Coverage Report

Created: 2025-12-08 06:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/rsa/rsa_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/crypto.h>
17
#include <openssl/core_names.h>
18
#include <openssl/evp.h>
19
#include <openssl/param_build.h>
20
#include "internal/cryptlib.h"
21
#include "internal/refcount.h"
22
#include "internal/common.h"
23
#include "crypto/bn.h"
24
#include "crypto/evp.h"
25
#include "crypto/rsa.h"
26
#include "crypto/sparse_array.h"
27
#include "crypto/security_bits.h"
28
#include "rsa_local.h"
29
30
static RSA *rsa_new_intern(OSSL_LIB_CTX *libctx);
31
32
#ifndef FIPS_MODULE
33
RSA *RSA_new(void)
34
56.6k
{
35
56.6k
    return rsa_new_intern(NULL);
36
56.6k
}
37
38
const RSA_METHOD *RSA_get_method(const RSA *rsa)
39
0
{
40
0
    return rsa->meth;
41
0
}
42
43
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
44
0
{
45
    /*
46
     * NB: The caller is specifically setting a method, so it's not up to us
47
     * to deal with which ENGINE it comes from.
48
     */
49
0
    const RSA_METHOD *mtmp;
50
0
    mtmp = rsa->meth;
51
0
    if (mtmp->finish)
52
0
        mtmp->finish(rsa);
53
0
    rsa->meth = meth;
54
0
    if (meth->init)
55
0
        meth->init(rsa);
56
0
    return 1;
57
0
}
58
59
RSA *RSA_new_method(ENGINE *engine)
60
0
{
61
0
    if (!ossl_assert(engine == NULL))
62
0
        return NULL;
63
0
    return rsa_new_intern(NULL);
64
0
}
65
#endif
66
67
RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
68
0
{
69
0
    return rsa_new_intern(libctx);
70
0
}
71
72
static RSA *rsa_new_intern(OSSL_LIB_CTX *libctx)
73
56.6k
{
74
56.6k
    RSA *ret = OPENSSL_zalloc(sizeof(*ret));
75
76
56.6k
    if (ret == NULL)
77
0
        return NULL;
78
79
56.6k
    ret->lock = CRYPTO_THREAD_lock_new();
80
56.6k
    if (ret->lock == NULL) {
81
0
        ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
82
0
        OPENSSL_free(ret);
83
0
        return NULL;
84
0
    }
85
86
56.6k
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
87
0
        CRYPTO_THREAD_lock_free(ret->lock);
88
0
        OPENSSL_free(ret);
89
0
        return NULL;
90
0
    }
91
92
56.6k
    ret->blindings_sa = ossl_rsa_alloc_blinding();
93
56.6k
    if (ret->blindings_sa == NULL)
94
0
        goto err;
95
96
56.6k
    ret->libctx = libctx;
97
56.6k
    ret->meth = RSA_get_default_method();
98
56.6k
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
99
56.6k
#ifndef FIPS_MODULE
100
56.6k
    if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
101
0
        goto err;
102
0
    }
103
56.6k
#endif
104
105
56.6k
    if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
106
0
        ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
107
0
        goto err;
108
0
    }
109
110
56.6k
    return ret;
111
112
0
 err:
113
0
    RSA_free(ret);
114
0
    return NULL;
115
56.6k
}
116
117
void RSA_free(RSA *r)
118
56.6k
{
119
56.6k
    int i;
120
121
56.6k
    if (r == NULL)
122
0
        return;
123
124
56.6k
    CRYPTO_DOWN_REF(&r->references, &i);
125
56.6k
    REF_PRINT_COUNT("RSA", i, r);
126
56.6k
    if (i > 0)
127
0
        return;
128
56.6k
    REF_ASSERT_ISNT(i < 0);
129
130
56.6k
    if (r->meth != NULL && r->meth->finish != NULL)
131
56.6k
        r->meth->finish(r);
132
133
56.6k
#ifndef FIPS_MODULE
134
56.6k
    CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
135
56.6k
#endif
136
137
56.6k
    CRYPTO_THREAD_lock_free(r->lock);
138
56.6k
    CRYPTO_FREE_REF(&r->references);
139
140
#ifdef OPENSSL_PEDANTIC_ZEROIZATION
141
    BN_clear_free(r->n);
142
    BN_clear_free(r->e);
143
#else
144
56.6k
    BN_free(r->n);
145
56.6k
    BN_free(r->e);
146
56.6k
#endif
147
56.6k
    BN_clear_free(r->d);
148
56.6k
    BN_clear_free(r->p);
149
56.6k
    BN_clear_free(r->q);
150
56.6k
    BN_clear_free(r->dmp1);
151
56.6k
    BN_clear_free(r->dmq1);
152
56.6k
    BN_clear_free(r->iqmp);
153
154
#if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
155
    ossl_rsa_acvp_test_free(r->acvp_test);
156
#endif
157
158
56.6k
#ifndef FIPS_MODULE
159
56.6k
    RSA_PSS_PARAMS_free(r->pss);
160
56.6k
    sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
161
56.6k
#endif
162
56.6k
    ossl_rsa_free_blinding(r);
163
56.6k
    OPENSSL_free(r);
164
56.6k
}
165
166
int RSA_up_ref(RSA *r)
167
0
{
168
0
    int i;
169
170
0
    if (CRYPTO_UP_REF(&r->references, &i) <= 0)
171
0
