/src/openssl/providers/implementations/kdfs/krb5kdf.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2018-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * DES low level APIs are deprecated for public use, but still ok for internal |
12 | | * use. We access the DES_set_odd_parity(3) function here. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <stdlib.h> |
17 | | #include <stdarg.h> |
18 | | #include <string.h> |
19 | | |
20 | | #include <openssl/core_names.h> |
21 | | #include <openssl/des.h> |
22 | | #include <openssl/evp.h> |
23 | | #include <openssl/kdf.h> |
24 | | #include <openssl/proverr.h> |
25 | | |
26 | | #include "internal/cryptlib.h" |
27 | | #include "crypto/evp.h" |
28 | | #include "internal/numbers.h" |
29 | | #include "prov/implementations.h" |
30 | | #include "prov/provider_ctx.h" |
31 | | #include "prov/provider_util.h" |
32 | | #include "prov/providercommon.h" |
33 | | #include "providers/implementations/kdfs/krb5kdf.inc" |
34 | | |
35 | | /* KRB5 KDF defined in RFC 3961, Section 5.1 */ |
36 | | |
37 | | static OSSL_FUNC_kdf_newctx_fn krb5kdf_new; |
38 | | static OSSL_FUNC_kdf_dupctx_fn krb5kdf_dup; |
39 | | static OSSL_FUNC_kdf_freectx_fn krb5kdf_free; |
40 | | static OSSL_FUNC_kdf_reset_fn krb5kdf_reset; |
41 | | static OSSL_FUNC_kdf_derive_fn krb5kdf_derive; |
42 | | static OSSL_FUNC_kdf_settable_ctx_params_fn krb5kdf_settable_ctx_params; |
43 | | static OSSL_FUNC_kdf_set_ctx_params_fn krb5kdf_set_ctx_params; |
44 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn krb5kdf_gettable_ctx_params; |
45 | | static OSSL_FUNC_kdf_get_ctx_params_fn krb5kdf_get_ctx_params; |
46 | | |
47 | | static int KRB5KDF(const EVP_CIPHER *cipher, |
48 | | const unsigned char *key, size_t key_len, |
49 | | const unsigned char *constant, size_t constant_len, |
50 | | unsigned char *okey, size_t okey_len); |
51 | | |
52 | | typedef struct { |
53 | | void *provctx; |
54 | | PROV_CIPHER cipher; |
55 | | unsigned char *key; |
56 | | size_t key_len; |
57 | | unsigned char *constant; |
58 | | size_t constant_len; |
59 | | } KRB5KDF_CTX; |
60 | | |
61 | | static void *krb5kdf_new(void *provctx) |
62 | 0 | { |
63 | 0 | KRB5KDF_CTX *ctx; |
64 | |
|
65 | 0 | if (!ossl_prov_is_running()) |
66 | 0 | return NULL; |
67 | | |
68 | 0 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) |
69 | 0 | return NULL; |
70 | 0 | ctx->provctx = provctx; |
71 | 0 | return ctx; |
72 | 0 | } |
73 | | |
74 | | static void krb5kdf_free(void *vctx) |
75 | 0 | { |
76 | 0 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
77 | |
|
78 | 0 | if (ctx != NULL) { |
79 | 0 | krb5kdf_reset(ctx); |
80 | 0 | OPENSSL_free(ctx); |
81 | 0 | } |
82 | 0 | } |
83 | | |
84 | | static void krb5kdf_reset(void *vctx) |
85 | 0 | { |
86 | 0 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
87 | 0 | void *provctx = ctx->provctx; |
88 | |
|
89 | 0 | ossl_prov_cipher_reset(&ctx->cipher); |
90 | 0 | OPENSSL_clear_free(ctx->key, ctx->key_len); |
91 | 0 | OPENSSL_clear_free(ctx->constant, ctx->constant_len); |
92 | 0 | memset(ctx, 0, sizeof(*ctx)); |
93 | 0 | ctx->provctx = provctx; |
94 | 0 | } |
95 | | |
96 | | static int krb5kdf_set_membuf(unsigned char **dst, size_t *dst_len, |
97 | | const OSSL_PARAM *p) |
98 | 0 | { |
99 | 0 | OPENSSL_clear_free(*dst, *dst_len); |
100 | 0 | *dst = NULL; |
101 | 0 | *dst_len = 0; |
102 | 0 | return OSSL_PARAM_get_octet_string(p, (void **)dst, 0, dst_len); |
103 | 0 | } |
104 | | |
