Coverage Report

Created: 2025-11-14 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/rsa/rsa_gen.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * NB: these functions have been "upgraded", the deprecated versions (which
12
 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13
 * Geoff
14
 */
15
16
/*
17
 * RSA low level APIs are deprecated for public use, but still ok for
18
 * internal use.
19
 */
20
#include "internal/deprecated.h"
21
22
#include <stdio.h>
23
#include <time.h>
24
#include "internal/cryptlib.h"
25
#include <openssl/bn.h>
26
#include <openssl/self_test.h>
27
#include "prov/providercommon.h"
28
#include "rsa_local.h"
29
30
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
31
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
32
                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test,
33
                      uint32_t a, uint32_t b);
34
35
/*
36
 * NB: this wrapper would normally be placed in rsa_lib.c and the static
37
 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
38
 * so that we don't introduce a new linker dependency. Eg. any application
39
 * that wasn't previously linking object code related to key-generation won't
40
 * have to now just because key-generation is part of RSA_METHOD.
41
 */
42
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
43
0
{
44
0
    if (rsa->meth->rsa_keygen != NULL)
45
0
        return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
46
47
0
    return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
48
0
                                        e_value, cb);
49
0
}
50
51
int ossl_rsa_generate_multi_prime_key(RSA *rsa, int bits, int primes,
52
                                      BIGNUM *e_value, BN_GENCB *cb,
53
                                      uint32_t a, uint32_t b)
54
0
{
55
0
#ifndef FIPS_MODULE
56
    /* multi-prime is only supported with the builtin key generation */
57
0
    if (rsa->meth->rsa_multi_prime_keygen != NULL) {
58
0
        return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
59
0
                                                 e_value, cb);
60
0
    } else if (rsa->meth->rsa_keygen != NULL) {
61
        /*
62
         * However, if rsa->meth implements only rsa_keygen, then we
63
         * have to honour it in 2-prime case and assume that it wouldn't
64
         * know what to do with multi-prime key generated by builtin
65
         * subroutine...
66
         */
67
0
        if (primes == 2)
68
0
            return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
69
0
        else
70
0
            return 0;
71
0
    }
72
0
#endif /* FIPS_MODULE */
73
0
    return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0, a, b);
74
0
}
75
76
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
77
                                 BIGNUM *e, BN_GENCB *cb)
78
0
{
79
0
    return ossl_rsa_generate_multi_prime_key(rsa, bits, primes, e, cb, 0, 0);
80
0
}
81
82
DEFINE_STACK_OF(BIGNUM)
83
84
/*
85
 * Given input values, q, p, n, d and e, derive the exponents
86
 * and coefficients for each prime in this key, placing the result
87
 * on their respective exps and coeffs stacks
88
 */
89
#ifndef FIPS_MODULE
90
int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,
91
                               BIGNUM *e_value,
92
                               STACK_OF(BIGNUM) *factors,
93
                               STACK_OF(BIGNUM) *exps,
94
                               STACK_OF(BIGNUM) *coeffs)
95
0
{
96
0
    STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;
97
0
    BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;
98
0
    BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;
99
0
    BIGNUM *p = NULL, *q = NULL;
100
0
    BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
101
0
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;
102
0
    BN_CTX *ctx = NULL;
103
0
    BIGNUM *tmp = NULL;
104
0
    int i;
105
0
    int ret = 0;
106
107
0
    ctx = BN_CTX_new_ex(rsa->libctx);
108
0
    if (ctx == NULL)
109
0
        goto err;
110
111
0
    BN_CTX_start(ctx);
112
113
0
    pplist = sk_BIGNUM_new_null();
