/src/openssl/crypto/pem/pem_lib.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * We need to use some EVP_PKEY_asn1 deprecated APIs |
12 | | */ |
13 | | #include "internal/deprecated.h" |
14 | | |
15 | | #include <stdio.h> |
16 | | #include "crypto/ctype.h" |
17 | | #include <string.h> |
18 | | #include "internal/cryptlib.h" |
19 | | #include <openssl/buffer.h> |
20 | | #include <openssl/objects.h> |
21 | | #include <openssl/evp.h> |
22 | | #include <openssl/rand.h> |
23 | | #include <openssl/x509.h> |
24 | | #include <openssl/pem.h> |
25 | | #include <openssl/pkcs12.h> |
26 | | #include "crypto/asn1.h" |
27 | | #include <openssl/des.h> |
28 | | |
29 | 0 | #define MIN_LENGTH 4 |
30 | | |
31 | | static int load_iv(char **fromp, unsigned char *to, int num); |
32 | | static int check_pem(const char *nm, const char *name); |
33 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix); |
34 | | |
35 | | int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
36 | 0 | { |
37 | 0 | int i, min_len; |
38 | 0 | const char *prompt; |
39 | | |
40 | | /* We assume that the user passes a default password as userdata */ |
41 | 0 | if (userdata) { |
42 | 0 | i = (int)strlen(userdata); |
43 | 0 | i = (i > num) ? num : i; |
44 | 0 | memcpy(buf, userdata, i); |
45 | 0 | return i; |
46 | 0 | } |
47 | | |
48 | 0 | prompt = EVP_get_pw_prompt(); |
49 | 0 | if (prompt == NULL) |
50 | 0 | prompt = "Enter PEM pass phrase:"; |
51 | | |
52 | | /* |
53 | | * rwflag == 0 means decryption |
54 | | * rwflag == 1 means encryption |
55 | | * |
56 | | * We assume that for encryption, we want a minimum length, while for |
57 | | * decryption, we cannot know any minimum length, so we assume zero. |
58 | | */ |
59 | 0 | min_len = rwflag ? MIN_LENGTH : 0; |
60 | |
|
61 | 0 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
62 | 0 | if (i != 0) { |
63 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_PROBLEMS_GETTING_PASSWORD); |
64 | 0 | memset(buf, 0, (unsigned int)num); |
65 | 0 | return -1; |
66 | 0 | } |
67 | 0 | return (int)strlen(buf); |
68 | 0 | } |
69 | | |
70 | | void PEM_proc_type(char *buf, int type) |
71 | 0 | { |
72 | 0 | const char *str; |
73 | 0 | char *p = buf + strlen(buf); |
74 | |
|
75 | 0 | if (type == PEM_TYPE_ENCRYPTED) |
76 | 0 | str = "ENCRYPTED"; |
77 | 0 | else if (type == PEM_TYPE_MIC_CLEAR) |
78 | 0 | str = "MIC-CLEAR"; |
79 | 0 | else if (type == PEM_TYPE_MIC_ONLY) |
80 | 0 | str = "MIC-ONLY"; |
81 | 0 | else |
82 | 0 | str = "BAD-TYPE"; |
83 | |
|
84 | 0 | BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); |
85 | 0 | } |
86 | | |
87 | | void PEM_dek_info(char *buf, const char *type, int len, const char *str) |
88 | 0 | { |
89 | 0 | long i; |
90 | 0 | char *p = buf + strlen(buf); |
91 | 0 | int j = PEM_BUFSIZE - (int)(p - buf), n; |
92 | |
|
93 | 0 | n = BIO_snprintf(p, j, "DEK-Info: %s,", type); |
94 | 0 | if (n > 0) { |
95 | 0 | j -= n; |
96 | 0 | p += n; |
97 | 0 | for (i = 0; i < len; i++) { |
98 | 0 | n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); |
99 | 0 | if (n <= 0) |
100 | 0 | return; |
101 | 0 | j -= n; |
102 | 0 | p += n; |
103 | 0 | } |
104 | 0 | if (j > 1) |
105 | 0 | strcpy(p, "\n"); |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | | #ifndef OPENSSL_NO_STDIO |
110 | | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
111 | | pem_password_cb *cb, void *u) |
112 | 0 | { |
113 | 0 | BIO *b; |
114 | 0 | void *ret; |
115 | |
|
116 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
117 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
118 | 0 | return 0; |
119 | 0 | } |
120 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
121 | 0 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
122 | 0 | BIO_free(b); |
123 | 0 | return ret; |
124 | 0 | } |
125 | | #endif |
126 | | |
127 | | static int check_pem(const char *nm, const char *name) |
128 | 0 | { |
129 | | /* Normal matching nm and name */ |
130 | 0 | if (strcmp(nm, name) == 0) |
131 | 0 | return 1; |
132 | | |
133 | | /* Make PEM_STRING_EVP_PKEY match any private key */ |
134 | | |
135 | 0 | if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
136 | 0 | int slen; |
137 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
138 | 0 | if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
139 | 0 | return 1; |
140 | 0 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
141 | 0 | return 1; |
142 | 0 | slen = ossl_pem_check_suffix(nm, "PRIVATE KEY"); |
143 | 0 | if (slen > 0) { |
144 | | /* |
145 | | * NB: ENGINE implementations won't contain a deprecated old |
146 | | * private key decode function so don't look for them. |
147 | | */ |
148 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