        return 0;
172
173
0
    REF_PRINT_COUNT("RSA", i, r);
174
0
    REF_ASSERT_ISNT(i < 2);
175
0
    return i > 1 ? 1 : 0;
176
0
}
177
178
OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
179
0
{
180
0
    return r->libctx;
181
0
}
182
183
void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
184
0
{
185
0
    r->libctx = libctx;
186
0
}
187
188
#ifndef FIPS_MODULE
189
int RSA_set_ex_data(RSA *r, int idx, void *arg)
190
0
{
191
0
    return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
192
0
}
193
194
void *RSA_get_ex_data(const RSA *r, int idx)
195
0
{
196
0
    return CRYPTO_get_ex_data(&r->ex_data, idx);
197
0
}
198
#endif
199
200
/*
201
 * Define a scaling constant for our fixed point arithmetic.
202
 * This value must be a power of two because the base two logarithm code
203
 * makes this assumption.  The exponent must also be a multiple of three so
204
 * that the scale factor has an exact cube root.  Finally, the scale factor
205
 * should not be so large that a multiplication of two scaled numbers
206
 * overflows a 64 bit unsigned integer.
207
 */
208
static const unsigned int scale = 1 << 18;
209
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
210
211
/* Define some constants, none exceed 32 bits */
212
static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
213
static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
214
static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
215
static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
216
217
/*
218
 * Multiply two scaled integers together and rescale the result.
219
 */
220
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
221
0
{
222
0
    return a * b / scale;
223
0
}
224
225
/*
226
 * Calculate the cube root of a 64 bit scaled integer.
227
 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
228
 * integer, this is not guaranteed after scaling, so this function has a
229
 * 64 bit return.  This uses the shifting nth root algorithm with some
230
 * algebraic simplifications.
231
 */
232
static uint64_t icbrt64(uint64_t x)
233
0
{
234
0
    uint64_t r = 0;
235
0
    uint64_t b;
236
0
    int s;
237
238
0
    for (s = 63; s >= 0; s -= 3) {
239
0
        r <<= 1;
240
0
        b = 3 * r * (r + 1) + 1;
241
0
        if ((x >> s) >= b) {
242
0
            x -= b << s;
243
0
            r++;
244
0
        }
245
0
    }
246
0
    return r * cbrt_scale;
247
0
}
248
249
/*
250
 * Calculate the natural logarithm of a 64 bit scaled integer.
251
 * This is done by calculating a base two logarithm and scaling.
252
 * The maximum logarithm (base 2) is 64 and this reduces base e, so
253
 * a 32 bit result should not overflow.  The argument passed must be
254
 * greater than unity so we don't need to handle negative results.
255
 */
256
static uint32_t ilog_e(uint64_t v)
257
0
{
258
0
    uint32_t i, r = 0;
259
260
    /*
261
     * Scale down the value into the range 1 .. 2.
262
     *
263
     * If fractional numbers need to be processed, another loop needs
264
     * to go here that checks v < scale and if so multiplies it by 2 and
265
     * reduces r by scale.  This also means making r signed.
266
     */
267
0
    while (v >= 2 * scale) {
268
0
        v >>= 1;
269
0
        r += scale;
270
0
    }
271
0
    for (i = scale / 2; i != 0; i /= 2) {
272
0
        v = mul2(v, v);
273
0
        if (v >= 2 * scale) {
274
0
            v >>= 1;
275
0
            r += i;
276
0
        }
277
0
    }
278
0
    r = (r * (uint64_t)scale) / log_e;
279
0
    return r;
280
0
}
281
282
/*
283
 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
284
 * Modulus Lengths.
285
 *
286
 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
287
 * for FFC safe prime groups for modp and ffdhe.
288
 * After Table 25 and Table 26 it refers to
289
 * "The maximum security strength estimates were calculated using the formula in
290
 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
291
 * bits".
292
 *
293
 * The formula is:
294
 *
295
 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
296
 *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
297
 * The two cube roots are merged together here.
298
 */
299
uint16_t ossl_ifc_ffc_compute_security_bits(int n)
300
0
{
301
0
    uint64_t x;
302
0
    uint32_t lx;
303
0
    uint16_t y, cap;
304
305
    /*
306
     * Look for common values as listed in standards.
