Coverage Report

Created: 2025-12-08 06:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
0
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
0
    return ossl_seconds2time(60 * 60 * 2);
103
0
}
104
105
int tls1_new(SSL *s)
106
0
{
107
0
    if (!ssl3_new(s))
108
0
        return 0;
109
0
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
0
    return 1;
113
0
}
114
115
void tls1_free(SSL *s)
116
0
{
117
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
0
    if (sc == NULL)
120
0
        return;
121
122
0
    OPENSSL_free(sc->ext.session_ticket);
123
0
    ssl3_free(s);
124
0
}
125
126
int tls1_clear(SSL *s)
127
0
{
128
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
0
    if (sc == NULL)
131
0
        return 0;
132
133
0
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
0
    if (s->method->version == TLS_ANY_VERSION)
137
0
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
0
    return 1;
142
0
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed
198
};
199
200
static const unsigned char ecformats_all[] = {
201
    TLSEXT_ECPOINTFORMAT_uncompressed,
202
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
203
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
204
};
205
206
/* Group list string of the built-in pseudo group DEFAULT */
207
#define DEFAULT_GROUP_NAME "DEFAULT"
208
#define TLS_DEFAULT_GROUP_LIST \
209
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
210
211
static const uint16_t suiteb_curves[] = {
212
    OSSL_TLS_GROUP_ID_secp256r1,
213
    OSSL_TLS_GROUP_ID_secp384r1,
214
};
215
216
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
217
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
218
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
219
220
struct provider_ctx_data_st {
221
    SSL_CTX *ctx;
222
    OSSL_PROVIDER *provider;
223
};
224
225
0
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226
static OSSL_CALLBACK add_provider_groups;
227
static int add_provider_groups(const OSSL_PARAM params[], void *data)
228
0
{
229
0
    struct provider_ctx_data_st *pgd = data;
230
0
    SSL_CTX *ctx = pgd->ctx;
231
0
    const OSSL_PARAM *p;
232
0
    TLS_GROUP_INFO *ginf = NULL;
233
0
    EVP_KEYMGMT *keymgmt;
234
0
    unsigned int gid;
235
0
    unsigned int is_kem = 0;
236
0
    int ret = 0;
237
238
0
    if (ctx->group_list_max_len == ctx->group_list_len) {
239
0
        TLS_GROUP_INFO *tmp = NULL;
240
241
0
        if (ctx->group_list_max_len == 0)
242
0
            tmp = OPENSSL_malloc_array(TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
243
0
                                       sizeof(TLS_GROUP_INFO));
244
0
        else
245
0
            tmp = OPENSSL_realloc_array(ctx->group_list,
246
0
                                        ctx->group_list_max_len
247
0
                                        + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
248
0
                                        sizeof(TLS_GROUP_INFO));
249
0
        if (tmp == NULL)
250
0
            return 0;
251
0
        ctx->group_list = tmp;
252
0
        memset(tmp + ctx->group_list_max_len,
253
0
               0,
254
0
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255
0
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
256
0
    }
257
258
0
    ginf = &ctx->group_list[ctx->group_list_len];
259
260
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
261
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
262
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
263
0
        goto err;
264
0
    }
265
0
    ginf->tlsname = OPENSSL_strdup(p->data);
266
0
    if (ginf->tlsname == NULL)
267
0
        goto err;
268
269
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
270
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
272
0
        goto err;
273
0
    }
274
0
    ginf->realname = OPENSSL_strdup(p->data);
275
0
    if (ginf->realname == NULL)
276
0
        goto err;
277
278
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
279
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
280
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281
0
        goto err;
282
0
    }
283
0
    ginf->group_id = (uint16_t)gid;
284
285
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
286
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
0
    ginf->algorithm = OPENSSL_strdup(p->data);
291
0
    if (ginf->algorithm == NULL)
292
0
        goto err;
293
294
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
295
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
296
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
297
0
        goto err;
298
0
    }
299
300
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
301
0
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
302
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
303
0
        goto err;
304
0
    }
305
0
    ginf->is_kem = 1 & is_kem;
306
307
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
308
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
313
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
314
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
315
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316
0
        goto err;
317
0
    }
318
319
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
320
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
321
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322
0
        goto err;
323
0
    }
324
325
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
326
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
327
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
328
0
        goto err;
329
0
    }
330
    /*
331
     * Now check that the algorithm is actually usable for our property query
332
     * string. Regardless of the result we still return success because we have
333
     * successfully processed this group, even though we may decide not to use
334
     * it.
