194
0
    if (tls1_check_cert_param(s, x, 1))
4195
0
        rv |= CERT_PKEY_EE_PARAM;
4196
0
    else if (!check_flags)
4197
0
        goto end;
4198
0
    if (!s->server)
4199
0
        rv |= CERT_PKEY_CA_PARAM;
4200
    /* In strict mode check rest of chain too */
4201
0
    else if (strict_mode) {
4202
0
        rv |= CERT_PKEY_CA_PARAM;
4203
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4204
0
            X509 *ca = sk_X509_value(chain, i);
4205
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4206
0
                if (check_flags) {
4207
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4208
0
                    break;
4209
0
                } else
4210
0
                    goto end;
4211
0
            }
4212
0
        }
4213
0
    }
4214
0
    if (!s->server && strict_mode) {
4215
0
        STACK_OF(X509_NAME) *ca_dn;
4216
0
        int check_type = 0;
4217
4218
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4219
0
            check_type = TLS_CT_RSA_SIGN;
4220
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4221
0
            check_type = TLS_CT_DSS_SIGN;
4222
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4223
0
            check_type = TLS_CT_ECDSA_SIGN;
4224
4225
0
        if (check_type) {
4226
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4227
0
            size_t j;
4228
4229
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4230
0
                if (*ctypes == check_type) {
4231
0
                    rv |= CERT_PKEY_CERT_TYPE;
4232
0
                    break;
4233
0
                }
4234
0
            }
4235
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4236
0
                goto end;
4237
0
        } else {
4238
0
            rv |= CERT_PKEY_CERT_TYPE;
4239
0
        }
4240
4241
0
        ca_dn = s->s3.tmp.peer_ca_names;
4242
4243
0
        if (ca_dn == NULL
4244
0
            || sk_X509_NAME_num(ca_dn) == 0
4245
0
            || ssl_check_ca_name(ca_dn, x))
4246
0
            rv |= CERT_PKEY_ISSUER_NAME;
4247
0
        else
4248
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4249
0
                X509 *xtmp = sk_X509_value(chain, i);
4250
4251
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4252
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4253
0
                    break;
4254
0
                }
4255
0
            }
4256
4257
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4258
0
            goto end;
4259
0
    } else
4260
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4261
4262
0
    if (!check_flags || (rv & check_flags) == check_flags)
4263
0
        rv |= CERT_PKEY_VALID;
4264
4265
0
 end:
4266
4267
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4268
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4269
0
    else
4270
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4271
4272
    /*
4273
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4274
     * chain is invalid.
4275
     */
4276
0
    if (!check_flags) {
4277
0
        if (rv & CERT_PKEY_VALID) {
4278
0
            *pvalid = rv;
4279
0
        } else {
4280
            /* Preserve sign and explicit sign flag, clear rest */
4281
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4282
0
            return 0;
4283
0
        }
4284
0
    }
4285
0
    return rv;
4286
0
}
4287
4288
/* Set validity of certificates in an SSL structure */
4289
void tls1_set_cert_validity(SSL_CONNECTION *s)
4290
0
{
4291
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4292
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4293
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4294
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4295
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4296
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4297
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4298
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4299
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4300
0
}
4301
4302
/* User level utility function to check a chain is suitable */
4303
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4304
0
{
4305
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4306
4307
0
    if (sc == NULL)
4308
0
        return 0;
4309
4310
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4311
0
}
4312
4313
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4314
0
{
4315
0
    EVP_PKEY *dhp = NULL;
4316
0
    BIGNUM *p;
4317
0
    int dh_secbits = 80, sec_level_bits;
4318
0
    EVP_PKEY_CTX *pctx = NULL;
4319
0
    OSSL_PARAM_BLD *tmpl = NULL;
4320
0
    OSSL_PARAM *params = NULL;
4321
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4322
4323
0
    if (s->cert->dh_tmp_auto != 2) {
4324
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4325
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4326
0
                dh_secbits = 128;
4327
0
            else
4328
0
                dh_secbits = 80;
4329
0
        } else {
4330
0