307
     * These values are not exactly equal to the results from the formulae in
308
     * the standards but are defined to be canonical.
309
     */
310
0
    switch (n) {
311
0
    case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
312
0
        return 112;
313
0
    case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
314
0
        return 128;
315
0
    case 4096:      /* SP 800-56B rev 2 Appendix D */
316
0
        return 152;
317
0
    case 6144:      /* SP 800-56B rev 2 Appendix D */
318
0
        return 176;
319
0
    case 7680:      /* FIPS 140-2 IG 7.5 */
320
0
        return 192;
321
0
    case 8192:      /* SP 800-56B rev 2 Appendix D */
322
0
        return 200;
323
0
    case 15360:     /* FIPS 140-2 IG 7.5 */
324
0
        return 256;
325
0
    }
326
327
    /*
328
     * The first incorrect result (i.e. not accurate or off by one low) occurs
329
     * for n = 699668.  The true value here is 1200.  Instead of using this n
330
     * as the check threshold, the smallest n such that the correct result is
331
     * 1200 is used instead.
332
     */
333
0
    if (n >= 687737)
334
0
        return 1200;
335
0
    if (n < 8)
336
0
        return 0;
337
338
    /*
339
     * To ensure that the output is non-decreasing with respect to n,
340
     * a cap needs to be applied to the two values where the function over
341
     * estimates the strength (according to the above fast path).
342
     */
343
0
    if (n <= 7680)
344
0
        cap = 192;
345
0
    else if (n <= 15360)
346
0
        cap = 256;
347
0
    else
348
0
        cap = 1200;
349
350
0
    x = n * (uint64_t)log_2;
351
0
    lx = ilog_e(x);
352
0
    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
353
0
                   / log_2);
354
0
    y = (y + 4) & ~7;
355
0
    if (y > cap)
356
0
        y = cap;
357
0
    return y;
358
0
}
359
360
361
362
int RSA_security_bits(const RSA *rsa)
363
0
{
364
0
    int bits = BN_num_bits(rsa->n);
365
366
0
#ifndef FIPS_MODULE
367
0
    if (rsa->version == RSA_ASN1_VERSION_MULTI) {
368
        /* This ought to mean that we have private key at hand. */
369
0
        int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
370
371
0
        if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
372
0
            return 0;
373
0
    }
374
0
#endif
375
0
    return ossl_ifc_ffc_compute_security_bits(bits);
376
0
}
377
378
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
379
0
{
380
    /* If the fields n and e in r are NULL, the corresponding input
381
     * parameters MUST be non-NULL for n and e.  d may be
382
     * left NULL (in case only the public key is used).
383
     */
384
0
    if ((r->n == NULL && n == NULL)
385
0
        || (r->e == NULL && e == NULL))
386
0
        return 0;
387
388
0
    if (n != NULL) {
389
0
        BN_free(r->n);
390
0
        r->n = n;
391
0
    }
392
0
    if (e != NULL) {
393
0
        BN_free(r->e);
394
0
        r->e = e;
395
0
    }
396
0
    if (d != NULL) {
397
0
        BN_clear_free(r->d);
398
0
        r->d = d;
399
0
        BN_set_flags(r->d, BN_FLG_CONSTTIME);
400
0
    }
401
0
    r->dirty_cnt++;
402
403
0
    return 1;
404
0
}
405
406
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
407
0
{
408
    /* If the fields p and q in r are NULL, the corresponding input
409
     * parameters MUST be non-NULL.
410
     */
411
0
    if ((r->p == NULL && p == NULL)
412
0
        || (r->q == NULL && q == NULL))
413
0
        return 0;
414
415
0
    if (p != NULL) {
416
0
        BN_clear_free(r->p);
417
0
        r->p = p;
418
0
        BN_set_flags(r->p, BN_FLG_CONSTTIME);
419
0
    }
420
0
    if (q != NULL) {
421
0
        BN_clear_free(r->q);
422
0
        r->q = q;
423
0
        BN_set_flags(r->q, BN_FLG_CONSTTIME);
424
0
    }
425
0
    r->dirty_cnt++;
426
427
0
    return 1;
428
0
}
429
430
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
431
0
{
432
    /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
433
     * parameters MUST be non-NULL.