335
     */
336
0
    ret = 1;
337
0
    ERR_set_mark();
338
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
339
0
    if (keymgmt != NULL) {
340
        /* We have successfully fetched the algorithm, we can use the group. */
341
0
        ctx->group_list_len++;
342
0
        ginf = NULL;
343
0
        EVP_KEYMGMT_free(keymgmt);
344
0
    }
345
0
    ERR_pop_to_mark();
346
0
 err:
347
0
    if (ginf != NULL) {
348
0
        OPENSSL_free(ginf->tlsname);
349
0
        OPENSSL_free(ginf->realname);
350
0
        OPENSSL_free(ginf->algorithm);
351
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
352
0
    }
353
0
    return ret;
354
0
}
355
356
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
357
0
{
358
0
    struct provider_ctx_data_st pgd;
359
360
0
    pgd.ctx = vctx;
361
0
    pgd.provider = provider;
362
0
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
363
0
                                          add_provider_groups, &pgd);
364
0
}
365
366
int ssl_load_groups(SSL_CTX *ctx)
367
0
{
368
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
369
0
        return 0;
370
371
0
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
372
0
}
373
374
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
375
0
{
376
0
    return (sinf->keytype != NULL
377
0
            ? sinf->keytype
378
0
            : (sinf->sig_name != NULL
379
0
               ? sinf->sig_name
380
0
               : sinf->sigalg_name));
381
0
}
382
383
0
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
384
static OSSL_CALLBACK add_provider_sigalgs;
385
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
386
0
{
387
0
    struct provider_ctx_data_st *pgd = data;
388
0
    SSL_CTX *ctx = pgd->ctx;
389
0
    OSSL_PROVIDER *provider = pgd->provider;
390
0
    const OSSL_PARAM *p;
391
0
    TLS_SIGALG_INFO *sinf = NULL;
392
0
    EVP_KEYMGMT *keymgmt;
393
0
    const char *keytype;
394
0
    unsigned int code_point = 0;
395
0
    int ret = 0;
396
397
0
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
398
0
        TLS_SIGALG_INFO *tmp = NULL;
399
400
0
        if (ctx->sigalg_list_max_len == 0)
401
0
            tmp = OPENSSL_malloc_array(TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
402
0
                                       sizeof(TLS_SIGALG_INFO));
403
0
        else
404
0
            tmp = OPENSSL_realloc_array(ctx->sigalg_list,
405
0
                                        ctx->sigalg_list_max_len
406
0
                                        + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
407
0
                                        sizeof(TLS_SIGALG_INFO));
408
0
        if (tmp == NULL)
409
0
            return 0;
410
0
        ctx->sigalg_list = tmp;
411
0
        memset(tmp + ctx->sigalg_list_max_len, 0,
412
0
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
413
0
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
414
0
    }
415
416
0
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
417
418
    /* First, mandatory parameters */
419
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
420
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
421
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
422
0
        goto err;
423
0
    }
424
0
    OPENSSL_free(sinf->sigalg_name);
425
0
    sinf->sigalg_name = OPENSSL_strdup(p->data);
426
0
    if (sinf->sigalg_name == NULL)
427
0
        goto err;
428
429
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
430
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
431
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432
0
        goto err;
433
0
    }
434
0
    OPENSSL_free(sinf->name);
435
0
    sinf->name = OPENSSL_strdup(p->data);
436
0
    if (sinf->name == NULL)
437
0
        goto err;
438
439
0
    p = OSSL_PARAM_locate_const(params,
440
0
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
441
0
    if (p == NULL
442
0
        || !OSSL_PARAM_get_uint(p, &code_point)
443
0
        || code_point > UINT16_MAX) {
444
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
445
0
        goto err;
446
0
    }
447
0
    sinf->code_point = (uint16_t)code_point;
448
449
0
    p = OSSL_PARAM_locate_const(params,
450
0
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
451
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
452
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
453
0
        goto err;
454
0
    }
455
456
    /* Now, optional parameters */
457
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
458
0
    if (p == NULL) {
459
0
        sinf->sigalg_oid = NULL;
460
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
461
0
        goto err;
462
0
    } else {
463
0
        OPENSSL_free(sinf->sigalg_oid);
464
0
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
465
0
        if (sinf->sigalg_oid == NULL)
466
0
            goto err;
467
0
    }
468
469
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
470
0
    if (p == NULL) {
471
0
        sinf->sig_name = NULL;
472
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
473
0
        goto err;
474
0
    } else {
475
0
        OPENSSL_free(sinf->sig_name);
476
0
        sinf->sig_name = OPENSSL_strdup(p->data);
477
0
        if (sinf->sig_name == NULL)
478
0
            goto err;
479
0
    }
480
481
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
482
0
    if (p == NULL) {
483
0
        sinf->sig_oid = NULL;
484
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
485
0
        goto err;
486
0
    } else {
487
0
        OPENSSL_free(sinf->sig_oid);
488
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
489
0
        if (sinf->sig_oid == NULL)
490
0
            goto err;
491
0
    }
492
493
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
494
0
    if (p == NULL) {
495
0
        sinf->hash_name = NULL;
496
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
497
0
        goto err;
498
0
    } else {
499
0
        OPENSSL_free(sinf->hash_name);
500
0
        sinf->hash_name = OPENSSL_strdup(p->data);
501
0
        if (sinf->hash_name == NULL)
502
0
            goto err;