            if (s->s3.tmp.cert == NULL)
4331
0
                return NULL;
4332
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4333
0
        }
4334
0
    }
4335
4336
    /* Do not pick a prime that is too weak for the current security level */
4337
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4338
0
                                                 NULL, NULL);
4339
0
    if (dh_secbits < sec_level_bits)
4340
0
        dh_secbits = sec_level_bits;
4341
4342
0
    if (dh_secbits >= 192)
4343
0
        p = BN_get_rfc3526_prime_8192(NULL);
4344
0
    else if (dh_secbits >= 152)
4345
0
        p = BN_get_rfc3526_prime_4096(NULL);
4346
0
    else if (dh_secbits >= 128)
4347
0
        p = BN_get_rfc3526_prime_3072(NULL);
4348
0
    else if (dh_secbits >= 112)
4349
0
        p = BN_get_rfc3526_prime_2048(NULL);
4350
0
    else
4351
0
        p = BN_get_rfc2409_prime_1024(NULL);
4352
0
    if (p == NULL)
4353
0
        goto err;
4354
4355
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4356
0
    if (pctx == NULL
4357
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
4358
0
        goto err;
4359
4360
0
    tmpl = OSSL_PARAM_BLD_new();
4361
0
    if (tmpl == NULL
4362
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4363
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4364
0
        goto err;
4365
4366
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4367
0
    if (params == NULL
4368
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4369
0
        goto err;
4370
4371
0
err:
4372
0
    OSSL_PARAM_free(params);
4373
0
    OSSL_PARAM_BLD_free(tmpl);
4374
0
    EVP_PKEY_CTX_free(pctx);
4375
0
    BN_free(p);
4376
0
    return dhp;
4377
0
}
4378
4379
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4380
                                 int op)
4381
0
{
4382
0
    int secbits = -1;
4383
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4384
4385
0
    if (pkey) {
4386
        /*
4387
         * If no parameters this will return -1 and fail using the default
4388
         * security callback for any non-zero security level. This will
4389
         * reject keys which omit parameters but this only affects DSA and
4390
         * omission of parameters is never (?) done in practice.
4391
         */
4392
0
        secbits = EVP_PKEY_get_security_bits(pkey);
4393
0
    }
4394
0
    if (s != NULL)
4395
0
        return ssl_security(s, op, secbits, 0, x);
4396
0
    else
4397
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4398
0
}
4399
4400
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4401
                                 int op)
4402
0
{
4403
    /* Lookup signature algorithm digest */
4404
0
    int secbits, nid, pknid;
4405
4406
    /* Don't check signature if self signed */
4407
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4408
0
        return 1;
4409
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4410
0
        secbits = -1;
4411
    /* If digest NID not defined use signature NID */
4412
0
    if (nid == NID_undef)
4413
0
        nid = pknid;
4414
0
    if (s != NULL)
4415
0
        return ssl_security(s, op, secbits, nid, x);
4416
0
    else
4417
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4418
0
}
4419
4420
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4421
                      int is_ee)
4422
0
{
4423
0
    if (vfy)
4424
0
        vfy = SSL_SECOP_PEER;
4425
0
    if (is_ee) {
4426
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4427
0
            return SSL_R_EE_KEY_TOO_SMALL;
4428
0
    } else {
4429
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4430
0
            return SSL_R_CA_KEY_TOO_SMALL;
4431
0
    }
4432
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4433
0
        return SSL_R_CA_MD_TOO_WEAK;
4434
0
    return 1;
4435
0
}
4436
4437
/*
4438
 * Check security of a chain, if |sk| includes the end entity certificate then
4439
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4440
 * one to the peer. Return values: 1 if ok otherwise error code to use
4441
 */
4442
4443
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4444
                            X509 *x, int vfy)
4445
0
{
4446
0
    int rv, start_idx, i;
4447
4448
0
    if (x == NULL) {
4449
0
        x = sk_X509_value(sk, 0);
4450
0
        if (x == NULL)
4451
0
            return ERR_R_INTERNAL_ERROR;
4452
0
        start_idx = 1;
4453
0
    } else
4454
0
        start_idx = 0;
4455
4456
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4457
0
    if (rv != 1)
4458
0
        return rv;
4459
4460
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4461
0
        x = sk_X509_value(sk, i);
4462
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4463
0
        if (rv != 1)
4464
0
            return rv;
4465
0
    }
4466
0
    return 1;
4467
0
}
4468
4469
/*
4470
 * For TLS 1.2 servers check if we have a certificate which can be used
4471
 * with the signature algorithm "lu" and return index of certificate.