105 | | static void *krb5kdf_dup(void *vctx) |
106 | 0 | { |
107 | 0 | const KRB5KDF_CTX *src = (const KRB5KDF_CTX *)vctx; |
108 | 0 | KRB5KDF_CTX *dest; |
109 | |
|
110 | 0 | dest = krb5kdf_new(src->provctx); |
111 | 0 | if (dest != NULL) { |
112 | 0 | if (!ossl_prov_memdup(src->key, src->key_len, |
113 | 0 | &dest->key, &dest->key_len) |
114 | 0 | || !ossl_prov_memdup(src->constant, src->constant_len, |
115 | 0 | &dest->constant , &dest->constant_len) |
116 | 0 | || !ossl_prov_cipher_copy(&dest->cipher, &src->cipher)) |
117 | 0 | goto err; |
118 | 0 | } |
119 | 0 | return dest; |
120 | | |
121 | 0 | err: |
122 | 0 | krb5kdf_free(dest); |
123 | 0 | return NULL; |
124 | 0 | } |
125 | | |
126 | | static int krb5kdf_derive(void *vctx, unsigned char *key, size_t keylen, |
127 | | const OSSL_PARAM params[]) |
128 | 0 | { |
129 | 0 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
130 | 0 | const EVP_CIPHER *cipher; |
131 | |
|
132 | 0 | if (!ossl_prov_is_running() || !krb5kdf_set_ctx_params(ctx, params)) |
133 | 0 | return 0; |
134 | | |
135 | 0 | cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
136 | 0 | if (cipher == NULL) { |
137 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
138 | 0 | return 0; |
139 | 0 | } |
140 | 0 | if (ctx->key == NULL) { |
141 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
142 | 0 | return 0; |
143 | 0 | } |
144 | 0 | if (ctx->constant == NULL) { |
145 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CONSTANT); |
146 | 0 | return 0; |
147 | 0 | } |
148 | | |
149 | 0 | return KRB5KDF(cipher, ctx->key, ctx->key_len, |
150 | 0 | ctx->constant, ctx->constant_len, |
151 | 0 | key, keylen); |
152 | 0 | } |
153 | | |
154 | | static int krb5kdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
155 | 0 | { |
156 | 0 | struct krb5kdf_set_ctx_params_st p; |
157 | 0 | KRB5KDF_CTX *ctx = vctx; |
158 | 0 | OSSL_LIB_CTX *provctx; |
159 | |
|
160 | 0 | if (ctx == NULL || !krb5kdf_set_ctx_params_decoder(params, &p)) |
161 | 0 | return 0; |
162 | | |
163 | 0 | provctx = PROV_LIBCTX_OF(ctx->provctx); |
164 | |
|
165 | 0 | if (!ossl_prov_cipher_load(&ctx->cipher, p.cipher, p.propq, provctx)) |
166 | 0 | return 0; |
167 | | |
168 | 0 | if (p.key != NULL && !krb5kdf_set_membuf(&ctx->key, &ctx->key_len, p.key)) |
169 | 0 | return 0; |
170 | | |
171 | 0 | if (p.cnst != NULL |
172 | 0 | && !krb5kdf_set_membuf(&ctx->constant, &ctx->constant_len, p.cnst)) |
173 | 0 | return 0; |
174 | | |
175 | 0 | return 1; |
176 | 0 | } |
177 | | |
178 | | static const OSSL_PARAM *krb5kdf_settable_ctx_params(ossl_unused void *ctx, |
179 | | ossl_unused void *provctx) |
180 | 0 | { |
181 | 0 | return krb5kdf_set_ctx_params_list; |
182 | 0 | } |
183 | | |
184 | | static int krb5kdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
185 | 0 | { |
186 | 0 | struct krb5kdf_get_ctx_params_st p; |
187 | 0 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
188 | |
|
189 | 0 | if (ctx == NULL || !krb5kdf_get_ctx_params_decoder(params, &p)) |
190 | 0 | return 0; |
191 | | |
192 | 0 | if (p.size != NULL) { |
193 | 0 | const EVP_CIPHER *cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
194 | 0 | size_t len; |
195 | |
|
196 | 0 | if (cipher != NULL) |
197 | 0 | len = EVP_CIPHER_get_key_length(cipher); |
198 | 0 | else |
199 | 0 | len = EVP_MAX_KEY_LENGTH; |
200 | |
|
201 | 0 | if (!OSSL_PARAM_set_size_t(p.size, len)) |
202 | 0 | return 0; |
203 | 0 | } |
204 | 0 | return 1; |