503
0
    }
504
505
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
506
0
    if (p == NULL) {
507
0
        sinf->hash_oid = NULL;
508
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
509
0
        goto err;
510
0
    } else {
511
0
        OPENSSL_free(sinf->hash_oid);
512
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
513
0
        if (sinf->hash_oid == NULL)
514
0
            goto err;
515
0
    }
516
517
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
518
0
    if (p == NULL) {
519
0
        sinf->keytype = NULL;
520
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
521
0
        goto err;
522
0
    } else {
523
0
        OPENSSL_free(sinf->keytype);
524
0
        sinf->keytype = OPENSSL_strdup(p->data);
525
0
        if (sinf->keytype == NULL)
526
0
            goto err;
527
0
    }
528
529
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
530
0
    if (p == NULL) {
531
0
        sinf->keytype_oid = NULL;
532
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
533
0
        goto err;
534
0
    } else {
535
0
        OPENSSL_free(sinf->keytype_oid);
536
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
537
0
        if (sinf->keytype_oid == NULL)
538
0
            goto err;
539
0
    }
540
541
    /* Optional, not documented prior to 3.5 */
542
0
    sinf->mindtls = sinf->maxdtls = -1;
543
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
544
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
545
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
546
0
        goto err;
547
0
    }
548
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
549
0
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
550
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
551
0
        goto err;
552
0
    }
553
    /* DTLS version numbers grow downward */
554
0
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
555
0
        ((sinf->maxdtls > sinf->mindtls))) {
556
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
557
0
        goto err;
558
0
    }
559
    /* No provider sigalgs are supported in DTLS, reset after checking. */
560
0
    sinf->mindtls = sinf->maxdtls = -1;
561
562
    /* The remaining parameters below are mandatory again */
563
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
564
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
565
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566
0
        goto err;
567
0
    }
568
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
569
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
570
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
571
0
        goto err;
572
0
    }
573
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
574
0
        ((sinf->maxtls < sinf->mintls))) {
575
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
576
0
        goto err;
577
0
    }
578
0
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
579
0
        ((sinf->mintls > TLS1_3_VERSION)))
580
0
        sinf->mintls = sinf->maxtls = -1;
581
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
582
0
        ((sinf->maxtls < TLS1_3_VERSION)))
583
0
        sinf->mintls = sinf->maxtls = -1;
584
585
    /* Ignore unusable sigalgs */
586
0
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
587
0
        ret = 1;
588
0
        goto err;
589
0
    }
590
591
    /*
592
     * Now check that the algorithm is actually usable for our property query
593
     * string. Regardless of the result we still return success because we have
594
     * successfully processed this signature, even though we may decide not to
595
     * use it.
596
     */
597
0
    ret = 1;
598
0
    ERR_set_mark();
599
0
    keytype = inferred_keytype(sinf);
600
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
601
0
    if (keymgmt != NULL) {
602
        /*
603
         * We have successfully fetched the algorithm - however if the provider
604
         * doesn't match this one then we ignore it.
605
         *
606
         * Note: We're cheating a little here. Technically if the same algorithm
607
         * is available from more than one provider then it is undefined which
608
         * implementation you will get back. Theoretically this could be
609
         * different every time...we assume here that you'll always get the
610
         * same one back if you repeat the exact same fetch. Is this a reasonable
611
         * assumption to make (in which case perhaps we should document this
612
         * behaviour)?
613
         */
614
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
615
            /*
616
             * We have a match - so we could use this signature;
617
             * Check proper object registration first, though.
618
             * Don't care about return value as this may have been
619
             * done within providers or previous calls to
620
             * add_provider_sigalgs.
621
             */
622
0
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
623
            /* sanity check: Without successful registration don't use alg */
624
0
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
625
0
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
626
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
627
0
                    goto err;
628
0
            }
629
0
            if (sinf->sig_name != NULL)
630
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
631
0
            if (sinf->keytype != NULL)
632
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
633
0
            if (sinf->hash_name != NULL)
634
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
635
0
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
636
0
                          (sinf->hash_name != NULL
637
0
                           ? OBJ_txt2nid(sinf->hash_name)
638
0
                           : NID_undef),
639
0
                          OBJ_txt2nid(keytype));
640
0
            ctx->sigalg_list_len++;
641
0
            sinf = NULL;
642
0
        }
643
0
        EVP_KEYMGMT_free(keymgmt);
644
0
    }
645
0
    ERR_pop_to_mark();
646
0
 err:
647
0