149 | 0 | if (ameth && ameth->old_priv_decode) |
150 | 0 | return 1; |
151 | 0 | } |
152 | 0 | return 0; |
153 | 0 | } |
154 | | |
155 | 0 | if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
156 | 0 | int slen; |
157 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
158 | 0 | slen = ossl_pem_check_suffix(nm, "PARAMETERS"); |
159 | 0 | if (slen > 0) { |
160 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
161 | 0 | if (ameth) { |
162 | 0 | int r; |
163 | 0 | if (ameth->param_decode) |
164 | 0 | r = 1; |
165 | 0 | else |
166 | 0 | r = 0; |
167 | 0 | return r; |
168 | 0 | } |
169 | 0 | } |
170 | 0 | return 0; |
171 | 0 | } |
172 | | /* If reading DH parameters handle X9.42 DH format too */ |
173 | 0 | if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
174 | 0 | && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
175 | 0 | return 1; |
176 | | |
177 | | /* Permit older strings */ |
178 | | |
179 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
180 | 0 | && strcmp(name, PEM_STRING_X509) == 0) |
181 | 0 | return 1; |
182 | | |
183 | 0 | if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
184 | 0 | && strcmp(name, PEM_STRING_X509_REQ) == 0) |
185 | 0 | return 1; |
186 | | |
187 | | /* Allow normal certs to be read as trusted certs */ |
188 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
189 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
190 | 0 | return 1; |
191 | | |
192 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
193 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
194 | 0 | return 1; |
195 | | |
196 | | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
197 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
198 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
199 | 0 | return 1; |
200 | | |
201 | 0 | if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
202 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
203 | 0 | return 1; |
204 | | |
205 | 0 | #ifndef OPENSSL_NO_CMS |
206 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
207 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
208 | 0 | return 1; |
209 | | /* Allow CMS to be read from PKCS#7 headers */ |
210 | 0 | if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
211 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
212 | 0 | return 1; |
213 | 0 | #endif |
214 | | |
215 | 0 | return 0; |
216 | 0 | } |
217 | | |
218 | | #define PEM_FREE(p, flags, num) \ |
219 | 0 | pem_free((p), (flags), (num), OPENSSL_FILE, OPENSSL_LINE) |
220 | | static void pem_free(void *p, unsigned int flags, size_t num, |
221 | | const char *file, int line) |
222 | 0 | { |
223 | 0 | if (flags & PEM_FLAG_SECURE) |
224 | 0 | CRYPTO_secure_clear_free(p, num, file, line); |
225 | 0 | else |
226 | 0 | CRYPTO_free(p, file, line); |
227 | 0 | } |
228 | | |
229 | | #define PEM_MALLOC(num, flags) \ |
230 | 0 | pem_malloc((num), (flags), OPENSSL_FILE, OPENSSL_LINE) |
231 | | static void *pem_malloc(int num, unsigned int flags, |
232 | | const char *file, int line) |
233 | 0 | { |
234 | 0 | return (flags & PEM_FLAG_SECURE) ? CRYPTO_secure_malloc(num, file, line) |
235 | 0 | : CRYPTO_malloc(num, file, line); |
236 | |
|
237 | 0 | } |
238 | | |
239 | | static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
240 | | char **pnm, const char *name, BIO *bp, |
241 | | pem_password_cb *cb, void *u, |
242 | | unsigned int flags) |
243 | 0 | { |
244 | 0 | EVP_CIPHER_INFO cipher; |
245 | 0 | char *nm = NULL, *header = NULL; |
246 | 0 | unsigned char *data = NULL; |
247 | 0 | long len = 0; |
248 | 0 | int ret = 0; |
249 | |
|
250 | 0 | do { |
251 | 0 | PEM_FREE(nm, flags, 0); |
252 | 0 | PEM_FREE(header, flags, 0); |
253 | 0 | PEM_FREE(data, flags, len); |
254 | 0 | if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
255 | 0 | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
256 | 0 | ERR_add_error_data(2, "Expecting: ", name); |
257 | 0 | return 0; |
258 | 0 | } |
259 | 0 | } while (!check_pem(nm, name)); |
260 | 0 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
261 | 0 | goto err; |
262 | 0 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
263 | 0 | goto err; |
264 | | |
265 | 0 | *pdata = data; |
266 | 0 | *plen = len; |
267 | |
|
268 | 0 | if (pnm != NULL) |
269 | 0 | *pnm = nm; |
270 | |
|
271 | 0 | ret = 1; |
272 | |
|
273 | 0 | err: |
274 | 0 | if (!ret || pnm == NULL) |
275 | 0 | PEM_FREE(nm, flags, 0); |
276 | 0 | PEM_FREE(header, flags, 0); |
277 | 0 | if (!ret) |
278 | 0 | PEM_FREE(data, flags, len); |
279 | 0 | return ret; |
280 | 0 | } |
281 | | |
282 | | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
283 | | const char *name, BIO *bp, pem_password_cb *cb, |