205 | 0 | } |
206 | | |
207 | | static const OSSL_PARAM *krb5kdf_gettable_ctx_params(ossl_unused void *ctx, |
208 | | ossl_unused void *provctx) |
209 | 0 | { |
210 | 0 | return krb5kdf_get_ctx_params_list; |
211 | 0 | } |
212 | | |
213 | | const OSSL_DISPATCH ossl_kdf_krb5kdf_functions[] = { |
214 | | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))krb5kdf_new }, |
215 | | { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))krb5kdf_dup }, |
216 | | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))krb5kdf_free }, |
217 | | { OSSL_FUNC_KDF_RESET, (void(*)(void))krb5kdf_reset }, |
218 | | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))krb5kdf_derive }, |
219 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
220 | | (void(*)(void))krb5kdf_settable_ctx_params }, |
221 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
222 | | (void(*)(void))krb5kdf_set_ctx_params }, |
223 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
224 | | (void(*)(void))krb5kdf_gettable_ctx_params }, |
225 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
226 | | (void(*)(void))krb5kdf_get_ctx_params }, |
227 | | OSSL_DISPATCH_END |
228 | | }; |
229 | | |
230 | | #ifndef OPENSSL_NO_DES |
231 | | /* |
232 | | * DES3 is a special case, it requires a random-to-key function and its |
233 | | * input truncated to 21 bytes of the 24 produced by the cipher. |
234 | | * See RFC3961 6.3.1 |
235 | | */ |
236 | | static int fixup_des3_key(unsigned char *key) |
237 | 0 | { |
238 | 0 | unsigned char *cblock; |
239 | 0 | int i, j; |
240 | |
|
241 | 0 | for (i = 2; i >= 0; i--) { |
242 | 0 | cblock = &key[i * 8]; |
243 | 0 | memmove(cblock, &key[i * 7], 7); |
244 | 0 | cblock[7] = 0; |
245 | 0 | for (j = 0; j < 7; j++) |
246 | 0 | cblock[7] |= (cblock[j] & 1) << (j + 1); |
247 | 0 | DES_set_odd_parity((DES_cblock *)cblock); |
248 | 0 | } |
249 | | |
250 | | /* fail if keys are such that triple des degrades to single des */ |
251 | 0 | if (CRYPTO_memcmp(&key[0], &key[8], 8) == 0 || |
252 | 0 | CRYPTO_memcmp(&key[8], &key[16], 8) == 0) { |
253 | 0 | return 0; |
254 | 0 | } |
255 | | |
256 | 0 | return 1; |
257 | 0 | } |
258 | | #endif |
259 | | |
260 | | /* |
261 | | * N-fold(K) where blocksize is N, and constant_len is K |
262 | | * Note: Here |= denotes concatenation |
263 | | * |
264 | | * L = lcm(N,K) |
265 | | * R = L/K |
266 | | * |
267 | | * for r: 1 -> R |
268 | | * s |= constant rot 13*(r-1)) |
269 | | * |
270 | | * block = 0 |
271 | | * for k: 1 -> K |
272 | | * block += s[N(k-1)..(N-1)k] (ones'-complement addition) |
273 | | * |
274 | | * Optimizing for space we compute: |
275 | | * for each l in L-1 -> 0: |
276 | | * s[l] = (constant rot 13*(l/K))[l%k] |
277 | | * block[l % N] += s[l] (with carry) |
278 | | * finally add carry if any |
279 | | */ |
280 | | static void n_fold(unsigned char *block, unsigned int blocksize, |
281 | | const unsigned char *constant, unsigned int constant_len) |
282 | 0 | { |
283 | 0 | unsigned int tmp, gcd, remainder, lcm, carry; |
284 | 0 | int b, l; |
285 | |
|
286 | 0 | if (constant_len == blocksize) { |
287 | 0 | memcpy(block, constant, constant_len); |
288 | 0 | return; |
289 | 0 | } |
290 | | |
291 | | /* Least Common Multiple of lengths: LCM(a,b)*/ |
292 | 0 | gcd = blocksize; |
293 | 0 | remainder = constant_len; |
294 | | /* Calculate Great Common Divisor first GCD(a,b) */ |
295 | 0 | while (remainder != 0) { |
296 | 0 | tmp = gcd % remainder; |