    if (sinf != NULL) {
648
0
        OPENSSL_free(sinf->name);
649
0
        sinf->name = NULL;
650
0
        OPENSSL_free(sinf->sigalg_name);
651
0
        sinf->sigalg_name = NULL;
652
0
        OPENSSL_free(sinf->sigalg_oid);
653
0
        sinf->sigalg_oid = NULL;
654
0
        OPENSSL_free(sinf->sig_name);
655
0
        sinf->sig_name = NULL;
656
0
        OPENSSL_free(sinf->sig_oid);
657
0
        sinf->sig_oid = NULL;
658
0
        OPENSSL_free(sinf->hash_name);
659
0
        sinf->hash_name = NULL;
660
0
        OPENSSL_free(sinf->hash_oid);
661
0
        sinf->hash_oid = NULL;
662
0
        OPENSSL_free(sinf->keytype);
663
0
        sinf->keytype = NULL;
664
0
        OPENSSL_free(sinf->keytype_oid);
665
0
        sinf->keytype_oid = NULL;
666
0
    }
667
0
    return ret;
668
0
}
669
670
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
671
0
{
672
0
    struct provider_ctx_data_st pgd;
673
674
0
    pgd.ctx = vctx;
675
0
    pgd.provider = provider;
676
0
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
677
0
                                   add_provider_sigalgs, &pgd);
678
    /*
679
     * Always OK, even if provider doesn't support the capability:
680
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
681
     */
682
0
    return 1;
683
0
}
684
685
int ssl_load_sigalgs(SSL_CTX *ctx)
686
0
{
687
0
    size_t i;
688
0
    SSL_CERT_LOOKUP lu;
689
690
0
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
691
0
        return 0;
692
693
    /* now populate ctx->ssl_cert_info */
694
0
    if (ctx->sigalg_list_len > 0) {
695
0
        OPENSSL_free(ctx->ssl_cert_info);
696
0
        ctx->ssl_cert_info = OPENSSL_calloc(ctx->sigalg_list_len, sizeof(lu));
697
0
        if (ctx->ssl_cert_info == NULL)
698
0
            return 0;
699
0
        for(i = 0; i < ctx->sigalg_list_len; i++) {
700
0
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
701
0
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
702
0
            ctx->ssl_cert_info[i].amask = SSL_aANY;
703
0
        }
704
0
    }
705
706
    /*
707
     * For now, leave it at this: legacy sigalgs stay in their own
708
     * data structures until "legacy cleanup" occurs.
709
     */
710
711
0
    return 1;
712
0
}
713
714
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
715
0
{
716
0
    size_t i;
717
718
0
    for (i = 0; i < ctx->group_list_len; i++) {
719
0
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
720
0
                || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
721
0
            return ctx->group_list[i].group_id;
722
0
    }
723
724
0
    return 0;
725
0
}
726
727
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
728
0
{
729
0
    size_t i;
730
731
0
    for (i = 0; i < ctx->group_list_len; i++) {
732
0
        if (ctx->group_list[i].group_id == group_id)
733
0
            return &ctx->group_list[i];
734
0
    }
735
736
0
    return NULL;
737
0
}
738
739
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
740
0
{
741
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
742
743
0
    if (tls_group_info == NULL)
744
0
        return NULL;
745
746
0
    return tls_group_info->tlsname;
747
0
}
748
749
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
750
0
{
751
0
    size_t i;
752
753
0
    if (group_id == 0)
754
0
        return NID_undef;
755
756
    /*
757
     * Return well known Group NIDs - for backwards compatibility. This won't
758
     * work for groups we don't know about.
759
     */
760
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
761
0
    {
762
0
        if (nid_to_group[i].group_id == group_id)
763
0
            return nid_to_group[i].nid;
764
0
    }
765
0
    if (!include_unknown)
766
0
        return NID_undef;
767
0
    return TLSEXT_nid_unknown | (int)group_id;
768
0
}
769
770
uint16_t tls1_nid2group_id(int nid)
771
0
{
772
0
    size_t i;
773
774
    /*
775
     * Return well known Group ids - for backwards compatibility. This won't
776
     * work for groups we don't know about.
777
     */
778
0
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
779
0
    {
780
0
        if (nid_to_group[i].nid == nid)
781
0
            return nid_to_group[i].group_id;
782
0
    }
783
784
0
    return 0;
785
0
}
786
787
/*
788
 * Set *pgroups to the supported groups list and *pgroupslen to
789
 * the number of groups supported.
790
 */
791
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
792
                               size_t *pgroupslen)
793
0
{
794
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
795
796
    /* For Suite B mode only include P-256, P-384 */
797
0
    switch (tls1_suiteb(s)) {
798
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
799
0
        *pgroups = suiteb_curves;
800
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
801
0
        break;
802
803
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
804
0
        *pgroups = suiteb_curves;
805
0
        *pgroupslen = 1;
806
0
        break;
807
808
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
809
0
        *pgroups = suiteb_curves + 1;
810
0
        *pgroupslen = 1;
811
0
        break;
812
813
0
    default:
814
0
        if (s->ext.supportedgroups == NULL) {
815
0
            *pgroups = sctx->ext.supportedgroups;
816
0
            *pgroupslen = sctx->ext.supportedgroups_len;
817
0
        } else {
818
0
            *pgroups = s->ext.supportedgroups;
819
0
            *pgroupslen = s->ext.supportedgroups_len;
820
0
        }
821
0
        break;
822
0
    }
823
0
}
824
825
/*
826
 * Some comments for the function below:
827
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
828
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
829
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
830
 * groups in this case.
831
 *
832
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
833
 * but the groupID to 0.
834
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
835
 * the "list of requested key share groups" is used, or the "list of supported groups" in
836
 * combination with setting add_only_one = 1 is applied.