284 | 0 | void *u) { |
285 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
286 | 0 | PEM_FLAG_EAY_COMPATIBLE); |
287 | 0 | } |
288 | | |
289 | | int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
290 | | const char *name, BIO *bp, pem_password_cb *cb, |
291 | 0 | void *u) { |
292 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
293 | 0 | PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
294 | 0 | } |
295 | | |
296 | | #ifndef OPENSSL_NO_STDIO |
297 | | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
298 | | const void *x, const EVP_CIPHER *enc, |
299 | | const unsigned char *kstr, int klen, |
300 | | pem_password_cb *callback, void *u) |
301 | 0 | { |
302 | 0 | BIO *b; |
303 | 0 | int ret; |
304 | |
|
305 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
306 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
307 | 0 | return 0; |
308 | 0 | } |
309 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
310 | 0 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
311 | 0 | BIO_free(b); |
312 | 0 | return ret; |
313 | 0 | } |
314 | | #endif |
315 | | |
316 | | static int |
317 | | PEM_ASN1_write_bio_internal( |
318 | | i2d_of_void *i2d, OSSL_i2d_of_void_ctx *i2d_ctx, void *vctx, |
319 | | const char *name, BIO *bp, const void *x, const EVP_CIPHER *enc, |
320 | | const unsigned char *kstr, int klen, pem_password_cb *callback, void *u) |
321 | 0 | { |
322 | 0 | EVP_CIPHER_CTX *ctx = NULL; |
323 | 0 | int dsize = 0, i = 0, j = 0, ret = 0; |
324 | 0 | unsigned char *p, *data = NULL; |
325 | 0 | const char *objstr = NULL; |
326 | 0 | char buf[PEM_BUFSIZE]; |
327 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
328 | 0 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
329 | |
|
330 | 0 | if (enc != NULL) { |
331 | 0 | objstr = EVP_CIPHER_get0_name(enc); |
332 | 0 | if (objstr == NULL || EVP_CIPHER_get_iv_length(enc) == 0 |
333 | 0 | || EVP_CIPHER_get_iv_length(enc) > (int)sizeof(iv) |
334 | | /* |
335 | | * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
336 | | * fits into buf |
337 | | */ |
338 | 0 | || strlen(objstr) + 23 + 2 * EVP_CIPHER_get_iv_length(enc) + 13 |
339 | 0 | > sizeof(buf)) { |
340 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_CIPHER); |
341 | 0 | goto err; |
342 | 0 | } |
343 | 0 | } |
344 | | |
345 | 0 | if (i2d == NULL && i2d_ctx == NULL) { |
346 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_INVALID_NULL_ARGUMENT); |
347 | 0 | dsize = 0; |
348 | 0 | goto err; |
349 | 0 | } |
350 | 0 | dsize = i2d != NULL ? i2d(x, NULL) : i2d_ctx(x, NULL, vctx); |
351 | 0 | if (dsize <= 0) { |
352 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_ASN1_LIB); |
353 | 0 | dsize = 0; |
354 | 0 | goto err; |
355 | 0 | } |
356 | | /* Allocate enough space for one extra cipher block */ |
357 | 0 | data = OPENSSL_malloc((unsigned int)dsize + EVP_MAX_BLOCK_LENGTH); |
358 | 0 | if (data == NULL) |
359 | 0 | goto err; |
360 | 0 | p = data; |
361 | 0 | i = i2d != NULL ? i2d(x, &p) : i2d_ctx(x, &p, vctx); |
362 | |
|
363 | 0 | if (enc != NULL) { |
364 | 0 | if (kstr == NULL) { |
365 | 0 | if (callback == NULL) |
366 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
367 | 0 | else |
368 | 0 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
369 | 0 | if (klen <= 0) { |
370 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_READ_KEY); |
371 | 0 | goto err; |
372 | 0 | } |
373 | | #ifdef CHARSET_EBCDIC |
374 | | /* Convert the pass phrase from EBCDIC */ |
375 | | ebcdic2ascii(buf, buf, klen); |
376 | | #endif |
377 | 0 | kstr = (unsigned char *)buf; |
378 | 0 | } |
379 | | /* Generate a salt */ |
380 | 0 | if (RAND_bytes(iv, EVP_CIPHER_get_iv_length(enc)) <= 0) |
381 | 0 | goto err; |
382 | | /* |
383 | | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
384 | | * the BytesToKey function |
385 | | */ |
386 | 0 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
387 | 0 | goto err; |
388 | | |
389 | 0 | if (kstr == (unsigned char *)buf) |
390 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
391 | |
|
392 | 0 | buf[0] = '\0'; |
393 | 0 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
394 | 0 | PEM_dek_info(buf, objstr, EVP_CIPHER_get_iv_length(enc), (char *)iv); |
395 | | /* k=strlen(buf); */ |
396 | |
|
397 | 0 | ret = 1; |
398 | 0 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
399 | 0 | || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
400 | 0 | || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
401 | 0 | || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
402 | 0 | ret = 0; |
403 | 0 | if (ret == 0) |
404 | 0 | goto err; |
405 | 0 | i += j; |
406 | 0 | } else { |
407 | 0 | ret = 1; |