297 | 0 | gcd = remainder; |
298 | 0 | remainder = tmp; |
299 | 0 | } |
300 | | /* resulting a is the GCD, LCM(a,b) = |a*b|/GCD(a,b) */ |
301 | 0 | lcm = blocksize * constant_len / gcd; |
302 | | |
303 | | /* now spread out the bits */ |
304 | 0 | memset(block, 0, blocksize); |
305 | | |
306 | | /* last to first to be able to bring carry forward */ |
307 | 0 | carry = 0; |
308 | 0 | for (l = lcm - 1; l >= 0; l--) { |
309 | 0 | unsigned int rotbits, rshift, rbyte; |
310 | | |
311 | | /* destination byte in block is l % N */ |
312 | 0 | b = l % blocksize; |
313 | | /* Our virtual s buffer is R = L/K long (K = constant_len) */ |
314 | | /* So we rotate backwards from R-1 to 0 (none) rotations */ |
315 | 0 | rotbits = 13 * (l / constant_len); |
316 | | /* find the byte on s where rotbits falls onto */ |
317 | 0 | rbyte = l - (rotbits / 8); |
318 | | /* calculate how much shift on that byte */ |
319 | 0 | rshift = rotbits & 0x07; |
320 | | /* rbyte % constant_len gives us the unrotated byte in the |
321 | | * constant buffer, get also the previous byte then |
322 | | * appropriately shift them to get the rotated byte we need */ |
323 | 0 | tmp = (constant[(rbyte-1) % constant_len] << (8 - rshift) |
324 | 0 | | constant[rbyte % constant_len] >> rshift) |
325 | 0 | & 0xff; |
326 | | /* add with carry to any value placed by previous passes */ |
327 | 0 | tmp += carry + block[b]; |
328 | 0 | block[b] = tmp & 0xff; |
329 | | /* save any carry that may be left */ |
330 | 0 | carry = tmp >> 8; |
331 | 0 | } |
332 | | |
333 | | /* if any carry is left at the end, add it through the number */ |
334 | 0 | for (b = blocksize - 1; b >= 0 && carry != 0; b--) { |
335 | 0 | carry += block[b]; |
336 | 0 | block[b] = carry & 0xff; |
337 | 0 | carry >>= 8; |
338 | 0 | } |
339 | 0 | } |
340 | | |
341 | | static int cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
342 | | const unsigned char *key, size_t key_len) |
343 | 0 | { |
344 | 0 | int klen, ret; |
345 | |
|
346 | 0 | ret = EVP_EncryptInit_ex(ctx, cipher, NULL, NULL, NULL); |
347 | 0 | if (!ret) |
348 | 0 | goto out; |
349 | | /* set the key len for the odd variable key len cipher */ |
350 | 0 | klen = EVP_CIPHER_CTX_get_key_length(ctx); |
351 | 0 | if (key_len != (size_t)klen) { |
352 | 0 | ret = EVP_CIPHER_CTX_set_key_length(ctx, (int)key_len); |
353 | 0 | if (ret <= 0) { |
354 | 0 | ret = 0; |
355 | 0 | goto out; |
356 | 0 | } |
357 | 0 | } |
358 | 0 | ret = EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); |
359 | 0 | if (!ret) |
360 | 0 | goto out; |
361 | | /* we never want padding, either the length requested is a multiple of |
362 | | * the cipher block size or we are passed a cipher that can cope with |
363 | | * partial blocks via techniques like cipher text stealing */ |
364 | 0 | ret = EVP_CIPHER_CTX_set_padding(ctx, 0); |
365 | 0 | if (!ret) |
366 | 0 | goto out; |
367 | | |
368 | 0 | out: |
369 | 0 | return ret; |
370 | 0 | } |
371 | | |
372 | | static int KRB5KDF(const EVP_CIPHER *cipher, |
373 | | const unsigned char *key, size_t key_len, |
374 | | const unsigned char *constant, size_t constant_len, |
375 | | unsigned char *okey, size_t okey_len) |
376 | 0 | { |
377 | 0 | EVP_CIPHER_CTX *ctx = NULL; |
378 | 0 | unsigned char block[EVP_MAX_BLOCK_LENGTH * 2]; |
379 | 0 | unsigned char *plainblock, *cipherblock; |
380 | 0 | size_t blocksize; |
381 | 0 | size_t cipherlen; |
382 | 0 | size_t osize; |
383 | 0 | #ifndef OPENSSL_NO_DES |