837
 */
838
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
839
                                        size_t *pgroupslen)
840
0
{
841
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
842
843
0
    if (s->ext.supportedgroups == NULL) {
844
0
        *pgroups = sctx->ext.supportedgroups;
845
0
        *pgroupslen = sctx->ext.supportedgroups_len;
846
0
    } else {
847
0
        *pgroups = s->ext.keyshares;
848
0
        *pgroupslen = s->ext.keyshares_len;
849
0
    }
850
0
}
851
852
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
853
                           size_t *ptupleslen)
854
0
{
855
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
856
857
0
    if (s->ext.supportedgroups == NULL) {
858
0
        *ptuples = sctx->ext.tuples;
859
0
        *ptupleslen = sctx->ext.tuples_len;
860
0
    } else {
861
0
        *ptuples = s->ext.tuples;
862
0
        *ptupleslen = s->ext.tuples_len;
863
0
    }
864
0
}
865
866
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
867
                    int minversion, int maxversion,
868
                    int isec, int *okfortls13)
869
0
{
870
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
871
0
                                                       group_id);
872
0
    int ret;
873
0
    int group_minversion, group_maxversion;
874
875
0
    if (okfortls13 != NULL)
876
0
        *okfortls13 = 0;
877
878
0
    if (ginfo == NULL)
879
0
        return 0;
880
881
0
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
882
0
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
883
884
0
    if (group_minversion < 0 || group_maxversion < 0)
885
0
        return 0;
886
0
    if (group_maxversion == 0)
887
0
        ret = 1;
888
0
    else
889
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
890
0
    if (group_minversion > 0)
891
0
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
892
893
0
    if (!SSL_CONNECTION_IS_DTLS(s)) {
894
0
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
895
0
            *okfortls13 = (group_maxversion == 0)
896
0
                          || (group_maxversion >= TLS1_3_VERSION);
897
0
    }
898
0
    ret &= !isec
899
0
           || strcmp(ginfo->algorithm, "EC") == 0
900
0
           || strcmp(ginfo->algorithm, "X25519") == 0
901
0
           || strcmp(ginfo->algorithm, "X448") == 0;
902
903
0
    return ret;
904
0
}
905
906
/* See if group is allowed by security callback */
907
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
908
0
{
909
0
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
910
0
                                                       group);
911
0
    unsigned char gtmp[2];
912
913
0
    if (ginfo == NULL)
914
0
        return 0;
915
916
0
    gtmp[0] = group >> 8;
917
0
    gtmp[1] = group & 0xff;
918
0
    return ssl_security(s, op, ginfo->secbits,
919
0
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
920
0
}
921
922
/* Return 1 if "id" is in "list" */
923
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
924
0
{
925
0
    size_t i;
926
0
    for (i = 0; i < listlen; i++)
927
0
        if (list[i] == id)
928
0
            return 1;
929
0
    return 0;
930
0
}
931
932
typedef struct {
933
    TLS_GROUP_INFO *grp;
934
    size_t ix;
935
} TLS_GROUP_IX;
936
937
DEFINE_STACK_OF(TLS_GROUP_IX)
938
939
static void free_wrapper(TLS_GROUP_IX *a)
940
0
{
941
0
    OPENSSL_free(a);
942
0
}
943
944
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
945
                            const TLS_GROUP_IX *const *b)
946
0
{
947
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
948
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
949
0
    int ixcmpab = (*a)->ix < (*b)->ix;
950
0
    int ixcmpba = (*b)->ix < (*a)->ix;
951
952
    /* Ascending by group id */
953
0
    if (idcmpab != idcmpba)
954
0
        return (idcmpba - idcmpab);
955
    /* Ascending by original appearance index */
956
0
    return ixcmpba - ixcmpab;
957
0
}
958
959
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
960
                                 TLS_GROUP_INFO *grps, size_t num, long all,
961
                                 STACK_OF(OPENSSL_CSTRING) *out)
962
0
{
963
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
964
0
    TLS_GROUP_IX *gix;
965
0
    uint16_t id = 0;
966
0
    int ret = 0;
967
0
    int ix;
968
969
0
    if (grps == NULL || out == NULL || num > INT_MAX)
970
0
        return 0;
971
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
972
0
        return 0;
973
0
    for (ix = 0; ix < (int)num; ++ix, ++grps) {
974
0
        if (grps->mintls > 0 && max_proto_version > 0
975
0
             && grps->mintls > max_proto_version)
976
0
            continue;
977
0
        if (grps->maxtls > 0 && min_proto_version > 0
978
0
            && grps->maxtls < min_proto_version)
979
0
            continue;
980
981
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
982
0
            goto end;
983
0
        gix->grp = grps;
984
0
        gix->ix = ix;
985
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
986
0
            OPENSSL_free(gix);
987
0
            goto end;
988
0
        }
989
0
    }
990
991
0
    sk_TLS_GROUP_IX_sort(collect);
992
0
    num = sk_TLS_GROUP_IX_num(collect);
993
0
    for (ix = 0; ix < (int)num; ++ix) {
994
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
995
0
        if (!all && gix->grp->group_id == id)
996
0
            continue;
997
0
        id = gix->grp->group_id;
998
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
999
0
            goto end;
1000
0
    }
1001
0
    ret = 1;
1002
1003
0
 end:
1004
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
1005
0
    return ret;
1006
0
}
1007
1008
/*-
1009
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1010
 * if there is no match.