4472
 */
4473
4474
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4475
                                     const SIGALG_LOOKUP *lu)
4476
0
{
4477
0
    int sig_idx = lu->sig_idx;
4478
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4479
0
                                                        SSL_CONNECTION_GET_CTX(s));
4480
4481
    /* If not recognised or not supported by cipher mask it is not suitable */
4482
0
    if (clu == NULL
4483
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4484
0
            || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4485
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4486
0
        return -1;
4487
4488
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4489
0
    if (tls12_rpk_and_privkey(s, sig_idx))
4490
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4491
4492
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4493
0
}
4494
4495
/*
4496
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4497
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4498
 * the key.
4499
 * Returns true if the cert is usable and false otherwise.
4500
 */
4501
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4502
                             X509 *x, EVP_PKEY *pkey)
4503
0
{
4504
0
    const SIGALG_LOOKUP *lu;
4505
0
    int mdnid, pknid, supported;
4506
0
    size_t i;
4507
0
    const char *mdname = NULL;
4508
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4509
4510
    /*
4511
     * If the given EVP_PKEY cannot support signing with this digest,
4512
     * the answer is simply 'no'.
4513
     */
4514
0
    if (sig->hash != NID_undef)
4515
0
        mdname = OBJ_nid2sn(sig->hash);
4516
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4517
0
                                                    mdname,
4518
0
                                                    sctx->propq);
4519
0
    if (supported <= 0)
4520
0
        return 0;
4521
4522
    /*
4523
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4524
     * on the sigalg with which the certificate was signed (by its issuer).
4525
     */
4526
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4527
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4528
0
            return 0;
4529
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4530
0
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4531
0
                                    s->s3.tmp.peer_cert_sigalgs[i]);
4532
0
            if (lu == NULL)
4533
0
                continue;
4534
4535
            /*
4536
             * This does not differentiate between the
4537
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4538
             * have a chain here that lets us look at the key OID in the
4539
             * signing certificate.
4540
             */
4541
0
            if (mdnid == lu->hash && pknid == lu->sig)
4542
0
                return 1;
4543
0
        }
4544
0
        return 0;
4545
0
    }
4546
4547
    /*
4548
     * Without signat_algorithms_cert, any certificate for which we have
4549
     * a viable public key is permitted.
4550
     */
4551
0
    return 1;
4552
0
}
4553
4554
/*
4555
 * Returns true if |s| has a usable certificate configured for use
4556
 * with signature scheme |sig|.
4557
 * "Usable" includes a check for presence as well as applying
4558
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4559
 * Returns false if no usable certificate is found.
4560
 */
4561
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4562
0
{
4563
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4564
0
    if (idx == -1)
4565
0
        idx = sig->sig_idx;
4566
0
    if (!ssl_has_cert(s, idx))
4567
0
        return 0;
4568
4569
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4570
0
                             s->cert->pkeys[idx].privatekey);
4571
0
}
4572
4573
/*
4574
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4575
 * specified signature scheme |sig|, or false otherwise.