434
     */
435
0
    if ((r->dmp1 == NULL && dmp1 == NULL)
436
0
        || (r->dmq1 == NULL && dmq1 == NULL)
437
0
        || (r->iqmp == NULL && iqmp == NULL))
438
0
        return 0;
439
440
0
    if (dmp1 != NULL) {
441
0
        BN_clear_free(r->dmp1);
442
0
        r->dmp1 = dmp1;
443
0
        BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
444
0
    }
445
0
    if (dmq1 != NULL) {
446
0
        BN_clear_free(r->dmq1);
447
0
        r->dmq1 = dmq1;
448
0
        BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
449
0
    }
450
0
    if (iqmp != NULL) {
451
0
        BN_clear_free(r->iqmp);
452
0
        r->iqmp = iqmp;
453
0
        BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
454
0
    }
455
0
    r->dirty_cnt++;
456
457
0
    return 1;
458
0
}
459
460
#ifndef FIPS_MODULE
461
/*
462
 * Is it better to export RSA_PRIME_INFO structure
463
 * and related functions to let user pass a triplet?
464
 */
465
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
466
                                BIGNUM *coeffs[], int pnum)
467
0
{
468
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
469
0
    RSA_PRIME_INFO *pinfo;
470
0
    int i;
471
472
0
    if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
473
0
        return 0;
474
475
0
    prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
476
0
    if (prime_infos == NULL)
477
0
        return 0;
478
479
0
    if (r->prime_infos != NULL)
480
0
        old = r->prime_infos;
481
482
0
    for (i = 0; i < pnum; i++) {
483
0
        pinfo = ossl_rsa_multip_info_new();
484
0
        if (pinfo == NULL)
485
0
            goto err;
486
0
        if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
487
0
            BN_clear_free(pinfo->r);
488
0
            BN_clear_free(pinfo->d);
489
0
            BN_clear_free(pinfo->t);
490
0
            pinfo->r = primes[i];
491
0
            pinfo->d = exps[i];
492
0
            pinfo->t = coeffs[i];
493
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
494
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
495
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
496
0
        } else {
497
0
            ossl_rsa_multip_info_free(pinfo);
498
0
            goto err;
499
0
        }
500
0
        (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
501
0
    }
502
503
0
    r->prime_infos = prime_infos;
504
505
0
    if (!ossl_rsa_multip_calc_product(r)) {
506
0
        r->prime_infos = old;
507
0
        goto err;
508
0
    }
509
510
0
    if (old != NULL) {
511
        /*
512
         * This is hard to deal with, since the old infos could
513
         * also be set by this function and r, d, t should not
514
         * be freed in that case. So currently, stay consistent
515
         * with other *set0* functions: just free it...
516
         */
517
0
        sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
518
0
    }
519
520
0
    r->version = RSA_ASN1_VERSION_MULTI;
521
0
    r->dirty_cnt++;
522
523
0
    return 1;
524
0
 err:
525
    /* r, d, t should not be freed */
526
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
527
0
    return 0;
528
0
}
529
#endif
530
531
void RSA_get0_key(const RSA *r,
532
                  const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
533
11.4k
{
534
11.4k
    if (n != NULL)
535
11.4k
        *n = r->n;
536
11.4k
    if (e != NULL)
537
11.4k
        *e = r->e;
538
11.4k
    if (d != NULL)
539
11.4k
        *d = r->d;
540
11.4k
}
541
542
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
543
11.2k
{
544
11.2k
    if (p != NULL)
545
11.2k
        *p = r->p;
546
11.2k
    if (q != NULL)
547
11.2k
        *q = r->q;
548
11.2k
}
549
550
#ifndef FIPS_MODULE
551
int RSA_get_multi_prime_extra_count(const RSA *r)
552
0
{
553
0
    int pnum;
554
555
0
    pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
556
0
    if (pnum <= 0)
557
0
        pnum = 0;
558
0
    return pnum;
559
0
}
560
561
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
562
0
{
563
0
    int pnum, i;
564
0
    RSA_PRIME_INFO *pinfo;
565
566
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
567
0
        return 0;
568
569
    /*
570
     * return other primes
571
     * it's caller's responsibility to allocate oth_primes[pnum]
572
     */
573
0
    for (i = 0; i < pnum; i++) {
574
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
575
0
        primes[i] = pinfo->r;
576
0
    }
577
578
0
    return 1;
579
0
}
580
#endif
581
582
void RSA_get0_crt_params(const RSA *r,
583
                         const BIGNUM **dmp1, const BIGNUM **dmq1,
584