1011
 * For nmatch == -1, return number of matches
1012
 * For nmatch == -2, return the id of the group to use for
1013
 * a tmp key, or 0 if there is no match.
1014
 */
1015
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1016
0
{
1017
0
    const uint16_t *pref, *supp;
1018
0
    size_t num_pref, num_supp, i;
1019
0
    int k;
1020
0
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1021
1022
    /* Can't do anything on client side */
1023
0
    if (s->server == 0)
1024
0
        return 0;
1025
0
    if (nmatch == -2) {
1026
0
        if (tls1_suiteb(s)) {
1027
            /*
1028
             * For Suite B ciphersuite determines curve: we already know
1029
             * these are acceptable due to previous checks.
1030
             */
1031
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1032
1033
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1034
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1035
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1036
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1037
            /* Should never happen */
1038
0
            return 0;
1039
0
        }
1040
        /* If not Suite B just return first preference shared curve */
1041
0
        nmatch = 0;
1042
0
    }
1043
    /*
1044
     * If server preference set, our groups are the preference order
1045
     * otherwise peer decides.
1046
     */
1047
0
    if (s->options & SSL_OP_SERVER_PREFERENCE) {
1048
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1049
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1050
0
    } else {
1051
0
        tls1_get_peer_groups(s, &pref, &num_pref);
1052
0
        tls1_get_supported_groups(s, &supp, &num_supp);
1053
0
    }
1054
1055
0
    for (k = 0, i = 0; i < num_pref; i++) {
1056
0
        uint16_t id = pref[i];
1057
0
        const TLS_GROUP_INFO *inf;
1058
0
        int minversion, maxversion;
1059
1060
0
        if (!tls1_in_list(id, supp, num_supp)
1061
0
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1062
0
            continue;
1063
0
        inf = tls1_group_id_lookup(ctx, id);
1064
0
        if (!ossl_assert(inf != NULL))
1065
0
            return 0;
1066
1067
0
        minversion = SSL_CONNECTION_IS_DTLS(s)
1068
0
                         ? inf->mindtls : inf->mintls;
1069
0
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1070
0
                         ? inf->maxdtls : inf->maxtls;
1071
0
        if (maxversion == -1)
1072
0
            continue;
1073
0
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1074
0
            || (maxversion != 0
1075
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1076
0
            continue;
1077
1078
0
        if (nmatch == k)
1079
0
            return id;
1080
0
         k++;
1081
0
    }
1082
0
    if (nmatch == -1)
1083
0
        return k;
1084
    /* Out of range (nmatch > k). */
1085
0
    return 0;
1086
0
}
1087
1088
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1089
                    uint16_t **ksext, size_t *ksextlen,
1090
                    size_t **tplext, size_t *tplextlen,
1091
                    int *groups, size_t ngroups)
1092
0
{
1093
0
    uint16_t *glist = NULL, *kslist = NULL;
1094
0
    size_t *tpllist = NULL;
1095
0
    size_t i;
1096
    /*
1097
     * Bitmap of groups included to detect duplicates: two variables are added
1098
     * to detect duplicates as some values are more than 32.
1099
     */
1100
0
    unsigned long *dup_list = NULL;
1101
0
    unsigned long dup_list_egrp = 0;
1102
0
    unsigned long dup_list_dhgrp = 0;
1103
1104
0
    if (ngroups == 0) {
1105
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1106
0
        return 0;
1107
0
    }
1108
0
    if ((glist = OPENSSL_malloc_array(ngroups, sizeof(*glist))) == NULL)
1109
0
        goto err;
1110
0
    if ((kslist = OPENSSL_malloc_array(1, sizeof(*kslist))) == NULL)
1111
0
        goto err;
1112
0
    if ((tpllist = OPENSSL_malloc_array(1, sizeof(*tpllist))) == NULL)
1113
0
        goto err;
1114
0
    for (i = 0; i < ngroups; i++) {
1115
0
        unsigned long idmask;
1116
0
        uint16_t id;
1117
0
        id = tls1_nid2group_id(groups[i]);
1118
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1119
0
            goto err;
1120
0
        idmask = 1L << (id & 0x00FF);
1121
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1122
0
        if (!id || ((*dup_list) & idmask))
1123
0
            goto err;
1124
0
        *dup_list |= idmask;
1125
0
        glist[i] = id;
1126
0
    }
1127
0
    OPENSSL_free(*grpext);
1128
0
    OPENSSL_free(*ksext);
1129
0
    OPENSSL_free(*tplext);
1130
0
    *grpext = glist;
1131
0
    *grpextlen = ngroups;
1132
    /*
1133
     * No * prefix was used, let tls_construct_ctos_key_share choose a key
1134
     * share. This has the advantage that it will filter unsupported groups
1135
     * before choosing one, which this function does not do. See also the
1136
     * comment for tls1_get_requested_keyshare_groups.