408 | 0 | buf[0] = '\0'; |
409 | 0 | } |
410 | 0 | i = PEM_write_bio(bp, name, buf, data, i); |
411 | 0 | if (i <= 0) |
412 | 0 | ret = 0; |
413 | 0 | err: |
414 | 0 | OPENSSL_cleanse(key, sizeof(key)); |
415 | 0 | OPENSSL_cleanse(iv, sizeof(iv)); |
416 | 0 | EVP_CIPHER_CTX_free(ctx); |
417 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
418 | 0 | OPENSSL_clear_free(data, (unsigned int)dsize); |
419 | 0 | return ret; |
420 | 0 | } |
421 | | |
422 | | int |
423 | | PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, const void *x, |
424 | | const EVP_CIPHER *enc, const unsigned char *kstr, int klen, |
425 | | pem_password_cb *callback, void *u) |
426 | 0 | { |
427 | 0 | return PEM_ASN1_write_bio_internal(i2d, NULL, NULL, name, bp, x, enc, |
428 | 0 | kstr, klen, callback, u); |
429 | 0 | } |
430 | | |
431 | | int PEM_ASN1_write_bio_ctx(OSSL_i2d_of_void_ctx *i2d, void *vctx, |
432 | | const char *name, BIO *bp, const void *x, |
433 | | const EVP_CIPHER *enc, const unsigned char *kstr, |
434 | | int klen, pem_password_cb *callback, void *u) |
435 | 0 | { |
436 | 0 | return PEM_ASN1_write_bio_internal(NULL, i2d, vctx, name, bp, x, enc, |
437 | 0 | kstr, klen, callback, u); |
438 | 0 | } |
439 | | |
440 | | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
441 | | pem_password_cb *callback, void *u) |
442 | 0 | { |
443 | 0 | int ok; |
444 | 0 | int keylen; |
445 | 0 | long len = *plen; |
446 | 0 | int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ |
447 | 0 | EVP_CIPHER_CTX *ctx; |
448 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
449 | 0 | char buf[PEM_BUFSIZE]; |
450 | |
|
451 | 0 | #if LONG_MAX > INT_MAX |
452 | | /* Check that we did not truncate the length */ |
453 | 0 | if (len > INT_MAX) { |
454 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_HEADER_TOO_LONG); |
455 | 0 | return 0; |
456 | 0 | } |
457 | 0 | #endif |
458 | | |
459 | 0 | if (cipher->cipher == NULL) |
460 | 0 | return 1; |
461 | 0 | if (callback == NULL) |
462 | 0 | keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
463 | 0 | else |
464 | 0 | keylen = callback(buf, PEM_BUFSIZE, 0, u); |
465 | 0 | if (keylen < 0) { |
466 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_PASSWORD_READ); |
467 | 0 | return 0; |
468 | 0 | } |
469 | | #ifdef CHARSET_EBCDIC |
470 | | /* Convert the pass phrase from EBCDIC */ |
471 | | ebcdic2ascii(buf, buf, keylen); |
472 | | #endif |
473 | | |
474 | 0 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
475 | 0 | (unsigned char *)buf, keylen, 1, key, NULL)) |
476 | 0 | return 0; |
477 | | |
478 | 0 | ctx = EVP_CIPHER_CTX_new(); |
479 | 0 | if (ctx == NULL) |
480 | 0 | return 0; |
481 | | |
482 | 0 | ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
483 | 0 | if (ok) |
484 | 0 | ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
485 | 0 | if (ok) { |
486 | | /* Squirrel away the length of data decrypted so far. */ |
487 | 0 | *plen = ilen; |
488 | 0 | ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
489 | 0 | } |
490 | 0 | if (ok) |
491 | 0 | *plen += ilen; |
492 | 0 | else |
493 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_DECRYPT); |
494 | |
|
495 | 0 | EVP_CIPHER_CTX_free(ctx); |
496 | 0 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
497 | 0 | OPENSSL_cleanse((char *)key, sizeof(key)); |
498 | 0 | return ok; |
499 | 0 | } |
500 | | |
501 | | /* |
502 | | * This implements a very limited PEM header parser that does not support the |
503 | | * full grammar of rfc1421. In particular, folded headers are not supported, |
504 | | * nor is additional whitespace. |
505 | | * |
506 | | * A robust implementation would make use of a library that turns the headers |
507 | | * into a BIO from which one folded line is read at a time, and is then split |
508 | | * into a header label and content. We would then parse the content of the |
509 | | * headers we care about. This is overkill for just this limited use-case, but |
510 | | * presumably we also parse rfc822-style headers for S/MIME, so a common |
511 | | * abstraction might well be more generally useful. |
512 | | */ |
513 | | #define PROC_TYPE "Proc-Type:" |
514 | | #define ENCRYPTED "ENCRYPTED" |
515 | | #define DEK_INFO "DEK-Info:" |
516 | | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
517 | 0 | { |
518 | 0 | const EVP_CIPHER *enc = NULL; |
519 | 0 | int ivlen; |
520 | 0 | char *dekinfostart, c; |
521 | |
|
522 | 0 | cipher->cipher = NULL; |
523 | 0 | memset(cipher->iv, 0, sizeof(cipher->iv)); |
524 | 0 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
525 | 0 | return 1; |
526 | | |
527 | 0 | if (!CHECK_AND_SKIP_PREFIX(header, PROC_TYPE)) { |