114
0
    if (pplist == NULL)
115
0
        goto err;
116
117
0
    pdlist = sk_BIGNUM_new_null();
118
0
    if (pdlist == NULL)
119
0
        goto err;
120
121
0
    r0 = BN_CTX_get(ctx);
122
0
    r1 = BN_CTX_get(ctx);
123
0
    r2 = BN_CTX_get(ctx);
124
125
0
    if (r2 == NULL)
126
0
        goto err;
127
128
0
    BN_set_flags(r0, BN_FLG_CONSTTIME);
129
0
    BN_set_flags(r1, BN_FLG_CONSTTIME);
130
0
    BN_set_flags(r2, BN_FLG_CONSTTIME);
131
132
0
    if (BN_copy(r1, rsa->n) == NULL)
133
0
        goto err;
134
135
0
    p = sk_BIGNUM_value(factors, 0);
136
0
    q = sk_BIGNUM_value(factors, 1);
137
138
    /* Build list of partial products of primes */
139
0
    for (i = 0; i < sk_BIGNUM_num(factors); i++) {
140
0
        switch (i) {
141
0
        case 0:
142
            /* our first prime, p */
143
0
            if (!BN_sub(r2, p, BN_value_one()))
144
0
                goto err;
145
0
            BN_set_flags(r2, BN_FLG_CONSTTIME);
146
0
            if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)
147
0
                goto err;
148
0
            break;
149
0
        case 1:
150
            /* second prime q */
151
0
            if (!BN_mul(r1, p, q, ctx))
152
0
                goto err;
153
0
            tmp = BN_dup(r1);
154
0
            if (tmp == NULL)
155
0
                goto err;
156
0
            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
157
0
                goto err;
158
0
            tmp = NULL;
159
0
            break;
160
0
        default:
161
0
            factor = sk_BIGNUM_value(factors, i);
162
            /* all other primes */
163
0
            if (!BN_mul(r1, r1, factor, ctx))
164
0
                goto err;
165
0
            tmp = BN_dup(r1);
166
0
            if (tmp == NULL)
167
0
                goto err;
168
0
            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
169
0
                goto err;
170
0
            tmp = NULL;
171
0
            break;
172
0
        }
173
0
    }
174
175
    /* build list of relative d values */
176
    /* p -1 */
177
0
    if (!BN_sub(r1, p, BN_value_one()))
178
0
        goto err;
179
0
    if (!BN_sub(r2, q, BN_value_one()))
180
0
        goto err;
181
0
    if (!BN_mul(r0, r1, r2, ctx))
182
0
        goto err;
183
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
184
0
        factor = sk_BIGNUM_value(factors, i);
185
0
        dval = BN_new();
186
0
        if (dval == NULL)
187
0
            goto err;
188
0
        BN_set_flags(dval, BN_FLG_CONSTTIME);
189
0
        if (!BN_sub(dval, factor, BN_value_one()))
190
0
            goto err;
191
0
        if (!BN_mul(r0, r0, dval, ctx))
192
0
            goto err;
193
0
        if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))
194
0
            goto err;
195
0
        dval = NULL;
196
0
    }
197
198
    /* Calculate dmp1, dmq1 and additional exponents */
199
0
    dmp1 = BN_secure_new();
200
0
    if (dmp1 == NULL)
201
0
        goto err;
202
0
    dmq1 = BN_secure_new();
203
0
    if (dmq1 == NULL)
204
0
        goto err;
205
206
0
    if (!BN_mod(dmp1, rsa->d, r1, ctx))
207
0
        goto err;
208
0
    if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))
209
0
        goto err;
210
0
    dmp1 = NULL;
211
212
0
    if (!BN_mod(dmq1, rsa->d, r2, ctx))
213
0
        goto err;
214
0
    if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))
215
0
        goto err;
216
0
    dmq1 = NULL;
217
218
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
219
0
        newpd = sk_BIGNUM_value(pdlist, i - 2);
220
0
        newexp = BN_new();
221
0
        if (newexp == NULL)
222
0
            goto err;
223
0
        if (!BN_mod(newexp, rsa->d, newpd, ctx))
224
0
            goto err;
225
0
        if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))
226
0
            goto err;
227
0
        newexp = NULL;
228
0
    }
229
230
    /* Calculate iqmp and additional coefficients */
231
0
    iqmp = BN_new();
232
0
    if (iqmp == NULL)
233
0
        goto err;
234
235
0
    if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),
236
0
                       sk_BIGNUM_value(factors, 0), ctx) == NULL)