                         const BIGNUM **iqmp)
585
0
{
586
0
    if (dmp1 != NULL)
587
0
        *dmp1 = r->dmp1;
588
0
    if (dmq1 != NULL)
589
0
        *dmq1 = r->dmq1;
590
0
    if (iqmp != NULL)
591
0
        *iqmp = r->iqmp;
592
0
}
593
594
#ifndef FIPS_MODULE
595
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
596
                                    const BIGNUM *coeffs[])
597
0
{
598
0
    int pnum;
599
600
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
601
0
        return 0;
602
603
    /* return other primes */
604
0
    if (exps != NULL || coeffs != NULL) {
605
0
        RSA_PRIME_INFO *pinfo;
606
0
        int i;
607
608
        /* it's the user's job to guarantee the buffer length */
609
0
        for (i = 0; i < pnum; i++) {
610
0
            pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
611
0
            if (exps != NULL)
612
0
                exps[i] = pinfo->d;
613
0
            if (coeffs != NULL)
614
0
                coeffs[i] = pinfo->t;
615
0
        }
616
0
    }
617
618
0
    return 1;
619
0
}
620
#endif
621
622
const BIGNUM *RSA_get0_n(const RSA *r)
623
0
{
624
0
    return r->n;
625
0
}
626
627
const BIGNUM *RSA_get0_e(const RSA *r)
628
0
{
629
0
    return r->e;
630
0
}
631
632
const BIGNUM *RSA_get0_d(const RSA *r)
633
0
{
634
0
    return r->d;
635
0
}
636
637
const BIGNUM *RSA_get0_p(const RSA *r)
638
0
{
639
0
    return r->p;
640
0
}
641
642
const BIGNUM *RSA_get0_q(const RSA *r)
643
0
{
644
0
    return r->q;
645
0
}
646
647
const BIGNUM *RSA_get0_dmp1(const RSA *r)
648
0
{
649
0
    return r->dmp1;
650
0
}
651
652
const BIGNUM *RSA_get0_dmq1(const RSA *r)
653
0
{
654
0
    return r->dmq1;
655
0
}
656
657
const BIGNUM *RSA_get0_iqmp(const RSA *r)
658
0
{
659
0
    return r->iqmp;
660
0
}
661
662
const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
663
0
{
664
#ifdef FIPS_MODULE
665
    return NULL;
666
#else
667
0
    return r->pss;
668
0
#endif
669
0
}
670
671
/* Internal */
672
int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
673
0
{
674
#ifdef FIPS_MODULE
675
    return 0;
676
#else
677
0
    RSA_PSS_PARAMS_free(r->pss);
678
0
    r->pss = pss;
679
0
    return 1;
680
0
#endif
681
0
}
682
683
/* Internal */
684
RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
685
0
{
686
0
    return &r->pss_params;
687
0
}
688
689
void RSA_clear_flags(RSA *r, int flags)
690
0
{
691
0
    r->flags &= ~flags;
692
0
}
693
694
int RSA_test_flags(const RSA *r, int flags)
695
0
{
696
0
    return r->flags & flags;
697
0
}
698
699
void RSA_set_flags(RSA *r, int flags)
700
0
{
701
0
    r->flags |= flags;
702
0
}
703
704
int RSA_get_version(RSA *r)
705
0
{
706
    /* { two-prime(0), multi(1) } */
707
0
    return r->version;
708
0
}
709
710
#ifndef FIPS_MODULE
711
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
712
0
{
713
    /* If key type not RSA or RSA-PSS return error */
714
0
    if (ctx != NULL && ctx->pmeth != NULL
715
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA
716
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
717
0
        return -1;
718
0
     return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
719
0
}
720
#endif
721
722
DEFINE_STACK_OF(BIGNUM)
723
724
/*
725
 * Note: This function deletes values from the parameter
726
 * stack values as they are consumed and set in the RSA key.
727
 */
728
int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
729
                             STACK_OF(BIGNUM) *exps,
730
                             STACK_OF(BIGNUM) *coeffs)
731
0
{
732
0
#ifndef FIPS_MODULE
733
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
734
0
#endif
735
0
    int pnum;
736
737
0
    if (primes == NULL || exps == NULL || coeffs == NULL)
738
0
        return 0;
739
740
0
    pnum = sk_BIGNUM_num(primes);
741
742
    /* we need at least 2 primes */
743
0
    if (pnum < 2)
744
0
        return 0;
745
746
0
    if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
747
0
                          sk_BIGNUM_value(primes, 1)))
748
0
        return 0;
749
750
    /*
751
     * if we managed to set everything above, remove those elements from the
752
     * stack
753
     * Note, we do this after the above all to ensure that we have taken
754
     * ownership of all the elements in the RSA key to avoid memory leaks
755
     * we also use delete 0 here as we are grabbing items from the end of the
756
     * stack rather than the start, otherwise we could use pop
757
     */
758
0
    sk_BIGNUM_delete(primes, 0);
759
0
    sk_BIGNUM_delete(primes, 0);
760
761
0
    if (pnum == sk_BIGNUM_num(exps)