528 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_PROC_TYPE); |
529 | 0 | return 0; |
530 | 0 | } |
531 | 0 | header += strspn(header, " \t"); |
532 | |
|
533 | 0 | if (*header++ != '4' || *header++ != ',') |
534 | 0 | return 0; |
535 | 0 | header += strspn(header, " \t"); |
536 | | |
537 | | /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
538 | 0 | if (!CHECK_AND_SKIP_PREFIX(header, ENCRYPTED) || |
539 | 0 | strspn(header, " \t\r\n") == 0) { |
540 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_ENCRYPTED); |
541 | 0 | return 0; |
542 | 0 | } |
543 | 0 | header += strspn(header, " \t\r"); |
544 | 0 | if (*header++ != '\n') { |
545 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_SHORT_HEADER); |
546 | 0 | return 0; |
547 | 0 | } |
548 | | |
549 | | /*- |
550 | | * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
551 | | * We expect "DEK-Info: algo[,hex-parameters]" |
552 | | */ |
553 | 0 | if (!CHECK_AND_SKIP_PREFIX(header, DEK_INFO)) { |
554 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_DEK_INFO); |
555 | 0 | return 0; |
556 | 0 | } |
557 | 0 | header += strspn(header, " \t"); |
558 | | |
559 | | /* |
560 | | * DEK-INFO is a comma-separated combination of algorithm name and optional |
561 | | * parameters. |
562 | | */ |
563 | 0 | dekinfostart = header; |
564 | 0 | header += strcspn(header, " \t,"); |
565 | 0 | c = *header; |
566 | 0 | *header = '\0'; |
567 | 0 | cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
568 | 0 | *header = c; |
569 | 0 | header += strspn(header, " \t"); |
570 | |
|
571 | 0 | if (enc == NULL) { |
572 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
573 | 0 | return 0; |
574 | 0 | } |
575 | 0 | ivlen = EVP_CIPHER_get_iv_length(enc); |
576 | 0 | if (ivlen > 0 && *header++ != ',') { |
577 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_MISSING_DEK_IV); |
578 | 0 | return 0; |
579 | 0 | } else if (ivlen == 0 && *header == ',') { |
580 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNEXPECTED_DEK_IV); |
581 | 0 | return 0; |
582 | 0 | } |
583 | | |
584 | 0 | if (!load_iv(&header, cipher->iv, EVP_CIPHER_get_iv_length(enc))) |
585 | 0 | return 0; |
586 | | |
587 | 0 | return 1; |
588 | 0 | } |
589 | | |
590 | | static int load_iv(char **fromp, unsigned char *to, int num) |
591 | 0 | { |
592 | 0 | int v, i; |
593 | 0 | char *from; |
594 | |
|
595 | 0 | from = *fromp; |
596 | 0 | for (i = 0; i < num; i++) |
597 | 0 | to[i] = 0; |
598 | 0 | num *= 2; |
599 | 0 | for (i = 0; i < num; i++) { |
600 | 0 | v = OPENSSL_hexchar2int(*from); |
601 | 0 | if (v < 0) { |
602 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_IV_CHARS); |
603 | 0 | return 0; |
604 | 0 | } |
605 | 0 | from++; |
606 | 0 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
607 | 0 | } |
608 | | |
609 | 0 | *fromp = from; |
610 | 0 | return 1; |
611 | 0 | } |
612 | | |
613 | | #ifndef OPENSSL_NO_STDIO |
614 | | int PEM_write(FILE *fp, const char *name, const char *header, |
615 | | const unsigned char *data, long len) |
616 | 0 | { |
617 | 0 | BIO *b; |
618 | 0 | int ret; |
619 | |
|
620 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
621 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
622 | 0 | return 0; |
623 | 0 | } |
624 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
625 | 0 | ret = PEM_write_bio(b, name, header, data, len); |
626 | 0 | BIO_free(b); |
627 | 0 | return ret; |
628 | 0 | } |
629 | | #endif |
630 | | |
631 | | int PEM_write_bio(BIO *bp, const char *name, const char *header, |
632 | | const unsigned char *data, long len) |
633 | 0 | { |
634 | 0 | int nlen, n, i, j, outl; |
635 | 0 | unsigned char *buf = NULL; |
636 | 0 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
637 | 0 | int reason = 0; |
638 | 0 | int retval = 0; |
639 | |
|
640 | 0 | if (ctx == NULL) { |
641 | 0 | reason = ERR_R_EVP_LIB; |
642 | 0 | goto err; |
643 | 0 | } |
644 | | |
645 | 0 | EVP_EncodeInit(ctx); |
646 | 0 | nlen = (int)strlen(name); |
647 | |
|
648 | 0 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
649 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
650 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) { |
651 | 0 | reason = ERR_R_BIO_LIB; |
652 | 0 | goto err; |
653 | 0 | } |
654 | | |
655 | 0 | i = header != NULL ? (int)strlen(header) : 0; |
656 | 0 | if (i > 0) { |
657 | 0 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) { |
658 | 0 | reason = ERR_R_BIO_LIB; |
659 | 0 | goto err; |
660 | 0 | } |
661 | 0 | } |
662 | | |
663 | 0 | buf = OPENSSL_malloc_array(PEM_BUFSIZE, 8); |
664 | 0 | if (buf == NULL) |
665 | 0 | goto err; |
666 | | |
667 | 0 | i = j = 0; |
668 | 0 | while (len > 0) { |