4576
 */
4577
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4578
                          EVP_PKEY *pkey)
4579
0
{
4580
0
    size_t idx;
4581
4582
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4583
0
        return 0;
4584
4585
    /* Check the key is consistent with the sig alg */
4586
0
    if ((int)idx != sig->sig_idx)
4587
0
        return 0;
4588
4589
0
    return check_cert_usable(s, sig, x, pkey);
4590
0
}
4591
4592
/*
4593
 * Find a signature scheme that works with the supplied certificate |x| and key
4594
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4595
 * available certs/keys to find one that works.
4596
 */
4597
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4598
                                         EVP_PKEY *pkey)
4599
0
{
4600
0
    const SIGALG_LOOKUP *lu = NULL;
4601
0
    size_t i;
4602
0
    int curve = -1;
4603
0
    EVP_PKEY *tmppkey;
4604
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4605
4606
    /* Look for a shared sigalgs matching possible certificates */
4607
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
4608
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4609
0
        lu = s->shared_sigalgs[i];
4610
0
        if (lu->hash == NID_sha1
4611
0
            || lu->hash == NID_sha224
4612
0
            || lu->sig == EVP_PKEY_DSA
4613
0
            || lu->sig == EVP_PKEY_RSA
4614
0
            || !tls_sigalg_compat(s, lu))
4615
0
            continue;
4616
4617
        /* Check that we have a cert, and signature_algorithms_cert */
4618
0
        if (!tls1_lookup_md(sctx, lu, NULL))
4619
0
            continue;
4620
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4621
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4622
0
            continue;
4623
4624
0
        tmppkey = (pkey != NULL) ? pkey
4625
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4626
4627
0
        if (lu->sig == EVP_PKEY_EC) {
4628
0
            if (curve == -1)
4629
0
                curve = ssl_get_EC_curve_nid(tmppkey);
4630
0
            if (lu->curve != NID_undef && curve != lu->curve)
4631
0
                continue;
4632
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4633
            /* validate that key is large enough for the signature algorithm */
4634
0
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4635
0
                continue;
4636
0
        }
4637
0
        break;
4638
0
    }
4639
4640
0
    if (i == s->shared_sigalgslen)
4641
0
        return NULL;
4642
4643
0
    return lu;
4644
0
}
4645
4646
/*
4647
 * Choose an appropriate signature algorithm based on available certificates
4648
 * Sets chosen certificate and signature algorithm.
4649
 *
4650
 * For servers if we fail to find a required certificate it is a fatal error,
4651
 * an appropriate error code is set and a TLS alert is sent.
4652
 *
4653
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4654
 * a fatal error: we will either try another certificate or not present one
4655
 * to the server. In this case no error is set.
4656
 */
4657
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4658
0
{
4659
0
    const SIGALG_LOOKUP *lu = NULL;
4660
0
    int sig_idx = -1;
4661
4662
0
    s->s3.tmp.cert = NULL;
4663
0
    s->s3.tmp.sigalg = NULL;
4664
4665
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
4666
0
        lu = find_sig_alg(s, NULL, NULL);
4667
0
        if (lu == NULL) {
4668
0
            if (!fatalerrs)
4669
0
                return 1;
4670
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4671
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4672
0
            return 0;
4673
0
        }
4674
0
    } else {
4675
        /* If ciphersuite doesn't require a cert nothing to do */
4676
0
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4677
0
            return 1;
4678
0
        if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
4679
0
                return 1;
4680
4681
0
        if (SSL_USE_SIGALGS(s)) {
4682
0
            size_t i;
4683
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
4684
0
                int curve = -1;
4685
0
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4686
4687
                /* For Suite B need to match signature algorithm to curve */
4688
0
                if (tls1_suiteb(s))
4689
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4690
0
                                                 .privatekey);
4691
4692
                /*
4693
                 * Find highest preference signature algorithm matching
4694
                 * cert type
4695
                 */
4696
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
4697
                    /* Check the sigalg version bounds */
4698
0
                    lu = s->shared_sigalgs[i];
4699
0
                    if (!tls_sigalg_compat(s, lu))
4700
0
                        continue;
4701
0
                    if (s->server) {
4702
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4703
0
                            continue;
4704
0
                    } else {
4705
0
                        int cc_idx = (int)(s->cert->key - s->cert->pkeys);
4706
4707
0
                        sig_idx = lu->sig_idx;