237
0
        goto err;
238
0
    if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))
239
0
        goto err;
240
0
    iqmp = NULL;
241
242
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
243
0
        newpp = sk_BIGNUM_value(pplist, i - 2);
244
0
        newcoeff = BN_new();
245
0
        if (newcoeff == NULL)
246
0
            goto err;
247
0
        if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),
248
0
                           ctx) == NULL)
249
0
            goto err;
250
0
        if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))
251
0
            goto err;
252
0
        newcoeff = NULL;
253
0
    }
254
255
0
    ret = 1;
256
0
 err:
257
0
    BN_free(newcoeff);
258
0
    BN_free(newexp);
259
0
    BN_free(dval);
260
0
    BN_free(tmp);
261
0
    sk_BIGNUM_pop_free(pplist, BN_free);
262
0
    sk_BIGNUM_pop_free(pdlist, BN_free);
263
0
    BN_CTX_end(ctx);
264
0
    BN_CTX_free(ctx);
265
0
    BN_clear_free(dmp1);
266
0
    BN_clear_free(dmq1);
267
0
    BN_clear_free(iqmp);
268
0
    return ret;
269
0
}
270
271
static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
272
                                 BIGNUM *e_value, BN_GENCB *cb)
273
0
{
274
0
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;
275
0
    int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
276
0
    int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
277
0
    RSA_PRIME_INFO *pinfo = NULL;
278
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
279
0
    STACK_OF(BIGNUM) *factors = NULL;
280
0
    STACK_OF(BIGNUM) *exps = NULL;
281
0
    STACK_OF(BIGNUM) *coeffs = NULL;
282
0
    BN_CTX *ctx = NULL;
283
0
    BN_ULONG bitst = 0;
284
0
    unsigned long error = 0;
285
0
    int ok = -1;
286
287
0
    if (bits < RSA_MIN_MODULUS_BITS) {
288
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
289
0
        return 0;
290
0
    }
291
0
    if (e_value == NULL) {
292
0
        ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
293
0
        return 0;
294
0
    }
295
    /* A bad value for e can cause infinite loops */
296
0
    if (!ossl_rsa_check_public_exponent(e_value)) {
297
0
        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
298
0
        return 0;
299
0
    }
300
301
0
    if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
302
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
303
0
        return 0;
304
0
    }
305
306
0
    factors = sk_BIGNUM_new_null();
307
0
    if (factors == NULL)
308
0
        return 0;
309
310
0
    exps = sk_BIGNUM_new_null();
311
0
    if (exps == NULL)
312
0
        goto err;
313
314
0
    coeffs = sk_BIGNUM_new_null();
315
0
    if (coeffs == NULL)
316
0
        goto err;
317
318
0
    ctx = BN_CTX_new_ex(rsa->libctx);
319
0
    if (ctx == NULL)
320
0
        goto err;
321
0
    BN_CTX_start(ctx);
322
0
    r0 = BN_CTX_get(ctx);
323
0
    r1 = BN_CTX_get(ctx);
324
0
    r2 = BN_CTX_get(ctx);
325
0
    if (r2 == NULL)
326
0
        goto err;
327
328
    /* divide bits into 'primes' pieces evenly */
329
0
    quo = bits / primes;
330
0
    rmd = bits % primes;
331
332
0
    for (i = 0; i < primes; i++)
333
0
        bitsr[i] = (i < rmd) ? quo + 1 : quo;
334
335
0
    rsa->dirty_cnt++;
336
337
    /* We need the RSA components non-NULL */
338
0
    if (!rsa->n && ((rsa->n = BN_new()) == NULL))
339
0
        goto err;
340
0
    if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
341
0
        goto err;
342
0
    BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
343
0
    if (!rsa->e && ((rsa->e = BN_new()) == NULL))
344
0
        goto err;
345
0
    if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
346
0
        goto err;
347
0
    BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
348
0
    if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
349
0
        goto err;
350
0
    BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
351
352
    /* initialize multi-prime components */
353
0
    if (primes > RSA_DEFAULT_PRIME_NUM) {
354
0
        rsa->version = RSA_ASN1_VERSION_MULTI;
355
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
356
0