384 | 0 | int des3_no_fixup = 0; |
385 | 0 | #endif |
386 | 0 | int ret; |
387 | |
|
388 | 0 | if (key_len != okey_len) { |
389 | 0 | #ifndef OPENSSL_NO_DES |
390 | | /* special case for 3des, where the caller may be requesting |
391 | | * the random raw key, instead of the fixed up key */ |
392 | 0 | if (EVP_CIPHER_get_nid(cipher) == NID_des_ede3_cbc && |
393 | 0 | key_len == 24 && okey_len == 21) { |
394 | 0 | des3_no_fixup = 1; |
395 | 0 | } else { |
396 | 0 | #endif |
397 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_OUTPUT_BUFFER_SIZE); |
398 | 0 | return 0; |
399 | 0 | #ifndef OPENSSL_NO_DES |
400 | 0 | } |
401 | 0 | #endif |
402 | 0 | } |
403 | | |
404 | 0 | ctx = EVP_CIPHER_CTX_new(); |
405 | 0 | if (ctx == NULL) |
406 | 0 | return 0; |
407 | | |
408 | 0 | ret = cipher_init(ctx, cipher, key, key_len); |
409 | 0 | if (!ret) |
410 | 0 | goto out; |
411 | | |
412 | | /* Initialize input block */ |
413 | 0 | blocksize = EVP_CIPHER_CTX_get_block_size(ctx); |
414 | |
|
415 | 0 | if (blocksize == 0) { |
416 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
417 | 0 | ret = 0; |
418 | 0 | goto out; |
419 | 0 | } |
420 | | |
421 | 0 | if (constant_len > blocksize) { |
422 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_CONSTANT_LENGTH); |
423 | 0 | ret = 0; |
424 | 0 | goto out; |
425 | 0 | } |
426 | | |
427 | 0 | n_fold(block, (unsigned int)blocksize, constant, (unsigned int)constant_len); |
428 | 0 | plainblock = block; |
429 | 0 | cipherblock = block + EVP_MAX_BLOCK_LENGTH; |
430 | |
|
431 | 0 | for (osize = 0; osize < okey_len; osize += cipherlen) { |
432 | 0 | int olen; |
433 | |
|
434 | 0 | ret = EVP_EncryptUpdate(ctx, cipherblock, &olen, |
435 | 0 | plainblock, (int)blocksize); |
436 | 0 | if (!ret) |
437 | 0 | goto out; |
438 | 0 | cipherlen = olen; |
439 | 0 | ret = EVP_EncryptFinal_ex(ctx, cipherblock, &olen); |
440 | 0 | if (!ret) |
441 | 0 | goto out; |
442 | 0 | if (olen != 0) { |
443 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_FINAL_BLOCK_LENGTH); |
444 | 0 | ret = 0; |
445 | 0 | goto out; |
446 | 0 | } |
447 | | |
448 | | /* write cipherblock out */ |
449 | 0 | if (cipherlen > okey_len - osize) |
450 | 0 | cipherlen = okey_len - osize; |
451 | 0 | memcpy(okey + osize, cipherblock, cipherlen); |
452 | |
|
453 | 0 | if (okey_len > osize + cipherlen) { |
454 | | /* we need to reinitialize cipher context per spec */ |
455 | 0 | ret = EVP_CIPHER_CTX_reset(ctx); |
456 | 0 | if (!ret) |
457 | 0 | goto out; |
458 | 0 | ret = cipher_init(ctx, cipher, key, key_len); |
459 | 0 | if (!ret) |
460 | 0 | goto out; |
461 | | |
462 | | /* also swap block offsets so last ciphertext becomes new |
463 | | * plaintext */ |
464 | 0 | plainblock = cipherblock; |
465 | 0 | if (cipherblock == block) { |
466 | 0 | cipherblock += EVP_MAX_BLOCK_LENGTH; |
467 | 0 | } else { |
468 | 0 | cipherblock = block; |
469 | 0 | } |
470 | 0 | } |
471 | 0 | } |
472 | | |
473 | 0 | #ifndef OPENSSL_NO_DES |
474 | 0 | if (EVP_CIPHER_get_nid(cipher) == NID_des_ede3_cbc && !des3_no_fixup) { |
475 | 0 | ret = fixup_des3_key(okey); |
476 | 0 | if (!ret) { |
477 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GENERATE_KEY); |
478 | 0 | goto out; |
479 | 0 | } |
480 | 0 | } |
481 | 0 | #endif |
482 | | |
483 | 0 | ret = 1; |
484 | |
|
485 | 0 | out: |
486 | 0 | EVP_CIPHER_CTX_free(ctx); |
487 | 0 | OPENSSL_cleanse(block, EVP_MAX_BLOCK_LENGTH * 2); |
488 | 0 | return ret; |
489 | 0 | } |