4708
0
                        if (cc_idx != sig_idx)
4709
0
                            continue;
4710
0
                    }
4711
                    /* Check that we have a cert, and sig_algs_cert */
4712
0
                    if (!has_usable_cert(s, lu, sig_idx))
4713
0
                        continue;
4714
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4715
                        /* validate that key is large enough for the signature algorithm */
4716
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4717
4718
0
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4719
0
                            continue;
4720
0
                    }
4721
0
                    if (curve == -1 || lu->curve == curve)
4722
0
                        break;
4723
0
                }
4724
0
#ifndef OPENSSL_NO_GOST
4725
                /*
4726
                 * Some Windows-based implementations do not send GOST algorithms indication
4727
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4728
                 * we have to assume GOST support.
4729
                 */
4730
0
                if (i == s->shared_sigalgslen
4731
0
                    && (s->s3.tmp.new_cipher->algorithm_auth
4732
0
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4733
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4734
0
                    if (!fatalerrs)
4735
0
                      return 1;
4736
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4737
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4738
0
                    return 0;
4739
0
                  } else {
4740
0
                    i = 0;
4741
0
                    sig_idx = lu->sig_idx;
4742
0
                  }
4743
0
                }
4744
0
#endif
4745
0
                if (i == s->shared_sigalgslen) {
4746
0
                    if (!fatalerrs)
4747
0
                        return 1;
4748
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4749
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4750
0
                    return 0;
4751
0
                }
4752
0
            } else {
4753
                /*
4754
                 * If we have no sigalg use defaults
4755
                 */
4756
0
                const uint16_t *sent_sigs;
4757
0
                size_t sent_sigslen;
4758
4759
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4760
0
                    if (!fatalerrs)
4761
0
                        return 1;
4762
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4763
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4764
0
                    return 0;
4765
0
                }
4766
4767
                /* Check signature matches a type we sent */
4768
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4769
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4770
0
                    if (lu->sigalg == *sent_sigs
4771
0
                            && has_usable_cert(s, lu, lu->sig_idx))
4772
0
                        break;
4773
0
                }
4774
0
                if (i == sent_sigslen) {
4775
0
                    if (!fatalerrs)
4776
0
                        return 1;
4777
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4778
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
4779
0
                    return 0;
4780
0
                }
4781
0
            }
4782
0
        } else {
4783
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4784
0
                if (!fatalerrs)
4785
0
                    return 1;
4786
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4787
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4788
0
                return 0;
4789
0
            }
4790
0
        }
4791
0
    }
4792
0
    if (sig_idx == -1)
4793
0
        sig_idx = lu->sig_idx;
4794
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4795
0
    s->cert->key = s->s3.tmp.cert;
4796
0
    s->s3.tmp.sigalg = lu;
4797
0
    return 1;
4798
0
}
4799
4800
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4801
0
{
4802
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4803
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4804
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4805
0
        return 0;
4806
0
    }
4807
4808
0
    ctx->ext.max_fragment_len_mode = mode;
4809
0
    return 1;
4810
0
}
4811
4812
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4813
0
{
4814
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4815
4816
0
    if (sc == NULL
4817
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4818
0
        return 0;
4819
4820
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4821
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4822
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4823
0
        return 0;
4824
0
    }
4825
4826
0
    sc->ext.max_fragment_len_mode = mode;
4827
0
    return 1;
4828
0
}
4829
4830
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4831
0
{
4832
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4833
0
        return TLSEXT_max_fragment_length_DISABLED;
4834
0
    return session->ext.max_fragment_len_mode;
4835
0
}
4836
4837
/*
4838
 * Helper functions for HMAC access with legacy support included.