1137
     */
1138
0
    kslist[0] = 0;
1139
0
    *ksext = kslist;
1140
0
    *ksextlen = 1;
1141
0
    tpllist[0] = ngroups;
1142
0
    *tplext = tpllist;
1143
0
    *tplextlen = 1;
1144
0
    return 1;
1145
0
err:
1146
0
    OPENSSL_free(glist);
1147
0
    OPENSSL_free(kslist);
1148
0
    OPENSSL_free(tpllist);
1149
0
    return 0;
1150
0
}
1151
1152
/*
1153
 * Definition of DEFAULT[_XYZ] pseudo group names.
1154
 * A pseudo group name is actually a full list of groups, including prefixes
1155
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1156
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1157
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1158
 */
1159
typedef struct {
1160
    const char *list_name; /* The name of this pseudo group */
1161
    const char *group_string; /* The group string of this pseudo group */
1162
} default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1163
1164
/* Built-in pseudo group-names must start with a (D or d) */
1165
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1166
1167
/* The list of all built-in pseudo-group-name structures */
1168
static const default_group_string_st default_group_strings[] = {
1169
    {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1170
    {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1171
};
1172
1173
/*
1174
 * Some GOST names are not resolved by tls1_group_name2id,
1175
 * hence we'll check for those manually
1176
 */
1177
typedef struct {
1178
    const char *group_name;
1179
    uint16_t groupID;
1180
} name2id_st;
1181
static const name2id_st name2id_arr[] = {
1182
    {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1183
    {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1184
    {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1185
    {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1186
    {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1187
    {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1188
    {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1189
};
1190
1191
/*
1192
 * Group list management:
1193
 * We establish three lists along with their related size counters:
1194
 * 1) List of (unique) groups
1195
 * 2) List of number of groups per group-priority-tuple
1196
 * 3) List of (unique) key share groups
1197
 */
1198
0
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1199
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1200
1201
/*
1202
 * Preparation of the prefix used to indicate the desire to send a key share,
1203
 * the characters used as separators between groups or tuples of groups, the
1204
 * character to indicate that an unknown group should be ignored, and the
1205
 * character to indicate that a group should be deleted from a list
1206
 */
1207
#ifndef TUPLE_DELIMITER_CHARACTER
1208
/* The prefix characters to indicate group tuple boundaries */
1209
0
# define TUPLE_DELIMITER_CHARACTER '/'
1210
#endif
1211
#ifndef GROUP_DELIMITER_CHARACTER
1212
/* The prefix characters to indicate group tuple boundaries */
1213
0
# define GROUP_DELIMITER_CHARACTER ':'
1214
#endif
1215
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1216
/* The prefix character to ignore unknown groups */
1217
0
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1218
#endif
1219
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1220
/* The prefix character to trigger a key share addition */
1221
0
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1222
#endif
1223
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1224
/* The prefix character to trigger a key share removal */
1225
0
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1226
#endif
1227
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1228
                                GROUP_DELIMITER_CHARACTER,
1229
                                IGNORE_UNKNOWN_GROUP_CHARACTER,
1230
                                KEY_SHARE_INDICATOR_CHARACTER,
1231
                                REMOVE_GROUP_INDICATOR_CHARACTER,
1232
                                '\0'};
1233
1234
/*
1235
 * High-level description of how group strings are analyzed:
1236
 * A first call back function (tuple_cb) is used to process group tuples, and a
1237
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1238
 * Those callback functions are (indirectly) called by CONF_parse_list with
1239
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1240
 * is used to keep track of the parsing results between the various calls
1241
 */
1242
1243
typedef struct {
1244
    SSL_CTX *ctx;
1245
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1246
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1247
    size_t gidcnt; /* Number of groups */
1248
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1249
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1250
    size_t tplcnt; /* Number of tuples */
1251
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1252
    size_t ksidmax; /* The memory allocation chunk size */
1253
    size_t ksidcnt; /* Number of key shares */
1254
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1255
    /* Variable to keep state between execution of callback or helper functions */
1256
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1257
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1258
} gid_cb_st;
1259
1260
/* Forward declaration of tuple callback function */
1261
static int tuple_cb(const char *tuple, int len, void *arg);
1262
1263
/*
1264
 * Extract and process the individual groups (and their prefixes if present)
1265
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1266
 * and must be appended by a \0 if used as \0-terminated string
1267
 */
1268
static int gid_cb(const char *elem, int len, void *arg)
1269
0
{
1270
0
    gid_cb_st *garg = arg;
1271
0
    size_t i, j, k;
1272
0
    uint16_t gid = 0;
1273
0
    int found_group = 0;
1274
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1275
0
    int retval = 1; /* We assume success */
1276
0
    char *current_prefix;
1277
0
    int ignore_unknown = 0;
1278
0
    int add_keyshare = 0;
1279
0
    int remove_group = 0;
1280
0
    size_t restored_prefix_index = 0;
1281
0
    char *restored_default_group_string;
1282
0
    int continue_while_loop = 1;
1283
1284
    /* Sanity checks */
1285
0
    if (garg == NULL || elem == NULL || len <= 0) {
1286
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1287
0
        return 0;
1288
0
    }
1289
1290
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1291
0
    while (continue_while_loop && len > 0
1292
0
           && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1293
0
               || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1294
1295
0
        switch (*current_prefix) {
1296
0
        case TUPLE_DELIMITER_CHARACTER:
1297
            /* tuple delimiter not allowed here -> syntax error */
1298
0
            return -1;
1299
0
            break;
1300
0
        case GROUP_DELIMITER_CHARACTER:
1301
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1302
0
            break;
1303
0
        case KEY_SHARE_INDICATOR_CHARACTER:
1304
0
            if (add_keyshare)
1305
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1306
0
            add_keyshare = 1;
1307
0
            ++elem;
1308
0
            --len;
1309
0
            break;
1310
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1311
0
            if (remove_group)
1312
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1313
0
            remove_group = 1;
1314
0
            ++elem;
1315
0
            --len;
1316
0
            break;
1317
0
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1318
0
            if (ignore_unknown)
1319
0
                return -1; /* Only single ? allowed -> syntax error */
1320
0
            ignore_unknown = 1;
1321
0
            ++elem;
1322
0
            --len;
1323
0
            break;
1324
0
        default:
1325
            /*
1326
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1327
             * list of groups) should be added
1328
             */
1329
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1330
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1331
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1332
                    /*
1333
                     * We're asked to insert an entire list of groups from a
1334
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1335
                     * recursively calling this function (indirectly via
1336
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1337
                     * group string like a tuple which is appended to the current tuple
1338
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1339
                     * controls append tuple vs start new tuple.