669 | 0 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
670 | 0 | if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) { |
671 | 0 | reason = ERR_R_EVP_LIB; |
672 | 0 | goto err; |
673 | 0 | } |
674 | 0 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) { |
675 | 0 | reason = ERR_R_BIO_LIB; |
676 | 0 | goto err; |
677 | 0 | } |
678 | 0 | i += outl; |
679 | 0 | len -= n; |
680 | 0 | j += n; |
681 | 0 | } |
682 | 0 | EVP_EncodeFinal(ctx, buf, &outl); |
683 | 0 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) { |
684 | 0 | reason = ERR_R_BIO_LIB; |
685 | 0 | goto err; |
686 | 0 | } |
687 | 0 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
688 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
689 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) { |
690 | 0 | reason = ERR_R_BIO_LIB; |
691 | 0 | goto err; |
692 | 0 | } |
693 | 0 | retval = i + outl; |
694 | |
|
695 | 0 | err: |
696 | 0 | if (retval == 0 && reason != 0) |
697 | 0 | ERR_raise(ERR_LIB_PEM, reason); |
698 | 0 | EVP_ENCODE_CTX_free(ctx); |
699 | 0 | OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
700 | 0 | return retval; |
701 | 0 | } |
702 | | |
703 | | #ifndef OPENSSL_NO_STDIO |
704 | | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
705 | | long *len) |
706 | 0 | { |
707 | 0 | BIO *b; |
708 | 0 | int ret; |
709 | |
|
710 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
711 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
712 | 0 | return 0; |
713 | 0 | } |
714 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
715 | 0 | ret = PEM_read_bio(b, name, header, data, len); |
716 | 0 | BIO_free(b); |
717 | 0 | return ret; |
718 | 0 | } |
719 | | #endif |
720 | | |
721 | | /* Some helpers for PEM_read_bio_ex(). */ |
722 | | static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) |
723 | 0 | { |
724 | 0 | int i; |
725 | 0 | if (first_call) { |
726 | | /* Other BOMs imply unsupported multibyte encoding, |
727 | | * so don't strip them and let the error raise */ |
728 | 0 | const unsigned char utf8_bom[3] = {0xEF, 0xBB, 0xBF}; |
729 | |
|
730 | 0 | if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { |
731 | 0 | memmove(linebuf, linebuf + 3, len - 3); |
732 | 0 | linebuf[len - 3] = 0; |
733 | 0 | len -= 3; |
734 | 0 | } |
735 | 0 | } |
736 | |
|
737 | 0 | if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
738 | | /* Strip trailing whitespace */ |
739 | 0 | while ((len >= 0) && (linebuf[len] <= ' ')) |
740 | 0 | len--; |
741 | | /* Go back to whitespace before applying uniform line ending. */ |
742 | 0 | len++; |
743 | 0 | } else if (flags & PEM_FLAG_ONLY_B64) { |
744 | 0 | for (i = 0; i < len; ++i) { |
745 | 0 | if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
746 | 0 | || linebuf[i] == '\r') |
747 | 0 | break; |
748 | 0 | } |
749 | 0 | len = i; |
750 | 0 | } else { |
751 | | /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
752 | | * control characters in-place and let everything through. */ |
753 | 0 | for (i = 0; i < len; ++i) { |
754 | 0 | if (linebuf[i] == '\n' || linebuf[i] == '\r') |
755 | 0 | break; |
756 | 0 | if (ossl_iscntrl(linebuf[i])) |
757 | 0 | linebuf[i] = ' '; |
758 | 0 | } |
759 | 0 | len = i; |
760 | 0 | } |
761 | | /* The caller allocated LINESIZE+1, so this is safe. */ |
762 | 0 | linebuf[len++] = '\n'; |
763 | 0 | linebuf[len] = '\0'; |
764 | 0 | return len; |
765 | 0 | } |
766 | | |
767 | 0 | #define LINESIZE 255 |
768 | | /* Note trailing spaces for begin and end. */ |
769 | 0 | #define BEGINSTR "-----BEGIN " |
770 | | #define ENDSTR "-----END " |
771 | 0 | #define TAILSTR "-----\n" |
772 | 0 | #define BEGINLEN ((int)(sizeof(BEGINSTR) - 1)) |
773 | | #define ENDLEN ((int)(sizeof(ENDSTR) - 1)) |
774 | 0 | #define TAILLEN ((int)(sizeof(TAILSTR) - 1)) |
775 | | static int get_name(BIO *bp, char **name, unsigned int flags) |
776 | 0 | { |
777 | 0 | char *linebuf; |
778 | 0 | int ret = 0; |
779 | 0 | int len; |
780 | 0 | int first_call = 1; |
781 | | |
782 | | /* |
783 | | * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
784 | | * that will be added by sanitize_line() (the extra '1'). |
785 | | */ |
786 | 0 | linebuf = PEM_MALLOC(LINESIZE + 1, flags); |
787 | 0 | if (linebuf == NULL) |
788 | 0 | return 0; |
789 | | |
790 | 0 | do { |
791 | 0 | len = BIO_gets(bp, linebuf, LINESIZE); |
792 | |
|
793 | 0 | if (len <= 0) { |
794 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NO_START_LINE); |
795 | 0 | goto err; |
796 | 0 | } |
797 | | |
798 | | /* Strip trailing garbage and standardize ending. */ |
799 | 0 | len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); |
800 | 0 | first_call = 0; |
801 | | |
802 | | /* Allow leading empty or non-matching lines. */ |