        if (prime_infos == NULL)
357
0
            goto err;
358
0
        if (rsa->prime_infos != NULL) {
359
            /* could this happen? */
360
0
            sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
361
0
                                       ossl_rsa_multip_info_free);
362
0
        }
363
0
        rsa->prime_infos = prime_infos;
364
365
        /* prime_info from 2 to |primes| -1 */
366
0
        for (i = 2; i < primes; i++) {
367
0
            pinfo = ossl_rsa_multip_info_new();
368
0
            if (pinfo == NULL)
369
0
                goto err;
370
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
371
0
        }
372
0
    }
373
374
0
    if (BN_copy(rsa->e, e_value) == NULL)
375
0
        goto err;
376
377
    /* generate p, q and other primes (if any) */
378
0
    for (i = 0; i < primes; i++) {
379
0
        adj = 0;
380
0
        retries = 0;
381
382
0
        if (i == 0) {
383
0
            prime = rsa->p;
384
0
        } else if (i == 1) {
385
0
            prime = rsa->q;
386
0
        } else {
387
0
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
388
0
            prime = pinfo->r;
389
0
        }
390
0
        BN_set_flags(prime, BN_FLG_CONSTTIME);
391
392
0
        for (;;) {
393
0
 redo:
394
0
            if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
395
0
                                       cb, ctx))
396
0
                goto err;
397
            /*
398
             * prime should not be equal to p, q, r_3...
399
             * (those primes prior to this one)
400
             */
401
0
            {
402
0
                int j;
403
404
0
                for (j = 0; j < i; j++) {
405
0
                    BIGNUM *prev_prime;
406
407
0
                    if (j == 0)
408
0
                        prev_prime = rsa->p;
409
0
                    else if (j == 1)
410
0
                        prev_prime = rsa->q;
411
0
                    else
412
0
                        prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
413
0
                                                             j - 2)->r;
414
415
0
                    if (!BN_cmp(prime, prev_prime)) {
416
0
                        goto redo;
417
0
                    }
418
0
                }
419
0
            }
420
0
            if (!BN_sub(r2, prime, BN_value_one()))
421
0
                goto err;
422
0
            ERR_set_mark();
423
0
            BN_set_flags(r2, BN_FLG_CONSTTIME);
424
0
            if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
425
                /* GCD == 1 since inverse exists */
426
0
                break;
427
0
            }
428
0
            error = ERR_peek_last_error();
429
0
            if (ERR_GET_LIB(error) == ERR_LIB_BN
430
0
                && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
431
                /* GCD != 1 */
432
0
                ERR_pop_to_mark();
433
0
            } else {
434
0
                goto err;
435
0
            }
436
0
            if (!BN_GENCB_call(cb, 2, n++))
437
0
                goto err;
438
0
        }
439
440
0
        bitse += bitsr[i];
441
442
        /* calculate n immediately to see if it's sufficient */
443
0
        if (i == 1) {
444
            /* we get at least 2 primes */
445
0
            if (!BN_mul(r1, rsa->p, rsa->q, ctx))
446
0
                goto err;
447
0
        } else if (i != 0) {
448
            /* modulus n = p * q * r_3 * r_4 ... */
449
0
            if (!BN_mul(r1, rsa->n, prime, ctx))
450
0
                goto err;
451
0
        } else {
452
            /* i == 0, do nothing */
453
0
            if (!BN_GENCB_call(cb, 3, i))
454
0
                goto err;
455
0
            tmp = BN_dup(prime);
456
0
            if (tmp == NULL)
457
0
                goto err;
458
0
            if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
459
0
                goto err;
460
0
            continue;
461
0
        }
462
463
        /*
464
         * if |r1|, product of factors so far, is not as long as expected
465
         * (by checking the first 4 bits are less than 0x9 or greater than
466
         * 0xF). If so, re-generate the last prime.