762
0
        && pnum == sk_BIGNUM_num(coeffs) + 1) {
763
764
0
        if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
765
0
                                 sk_BIGNUM_value(exps, 1),
766
0
                                 sk_BIGNUM_value(coeffs, 0)))
767
0
        return 0;
768
769
        /* as above, once we consume the above params, delete them from the list */
770
0
        sk_BIGNUM_delete(exps, 0);
771
0
        sk_BIGNUM_delete(exps, 0);
772
0
        sk_BIGNUM_delete(coeffs, 0);
773
0
    }
774
775
0
#ifndef FIPS_MODULE
776
0
    old_infos = r->prime_infos;
777
0
#endif
778
779
0
    if (pnum > 2) {
780
0
#ifndef FIPS_MODULE
781
0
        int i;
782
783
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
784
0
        if (prime_infos == NULL)
785
0
            return 0;
786
787
0
        for (i = 2; i < pnum; i++) {
788
0
            BIGNUM *prime = sk_BIGNUM_pop(primes);
789
0
            BIGNUM *exp = sk_BIGNUM_pop(exps);
790
0
            BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
791
0
            RSA_PRIME_INFO *pinfo = NULL;
792
793
0
            if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
794
0
                goto err;
795
796
            /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
797
0
            if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
798
0
                goto err;
799
800
0
            pinfo->r = prime;
801
0
            pinfo->d = exp;
802
0
            pinfo->t = coeff;
803
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
804
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
805
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
806
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
807
0
        }
808
809
0
        r->prime_infos = prime_infos;
810
811
0
        if (!ossl_rsa_multip_calc_product(r)) {
812
0
            r->prime_infos = old_infos;
813
0
            goto err;
814
0
        }
815
#else
816
        return 0;
817
#endif
818
0
    }
819
820
0
#ifndef FIPS_MODULE
821
0
    if (old_infos != NULL) {
822
        /*
823
         * This is hard to deal with, since the old infos could
824
         * also be set by this function and r, d, t should not
825
         * be freed in that case. So currently, stay consistent
826
         * with other *set0* functions: just free it...
827
         */
828
0
        sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
829
0
    }
830
0
#endif
831
832
0
    r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
833
0
    r->dirty_cnt++;
834
835
0
    return 1;
836
0
#ifndef FIPS_MODULE
837
0
 err:
838
    /* r, d, t should not be freed */
839
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
840
0
    return 0;
841
0
#endif
842
0
}
843
844
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
845
846
int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
847
                             STACK_OF(BIGNUM_const) *exps,
848
                             STACK_OF(BIGNUM_const) *coeffs)
849
0
{
850
0
#ifndef FIPS_MODULE
851
0
    RSA_PRIME_INFO *pinfo;
852
0
    int i, pnum;
853
0
#endif
854
855
0
    if (r == NULL)
856
0
        return 0;
857
858
    /* If |p| is NULL, there are no CRT parameters */
859
0
    if (RSA_get0_p(r) == NULL)
860
0
        return 1;
861
862
0
    sk_BIGNUM_const_push(primes, RSA_get0_p(r));
863
0
    sk_BIGNUM_const_push(primes, RSA_get0_q(r));
864
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
865
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
866
0
    sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
867
868
0
#ifndef FIPS_MODULE
869
0
    pnum = RSA_get_multi_prime_extra_count(r);
870
0
    for (i = 0; i < pnum; i++) {
871
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
872
0
        sk_BIGNUM_const_push(primes, pinfo->r);
873
0
        sk_BIGNUM_const_push(exps, pinfo->d);
874
0
        sk_BIGNUM_const_push(coeffs, pinfo->t);
875
0
    }
876
0
#endif
877
878
0
    return 1;
879
0
}
880
881
0
#define safe_BN_num_bits(_k_)  (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))
882
int ossl_rsa_check_factors(RSA *r)
883
0
{
884
0
    int valid = 0;
885
0
    int n, i, bits;
886
0
    STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
887
0
    STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
888
0
    STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
889
890
0
    if (factors == NULL || exps == NULL || coeffs == NULL)
891
0
        goto done;
892
893
    /*
894
     * Simple sanity check for RSA key. All RSA key parameters
895
     * must be less-than/equal-to RSA parameter n.