803 | 0 | } while (!HAS_PREFIX(linebuf, BEGINSTR) |
804 | 0 | || len < TAILLEN |
805 | 0 | || !HAS_PREFIX(linebuf + len - TAILLEN, TAILSTR)); |
806 | 0 | linebuf[len - TAILLEN] = '\0'; |
807 | 0 | len = len - BEGINLEN - TAILLEN + 1; |
808 | 0 | *name = PEM_MALLOC(len, flags); |
809 | 0 | if (*name == NULL) |
810 | 0 | goto err; |
811 | 0 | memcpy(*name, linebuf + BEGINLEN, len); |
812 | 0 | ret = 1; |
813 | |
|
814 | 0 | err: |
815 | 0 | PEM_FREE(linebuf, flags, LINESIZE + 1); |
816 | 0 | return ret; |
817 | 0 | } |
818 | | |
819 | | /* Keep track of how much of a header we've seen. */ |
820 | | enum header_status { |
821 | | MAYBE_HEADER, |
822 | | IN_HEADER, |
823 | | POST_HEADER |
824 | | }; |
825 | | |
826 | | /** |
827 | | * Extract the optional PEM header, with details on the type of content and |
828 | | * any encryption used on the contents, and the bulk of the data from the bio. |
829 | | * The end of the header is marked by a blank line; if the end-of-input marker |
830 | | * is reached prior to a blank line, there is no header. |
831 | | * |
832 | | * The header and data arguments are BIO** since we may have to swap them |
833 | | * if there is no header, for efficiency. |
834 | | * |
835 | | * We need the name of the PEM-encoded type to verify the end string. |
836 | | */ |
837 | | static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, |
838 | | unsigned int flags) |
839 | 0 | { |
840 | 0 | BIO *tmp = *header; |
841 | 0 | char *linebuf, *p; |
842 | 0 | int len, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; |
843 | | /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
844 | 0 | enum header_status got_header = MAYBE_HEADER; |
845 | 0 | unsigned int flags_mask; |
846 | 0 | size_t namelen; |
847 | | |
848 | | /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
849 | | * that will be added by sanitize_line() (the extra '1'). */ |
850 | 0 | linebuf = PEM_MALLOC(LINESIZE + 1, flags); |
851 | 0 | if (linebuf == NULL) |
852 | 0 | return 0; |
853 | | |
854 | 0 | while(1) { |
855 | 0 | flags_mask = ~0u; |
856 | 0 | len = BIO_gets(bp, linebuf, LINESIZE); |
857 | 0 | if (len <= 0) { |
858 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
859 | 0 | goto err; |
860 | 0 | } |
861 | | |
862 | | /* |
863 | | * Check if line has been read completely or if only part of the line |
864 | | * has been read. Keep the previous value to ignore newlines that |
865 | | * appear due to reading a line up until the char before the newline. |
866 | | */ |
867 | 0 | prev_partial_line_read = partial_line_read; |
868 | 0 | partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n'; |
869 | |
|
870 | 0 | if (got_header == MAYBE_HEADER) { |
871 | 0 | if (memchr(linebuf, ':', len) != NULL) |
872 | 0 | got_header = IN_HEADER; |
873 | 0 | } |
874 | 0 | if (HAS_PREFIX(linebuf, ENDSTR) || got_header == IN_HEADER) |
875 | 0 | flags_mask &= ~PEM_FLAG_ONLY_B64; |
876 | 0 | len = sanitize_line(linebuf, len, flags & flags_mask, 0); |
877 | | |
878 | | /* Check for end of header. */ |
879 | 0 | if (linebuf[0] == '\n') { |
880 | | /* |
881 | | * If previous line has been read only partially this newline is a |
882 | | * regular newline at the end of a line and not an empty line. |
883 | | */ |
884 | 0 | if (!prev_partial_line_read) { |
885 | 0 | if (got_header == POST_HEADER) { |
886 | | /* Another blank line is an error. */ |
887 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
888 | 0 | goto err; |
889 | 0 | } |
890 | 0 | got_header = POST_HEADER; |
891 | 0 | tmp = *data; |
892 | 0 | } |
893 | 0 | continue; |
894 | 0 | } |
895 | | |
896 | | /* Check for end of stream (which means there is no header). */ |
897 | 0 | p = linebuf; |
898 | 0 | if (CHECK_AND_SKIP_PREFIX(p, ENDSTR)) { |
899 | 0 | namelen = strlen(name); |
900 | 0 | if (strncmp(p, name, namelen) != 0 || |
901 | 0 | !HAS_PREFIX(p + namelen, TAILSTR)) { |
902 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
903 | 0 | goto err; |
904 | 0 | } |
905 | 0 | if (got_header == MAYBE_HEADER) { |
906 | 0 | *header = *data; |
907 | 0 | *data = tmp; |
908 | 0 | } |
909 | 0 | break; |
910 | 0 | } else if (end) { |
911 | | /* Malformed input; short line not at end of data. */ |
912 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
913 | 0 | goto err; |
914 | 0 | } |
915 | | /* |
916 | | * Else, a line of text -- could be header or data; we don't |
917 | | * know yet. Just pass it through. |
918 | | */ |
919 | 0 | if (BIO_puts(tmp, linebuf) < 0) |
920 | 0 | goto err; |
921 | | /* |
922 | | * Only encrypted files need the line length check applied. |
923 | | */ |
924 | 0 | if (got_header == POST_HEADER) { |