467
         *
468
         * NOTE: This actually can't happen in two-prime case, because of
469
         * the way factors are generated.
470
         *
471
         * Besides, another consideration is, for multi-prime case, even the
472
         * length modulus is as long as expected, the modulus could start at
473
         * 0x8, which could be utilized to distinguish a multi-prime private
474
         * key by using the modulus in a certificate. This is also covered
475
         * by checking the length should not be less than 0x9.
476
         */
477
0
        if (!BN_rshift(r2, r1, bitse - 4))
478
0
            goto err;
479
0
        bitst = BN_get_word(r2);
480
481
0
        if (bitst < 0x9 || bitst > 0xF) {
482
            /*
483
             * For keys with more than 4 primes, we attempt longer factor to
484
             * meet length requirement.
485
             *
486
             * Otherwise, we just re-generate the prime with the same length.
487
             *
488
             * This strategy has the following goals:
489
             *
490
             * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
491
             * 2. stay the same logic with normal 2-prime key
492
             */
493
0
            bitse -= bitsr[i];
494
0
            if (!BN_GENCB_call(cb, 2, n++))
495
0
                goto err;
496
0
            if (primes > 4) {
497
0
                if (bitst < 0x9)
498
0
                    adj++;
499
0
                else
500
0
                    adj--;
501
0
            } else if (retries == 4) {
502
                /*
503
                 * re-generate all primes from scratch, mainly used
504
                 * in 4 prime case to avoid long loop. Max retry times
505
                 * is set to 4.
506
                 */
507
0
                i = -1;
508
0
                bitse = 0;
509
0
                sk_BIGNUM_pop_free(factors, BN_clear_free);
510
0
                factors = sk_BIGNUM_new_null();
511
0
                if (factors == NULL)
512
0
                    goto err;
513
0
                continue;
514
0
            }
515
0
            retries++;
516
0
            goto redo;
517
0
        }
518
        /* save product of primes for further use, for multi-prime only */
519
0
        if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
520
0
            goto err;
521
0
        if (BN_copy(rsa->n, r1) == NULL)
522
0
            goto err;
523
0
        if (!BN_GENCB_call(cb, 3, i))
524
0
            goto err;
525
0
        tmp = BN_dup(prime);
526
0
        if (tmp == NULL)
527
0
            goto err;
528
0
        if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
529
0
            goto err;
530
0
    }
531
532
0
    if (BN_cmp(rsa->p, rsa->q) < 0) {
533
0
        tmp = rsa->p;
534
0
        rsa->p = rsa->q;
535
0
        rsa->q = tmp;
536
        /* mirror this in our factor stack */
537
0
        if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))
538
0
            goto err;
539
0
    }
540
541
    /* calculate d */
542
543
    /* p - 1 */
544
0
    if (!BN_sub(r1, rsa->p, BN_value_one()))
545
0
        goto err;
546
    /* q - 1 */
547
0
    if (!BN_sub(r2, rsa->q, BN_value_one()))
548
0
        goto err;
549
    /* (p - 1)(q - 1) */
550
0
    if (!BN_mul(r0, r1, r2, ctx))
551
0
        goto err;
552
    /* multi-prime */
553
0
    for (i = 2; i < primes; i++) {
554
0
        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
555
        /* save r_i - 1 to pinfo->d temporarily */
556
0
        if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
557
0
            goto err;
558
0
        if (!BN_mul(r0, r0, pinfo->d, ctx))
559
0
            goto err;
560
0
    }
561
562
563
0
    BN_set_flags(r0, BN_FLG_CONSTTIME);
564
0
    if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) {
565
0
        goto err;               /* d */
566
0
    }
567
568
    /* derive any missing exponents and coefficients */
569
0
    if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,