896
     */
897
0
    ossl_rsa_get0_all_params(r, factors, exps, coeffs);
898
0
    n = safe_BN_num_bits(RSA_get0_n(r));
899
900
0
    if (safe_BN_num_bits(RSA_get0_d(r)) > n)
901
0
        goto done;
902
903
0
    for (i = 0; i < sk_BIGNUM_const_num(exps); i++) {
904
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));
905
0
        if (bits > n)
906
0
            goto done;
907
0
    }
908
909
0
    for (i = 0; i < sk_BIGNUM_const_num(factors); i++) {
910
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));
911
0
        if (bits > n)
912
0
            goto done;
913
0
    }
914
915
0
    for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) {
916
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));
917
0
        if (bits > n)
918
0
            goto done;
919
0
    }
920
921
0
    valid = 1;
922
923
0
done:
924
0
    sk_BIGNUM_const_free(factors);
925
0
    sk_BIGNUM_const_free(exps);
926
0
    sk_BIGNUM_const_free(coeffs);
927
928
0
    return valid;
929
0
}
930
931
#ifndef FIPS_MODULE
932
/* Helpers to set or get diverse hash algorithm names */
933
static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
934
                               /* For checks */
935
                               int keytype, int optype,
936
                               /* For EVP_PKEY_CTX_set_params() */
937
                               const char *mdkey, const char *mdname,
938
                               const char *propkey, const char *mdprops)
939
0
{
940
0
    OSSL_PARAM params[3], *p = params;
941
942
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
943
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
944
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
945
0
        return -2;
946
0
    }
947
948
    /* If key type not RSA return error */
949
0
    switch (keytype) {
950
0
    case -1:
951
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
952
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
953
0
            return -1;
954
0
        break;
955
0
    default:
956
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
957
0
            return -1;
958
0
        break;
959
0
    }
960
961
    /* Cast away the const. This is read only so should be safe */
962
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
963
0
    if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
964
        /* Cast away the const. This is read only so should be safe */
965
0
        *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
966
0
    }
967
0
    *p++ = OSSL_PARAM_construct_end();
968
969
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
970
0
}
971
972
/* Helpers to set or get diverse hash algorithm names */
973
static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
974
                               /* For checks */
975
                               int keytype, int optype,
976
                               /* For EVP_PKEY_CTX_get_params() */
977
                               const char *mdkey,
978
                               char *mdname, size_t mdnamesize)
979
0
{
980
0
    OSSL_PARAM params[2], *p = params;
981
982
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
983
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
984
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
985
0
        return -2;
986
0
    }
987
988
    /* If key type not RSA return error */
989
0
    switch (keytype) {
990
0
    case -1:
991
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
992
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
993
0
            return -1;
994
0
        break;
995
0
    default:
996
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
997
0
            return -1;
998
0
        break;
999
0
    }
1000
1001
    /* Cast away the const. This is read only so should be safe */
1002
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
1003
0
    *p++ = OSSL_PARAM_construct_end();
1004
1005
0
    return evp_pkey_ctx_get_params_strict(ctx, params);
1006
0
}
1007
1008
/*
1009
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1010
 * simply because that's easier.
1011
 */
1012
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
1013
0
{
1014
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
1015
0
                             pad_mode, NULL);
1016
0
}
1017
1018
/*
1019
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1020
 * simply because that's easier.
1021
 */
1022
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
1023
0
{
1024
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
1025
0
                             0, pad_mode);
1026
0
}
1027
1028
/*
1029
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1030
 * simply because that's easier.
1031
 */
1032
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1033
0
{
1034
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1035
0
                             EVP_PKEY_CTRL_MD, 0, (void *)(md));
1036
0
}
1037
1038
int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
1039
                                            const char *mdname,
1040
                                            const char *mdprops)
1041
0
{
1042
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1043
0
                               OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
1044
0
                               OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
1045
0
}
1046
1047
/*
1048
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1049
 * simply because that's easier.
1050
 */
1051
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1052
0
{
1053
    /* If key type not RSA return error */
1054
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1055
0
        return -1;
1056
1057
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1058
0
                             EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1059
0
}
1060
1061
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1062
                                      const char *mdprops)
1063
0
{
1064
0
    return
1065
0
        int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1066
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1067
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1068
0
}
1069
1070
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1071
                                      size_t namesize)
1072
0
{
1073
0
    return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1074
0
                               OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1075
0
                               name, namesize);
1076
0
}
1077
1078
/*
1079
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1080
 * simply because that's easier.
1081
 */
1082
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1083
0
{
1084
    /* If key type not RSA return error */
1085
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1086
0
        return -1;
1087
1088
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1089
0
                             EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1090
0
}
1091
1092
/*
1093
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1094
 * simply because that's easier.
1095
 */
1096
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1097
0
{
1098
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1099
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1100
0
}
1101
1102
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1103
                                      const char *mdprops)
1104
0
{
1105
0
    return int_set_rsa_md_name(ctx, -1,
1106
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1107
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1108
0
                               OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1109
0
}
1110
1111
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1112
                                      size_t namesize)
1113
0
{
1114
0
    return int_get_rsa_md_name(ctx, -1,
1115
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1116
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1117
0
}
1118
1119
/*
1120
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1121
 * simply because that's easier.
1122
 */
1123
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1124
0
{
1125
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1126
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1127
0
}
1128
1129
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1130
                                                 const char *mdname)
1131
0
{
1132
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1133
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1134
0
                               NULL, NULL);
1135
0
}
1136
1137
/*
1138
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1139
 * simply because that's easier.
1140
 */
1141
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1142
0
{
1143
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1144
0
                             EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1145
0
}
1146
1147
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1148
0
{
1149
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1150
0
    const char *empty = "";
1151
    /*
1152
     * Needed as we swap label with empty if it is NULL, and label is
1153
     * freed at the end of this function.