4839
 */
4840
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4841
0
{
4842
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4843
0
    EVP_MAC *mac = NULL;
4844
4845
0
    if (ret == NULL)
4846
0
        return NULL;
4847
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4848
0
    if (ctx->ext.ticket_key_evp_cb == NULL
4849
0
            && ctx->ext.ticket_key_cb != NULL) {
4850
0
        if (!ssl_hmac_old_new(ret))
4851
0
            goto err;
4852
0
        return ret;
4853
0
    }
4854
0
#endif
4855
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4856
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4857
0
        goto err;
4858
0
    EVP_MAC_free(mac);
4859
0
    return ret;
4860
0
 err:
4861
0
    EVP_MAC_CTX_free(ret->ctx);
4862
0
    EVP_MAC_free(mac);
4863
0
    OPENSSL_free(ret);
4864
0
    return NULL;
4865
0
}
4866
4867
void ssl_hmac_free(SSL_HMAC *ctx)
4868
0
{
4869
0
    if (ctx != NULL) {
4870
0
        EVP_MAC_CTX_free(ctx->ctx);
4871
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4872
0
        ssl_hmac_old_free(ctx);
4873
0
#endif
4874
0
        OPENSSL_free(ctx);
4875
0
    }
4876
0
}
4877
4878
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4879
0
{
4880
0
    return ctx->ctx;
4881
0
}
4882
4883
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4884
0
{
4885
0
    OSSL_PARAM params[2], *p = params;
4886
4887
0
    if (ctx->ctx != NULL) {
4888
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4889
0
        *p = OSSL_PARAM_construct_end();
4890
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4891
0
            return 1;
4892
0
    }
4893
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4894
0
    if (ctx->old_ctx != NULL)
4895
0
        return ssl_hmac_old_init(ctx, key, len, md);
4896
0
#endif
4897
0
    return 0;
4898
0
}
4899
4900
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4901
0
{
4902
0
    if (ctx->ctx != NULL)
4903
0
        return EVP_MAC_update(ctx->ctx, data, len);
4904
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4905
0
    if (ctx->old_ctx != NULL)
4906
0
        return ssl_hmac_old_update(ctx, data, len);
4907
0
#endif
4908
0
    return 0;
4909
0
}
4910
4911
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4912
                   size_t max_size)
4913
0
{
4914
0
    if (ctx->ctx != NULL)
4915
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4916
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4917
0
    if (ctx->old_ctx != NULL)
4918
0
        return ssl_hmac_old_final(ctx, md, len);
4919
0
#endif
4920
0
    return 0;
4921
0
}
4922
4923
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4924
0
{
4925
0
    if (ctx->ctx != NULL)
4926
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4927
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4928
0
    if (ctx->old_ctx != NULL)
4929
0
        return ssl_hmac_old_size(ctx);
4930
0
#endif
4931
0
    return 0;
4932
0
}
4933
4934
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4935
0
{
4936
0
    char gname[OSSL_MAX_NAME_SIZE];
4937
4938
0
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4939
0
        return OBJ_txt2nid(gname);
4940
4941
0
    return NID_undef;
4942
0
}
4943
4944
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4945
                                     const unsigned char *enckey,
4946
                                     size_t enckeylen)
4947
0
{
4948
0
    if (EVP_PKEY_is_a(pkey, "DH")) {
4949
0
        int bits = EVP_PKEY_get_bits(pkey);
4950
4951
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4952
            /* the encoded key must be padded to the length of the p */
4953
0
            return 0;
4954
0
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4955
0
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4956
0
            || enckey[0] != 0x04)
4957
0
            return 0;
4958
0
    }
4959
4960
0
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4961
0
}