570
0
                                    factors, exps, coeffs))
571
0
        goto err;
572
573
    /*
574
     * first 2 factors/exps are already tracked in p/q/dmq1/dmp1
575
     * and the first coeff is in iqmp, so pop those off the stack
576
     * Note, the first 2 factors/exponents are already tracked by p and q
577
     * assign dmp1/dmq1 and iqmp
578
     * the remaining pinfo values are separately allocated, so copy and delete 
579
     * those
580
     */
581
0
    BN_clear_free(sk_BIGNUM_delete(factors, 0));
582
0
    BN_clear_free(sk_BIGNUM_delete(factors, 0));
583
0
    rsa->dmp1 = sk_BIGNUM_delete(exps, 0);
584
0
    rsa->dmq1 = sk_BIGNUM_delete(exps, 0);
585
0
    rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);
586
0
    for (i = 2; i < primes; i++) {
587
0
        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
588
0
        tmp = sk_BIGNUM_delete(factors, 0);
589
0
        BN_copy(pinfo->r, tmp);
590
0
        BN_clear_free(tmp);
591
0
        tmp = sk_BIGNUM_delete(exps, 0);
592
0
        tmp2 = BN_copy(pinfo->d, tmp);
593
0
        BN_clear_free(tmp);
594
0
        if (tmp2 == NULL)
595
0
            goto err;
596
0
        tmp = sk_BIGNUM_delete(coeffs, 0);
597
0
        tmp2 = BN_copy(pinfo->t, tmp);
598
0
        BN_clear_free(tmp);
599
0
        if (tmp2 == NULL)
600
0
            goto err;
601
0
    }
602
0
    ok = 1;
603
0
 err:
604
0
    sk_BIGNUM_free(factors);
605
0
    sk_BIGNUM_free(exps);
606
0
    sk_BIGNUM_free(coeffs);
607
0
    if (ok == -1) {
608
0
        ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
609
0
        ok = 0;
610
0
    }
611
0
    BN_CTX_end(ctx);
612
0
    BN_CTX_free(ctx);
613
0
    return ok;
614
0
}
615
#endif /* FIPS_MODULE */
616
617
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
618
                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test,
619
                      uint32_t a, uint32_t b)
620
0
{
621
0
    int ok = 0;
622
623
#ifdef FIPS_MODULE
624
    ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb, a, b);
625
    pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
626
#else
627
    /*
628
     * Only multi-prime keys or insecure keys with a small key length or a
629
     * public exponent <= 2^16 will use the older rsa_multiprime_keygen().
630
     */
631
0
    if (primes == 2
632
0
            && bits >= 2048
633
0
            && (e_value == NULL || BN_num_bits(e_value) > 16))
634
0
        ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb, a, b);
635
0
    else
636
0
        ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
637
0
#endif /* FIPS_MODULE */
638
639
0
    if (pairwise_test && ok > 0) {
640
0
        OSSL_CALLBACK *stcb = NULL;
641
0
        void *stcbarg = NULL;
642
643
0
        OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
644
0
        ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
645
0
        if (!ok) {
646
0
            ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
647
            /* Clear intermediate results */
648
0
            BN_clear_free(rsa->d);
649
0
            BN_clear_free(rsa->p);
650
0
            BN_clear_free(rsa->q);
651
0
            BN_clear_free(rsa->dmp1);
652
0
            BN_clear_free(rsa->dmq1);
653
0
            BN_clear_free(rsa->iqmp);
654
0
            rsa->d = NULL;
655
0
            rsa->p = NULL;
656
0
            rsa->q = NULL;
657
0
            rsa->dmp1 = NULL;
658
0
            rsa->dmq1 = NULL;
659
0
            rsa->iqmp = NULL;
660
0
        }
661
0
    }
662
0
    return ok;
663
0
}
664
665
/*
666
 * AS10.35 (and its VEs/TEs) of the FIPS 140-3 standard requires a PCT for every
667
 * generated key pair. There are 3 options:
668
 * 1) If the key pair is to be used for key transport (asymmetric cipher), the
669
 *    PCT consists of encrypting a plaintext, verifying that the result
670
 *    (ciphertext) is not equal to the plaintext, decrypting the ciphertext, and
671
 *    verifying that the result is equal to the plaintext.