1154
     */
1155
0
    void *plabel = label;
1156
0
    int ret;
1157
1158
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1159
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1160
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1161
0
        return -2;
1162
0
    }
1163
1164
    /* If key type not RSA return error */
1165
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1166
0
        return -1;
1167
1168
    /* Accept NULL for backward compatibility */
1169
0
    if (label == NULL && llen == 0)
1170
0
        plabel = (void *)empty;
1171
1172
    /* Cast away the const. This is read only so should be safe */
1173
0
    *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1174
0
                                             (void *)plabel, (size_t)llen);
1175
0
    *p++ = OSSL_PARAM_construct_end();
1176
1177
0
    ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1178
0
    if (ret <= 0)
1179
0
        return ret;
1180
1181
    /* Ownership is supposed to be transferred to the callee. */
1182
0
    OPENSSL_free(label);
1183
0
    return 1;
1184
0
}
1185
1186
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1187
0
{
1188
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1189
0
    size_t labellen;
1190
1191
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1192
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1193
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1194
0
        return -2;
1195
0
    }
1196
1197
    /* If key type not RSA return error */
1198
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1199
0
        return -1;
1200
1201
0
    *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1202
0
                                          (void **)label, 0);
1203
0
    *p++ = OSSL_PARAM_construct_end();
1204
1205
0
    if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1206
0
        return -1;
1207
1208
0
    labellen = rsa_params[0].return_size;
1209
0
    if (labellen > INT_MAX)
1210
0
        return -1;
1211
1212
0
    return (int)labellen;
1213
0
}
1214
1215
/*
1216
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1217
 * simply because that's easier.
1218
 */
1219
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1220
0
{
1221
    /*
1222
     * For some reason, the optype was set to this:
1223
     *
1224
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1225
     *
1226
     * However, we do use RSA-PSS with the whole gamut of diverse signature
1227
     * and verification operations, so the optype gets upgraded to this:
1228
     *
1229
     * EVP_PKEY_OP_TYPE_SIG
1230
     */
1231
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1232
0
                             EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1233
0
}
1234
1235
/*
1236
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1237
 * simply because that's easier.
1238
 */
1239
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1240
0
{
1241
    /*
1242
     * Because of circumstances, the optype is updated from:
1243
     *
1244
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1245
     *
1246
     * to:
1247
     *
1248
     * EVP_PKEY_OP_TYPE_SIG
1249
     */
1250
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1251
0
                             EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1252
0
}
1253
1254
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1255
0
{
1256
0
    OSSL_PARAM pad_params[2], *p = pad_params;
1257
1258
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1259
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1260
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1261
0
        return -2;
1262
0
    }
1263
1264
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1265
0
        return -1;
1266
1267
0
    *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1268
0
                                    &saltlen);
1269
0
    *p++ = OSSL_PARAM_construct_end();
1270
1271
0
    return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1272
0
}
1273
1274
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1275
0
{
1276
0
    OSSL_PARAM params[2], *p = params;
1277
0
    size_t bits2 = bits;
1278
1279
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1280
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1281
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1282
0
        return -2;
1283
0
    }
1284
1285
    /* If key type not RSA return error */
1286
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1287
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1288
0
        return -1;
1289
1290
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1291
0
    *p++ = OSSL_PARAM_construct_end();
1292
1293
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1294
0
}
1295
1296
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1297
0
{
1298
0
    int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1299
0
                                EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1300
1301
    /*
1302
     * Satisfy memory semantics for pre-3.0 callers of
1303
     * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1304
     * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1305
     */
1306
0
    if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1307
0
        BN_free(ctx->rsa_pubexp);
1308
0
        ctx->rsa_pubexp = pubexp;
1309
0
    }
1310
1311
0
    return ret;
1312
0
}
1313
1314
int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1315
0
{
1316
0
    int ret = 0;
1317
1318
    /*
1319
     * When we're dealing with a provider, there's no need to duplicate
1320
     * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1321
     */
1322
0
    if (evp_pkey_ctx_is_legacy(ctx)) {
1323
0
        pubexp = BN_dup(pubexp);
1324
0
        if (pubexp == NULL)
1325
0
            return 0;
1326
0
    }
1327
0
    ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1328
0
                            EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1329
0
    if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1330
0
        BN_free(pubexp);
1331
0
    return ret;
1332
0
}
1333
1334
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1335
0
{
1336
0
    OSSL_PARAM params[2], *p = params;
1337
0
    size_t primes2 = primes;
1338
1339
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1340
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1341
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1342
0
        return -2;
1343
0
    }
1344
1345
    /* If key type not RSA return error */
1346
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1347
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1348
0
        return -1;
1349
1350
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1351
0
    *p++ = OSSL_PARAM_construct_end();
1352
1353
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1354
0
}
1355
1356
#endif