925 | | /* 65 includes the trailing newline */ |
926 | 0 | if (len > 65) |
927 | 0 | goto err; |
928 | 0 | if (len < 65) |
929 | 0 | end = 1; |
930 | 0 | } |
931 | 0 | } |
932 | | |
933 | 0 | ret = 1; |
934 | 0 | err: |
935 | 0 | PEM_FREE(linebuf, flags, LINESIZE + 1); |
936 | 0 | return ret; |
937 | 0 | } |
938 | | |
939 | | /** |
940 | | * Read in PEM-formatted data from the given BIO. |
941 | | * |
942 | | * By nature of the PEM format, all content must be printable ASCII (except |
943 | | * for line endings). Other characters are malformed input and will be rejected. |
944 | | */ |
945 | | int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, |
946 | | unsigned char **data, long *len_out, unsigned int flags) |
947 | 0 | { |
948 | 0 | EVP_ENCODE_CTX *ctx = NULL; |
949 | 0 | const BIO_METHOD *bmeth; |
950 | 0 | BIO *headerB = NULL, *dataB = NULL; |
951 | 0 | char *name = NULL; |
952 | 0 | int len, taillen, headerlen, ret = 0; |
953 | 0 | BUF_MEM *buf_mem; |
954 | |
|
955 | 0 | *len_out = 0; |
956 | 0 | *name_out = *header = NULL; |
957 | 0 | *data = NULL; |
958 | 0 | if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
959 | | /* These two are mutually incompatible; bail out. */ |
960 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_PASSED_INVALID_ARGUMENT); |
961 | 0 | goto end; |
962 | 0 | } |
963 | 0 | bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
964 | |
|
965 | 0 | headerB = BIO_new(bmeth); |
966 | 0 | dataB = BIO_new(bmeth); |
967 | 0 | if (headerB == NULL || dataB == NULL) { |
968 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BIO_LIB); |
969 | 0 | goto end; |
970 | 0 | } |
971 | | |
972 | 0 | if (!get_name(bp, &name, flags)) |
973 | 0 | goto end; |
974 | 0 | if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
975 | 0 | goto end; |
976 | | |
977 | 0 | BIO_get_mem_ptr(dataB, &buf_mem); |
978 | 0 | if (buf_mem->length > INT_MAX) { |
979 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); |
980 | 0 | goto end; |
981 | 0 | } |
982 | 0 | len = (int)buf_mem->length; |
983 | | |
984 | | /* There was no data in the PEM file */ |
985 | 0 | if (len == 0) |
986 | 0 | goto end; |
987 | | |
988 | 0 | ctx = EVP_ENCODE_CTX_new(); |
989 | 0 | if (ctx == NULL) { |
990 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_EVP_LIB); |
991 | 0 | goto end; |
992 | 0 | } |
993 | | |
994 | 0 | EVP_DecodeInit(ctx); |
995 | 0 | if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, |
996 | 0 | (unsigned char*)buf_mem->data, len) < 0 |
997 | 0 | || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), |
998 | 0 | &taillen) < 0) { |
999 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); |
1000 | 0 | goto end; |
1001 | 0 | } |
1002 | 0 | len += taillen; |
1003 | 0 | buf_mem->length = len; |
1004 | |
|
1005 | 0 | headerlen = BIO_get_mem_data(headerB, NULL); |
1006 | 0 | *header = PEM_MALLOC(headerlen + 1, flags); |
1007 | 0 | *data = PEM_MALLOC(len, flags); |
1008 | 0 | if (*header == NULL || *data == NULL) |
1009 | 0 | goto out_free; |
1010 | 0 | if (headerlen != 0 && BIO_read(headerB, *header, headerlen) != headerlen) |
1011 | 0 | goto out_free; |
1012 | 0 | (*header)[headerlen] = '\0'; |
1013 | 0 | if (BIO_read(dataB, *data, len) != len) |
1014 | 0 | goto out_free; |
1015 | 0 | *len_out = len; |
1016 | 0 | *name_out = name; |
1017 | 0 | name = NULL; |
1018 | 0 | ret = 1; |
1019 | 0 | goto end; |
1020 | | |
1021 | 0 | out_free: |
1022 | 0 | PEM_FREE(*header, flags, 0); |
1023 | 0 | *header = NULL; |
1024 | 0 | PEM_FREE(*data, flags, 0); |
1025 | 0 | *data = NULL; |
1026 | 0 | end: |
1027 | 0 | EVP_ENCODE_CTX_free(ctx); |
1028 | 0 | PEM_FREE(name, flags, 0); |
1029 | 0 | BIO_free(headerB); |
1030 | 0 | BIO_free(dataB); |
1031 | 0 | return ret; |
1032 | 0 | } |
1033 | | |
1034 | | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
1035 | | long *len) |
1036 | 0 | { |
1037 | 0 | return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
1038 | 0 | } |
1039 | | |
1040 | | /* |
1041 | | * Check pem string and return prefix length. If for example the pem_str == |
1042 | | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
1043 | | * string "RSA". |
1044 | | */ |
1045 | | |
1046 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix) |
1047 | 0 | { |
1048 | 0 | int pem_len = (int)strlen(pem_str); |
1049 | 0 | int suffix_len = (int)strlen(suffix); |
1050 | 0 | const char *p; |
1051 | |
|
1052 | 0 | if (suffix_len + 1 >= pem_len) |
1053 | 0 | return 0; |
1054 | 0 | p = pem_str + pem_len - suffix_len; |
1055 | 0 | if (strcmp(p, suffix)) |
1056 | 0 | return 0; |
1057 | 0 | p--; |
1058 | 0 | if (*p != ' ') |
1059 | 0 | return 0; |
1060 | 0 | return (int)(p - pem_str); |
1061 | 0 | } |