672
 * 2) If the key pair is to be used for digital signatures, the PCT consists of
673
 *    computing and verifying a signature.
674
 * 3) If the key pair is to be used for key agreement, the exact PCT is defined
675
 *    in the applicable standards. For RSA-based schemes, this is defined in
676
 *    SP 800-56Br2 (Section 6.4.1.1) as:
677
 *    "The owner shall perform a pair-wise consistency test by verifying that m
678
 *    = (m^e)^d mod n for some integer m satisfying 1 < m < (n - 1)."
679
 *
680
 * OpenSSL implements all three use cases: RSA-OAEP for key transport,
681
 * RSA signatures with PKCS#1 v1.5 or PSS padding, and KAS-IFC-SSC (KAS1/KAS2)
682
 * using RSASVE.
683
 *
684
 * According to FIPS 140-3 IG 10.3.A, if at the time when the PCT is performed
685
 * the keys' intended usage is not known, then any of the three PCTs described
686
 * in AS10.35 shall be performed on this key pair.
687
 *
688
 * Because of this allowance from the IG, the simplest option is 3, i.e.
689
 * RSA_public_encrypt() and RSA_private_decrypt() with RSA_NO_PADDING.
690
 */
691
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
692
0
{
693
0
    int ret = 0;
694
0
    unsigned int plaintxt_len;
695
0
    unsigned char *plaintxt = NULL;
696
0
    unsigned int ciphertxt_len;
697
0
    unsigned char *ciphertxt = NULL;
698
0
    unsigned char *decoded = NULL;
699
0
    unsigned int decoded_len;
700
0
    int padding = RSA_NO_PADDING;
701
0
    OSSL_SELF_TEST *st = NULL;
702
703
0
    st = OSSL_SELF_TEST_new(cb, cbarg);
704
0
    if (st == NULL)
705
0
        goto err;
706
0
    OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
707
0
                           OSSL_SELF_TEST_DESC_PCT_RSA);
708
709
    /*
710
     * For RSA_NO_PADDING, RSA_public_encrypt() and RSA_private_decrypt()
711
     * require the 'to' and 'from' parameters to have equal length and a
712
     * maximum of RSA_size() - allocate space for plaintxt, ciphertxt, and
713
     * decoded.
714
     */
715
0
    plaintxt_len = RSA_size(rsa);
716
0
    plaintxt = OPENSSL_calloc(plaintxt_len, 3);
717
0
    if (plaintxt == NULL)
718
0
        goto err;
719
0
    ciphertxt = plaintxt + plaintxt_len;
720
0
    decoded = ciphertxt + plaintxt_len;
721
722
    /* SP 800-56Br2 Section 6.4.1.1 requires that plaintext is greater than 1 */
723
0
    plaintxt[plaintxt_len - 1] = 2;
724
725
0
    ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
726
0
                                       padding);
727
0
    if (ciphertxt_len <= 0)
728
0
        goto err;
729
730
0
    OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
731
732
0
    decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
733
0
                                      padding);
734
0
    if (decoded_len != plaintxt_len
735
0
        || memcmp(decoded, plaintxt,  decoded_len) != 0)
736
0
        goto err;
737
738
0
    ret = 1;
739
0
err:
740
0
    OSSL_SELF_TEST_onend(st, ret);
741
0
    OSSL_SELF_TEST_free(st);
742
0
    OPENSSL_free(plaintxt);
743
744
0
    return ret;
745
0
}