1340
                     */
1341
1342
0
                    if (ignore_unknown || remove_group)
1343
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1344
1345
                    /*
1346
                     * First, we restore any keyshare prefix in a new zero-terminated string
1347
                     * (if not already present)
1348
                     */
1349
0
                    restored_default_group_string =
1350
0
                        OPENSSL_malloc(1 /* max prefix length */ +
1351
0
                                       strlen(default_group_strings[i].group_string) +
1352
0
                                       1 /* \0 */);
1353
0
                    if (restored_default_group_string == NULL)
1354
0
                        return 0;
1355
0
                    if (add_keyshare
1356
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1357
0
                        && default_group_strings[i].group_string[0]
1358
0
                        != KEY_SHARE_INDICATOR_CHARACTER)
1359
0
                        restored_default_group_string[restored_prefix_index++] =
1360
0
                            KEY_SHARE_INDICATOR_CHARACTER;
1361
1362
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1363
0
                           default_group_strings[i].group_string,
1364
0
                           strlen(default_group_strings[i].group_string));
1365
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) +
1366
0
                                                  restored_prefix_index] = '\0';
1367
                    /* We execute the recursive call */
1368
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1369
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1370
0
                    garg->tuple_mode = 0;
1371
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1372
0
                    retval = CONF_parse_list(restored_default_group_string,
1373
0
                                             TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1374
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1375
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1376
                    /* We don't need the \0-terminated string anymore */
1377
0
                    OPENSSL_free(restored_default_group_string);
1378
1379
0
                    return retval;
1380
0
                }
1381
0
            }
1382
            /*
1383
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1384
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1385
             * name can continue as usual (= the while loop checking prefixes can end)
1386
             */
1387
0
            continue_while_loop = 0;
1388
0
            break;
1389
0
        }
1390
0
    }
1391
1392
0
    if (len == 0)
1393
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1394
1395
0
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1396
0
        ignore_unknown = 1;
1397
1398
    /* Memory management in case more groups are present compared to initial allocation */
1399
0
    if (garg->gidcnt == garg->gidmax) {
1400
0
        uint16_t *tmp =
1401
0
            OPENSSL_realloc_array(garg->gid_arr,
1402
0
                                  garg->gidmax + GROUPLIST_INCREMENT,
1403
0
                                  sizeof(*garg->gid_arr));
1404
1405
0
        if (tmp == NULL)
1406
0
            return 0;
1407
1408
0
        garg->gidmax += GROUPLIST_INCREMENT;
1409
0
        garg->gid_arr = tmp;
1410
0
    }
1411
    /* Memory management for key share groups */
1412
0
    if (garg->ksidcnt == garg->ksidmax) {
1413
0
        uint16_t *tmp =
1414
0
            OPENSSL_realloc_array(garg->ksid_arr,
1415
0
                                  garg->ksidmax + GROUPLIST_INCREMENT,
1416
0
                                  sizeof(*garg->ksid_arr));
1417
1418
0
        if (tmp == NULL)
1419
0
            return 0;
1420
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1421
0
        garg->ksid_arr = tmp;
1422
0
    }
1423
1424
0
    if (len > (int)(sizeof(etmp) - 1))
1425
0
        return -1; /* group name to long  -> syntax error */
1426
1427
    /*
1428
     * Prepare addition or removal of a single group by converting
1429
     * a group name into its groupID equivalent
1430
     */
1431
1432
    /* Create a \0-terminated string and get the gid for this group if possible */
1433
0
    memcpy(etmp, elem, len);
1434
0
    etmp[len] = 0;
1435
1436
    /* Get the groupID */
1437
0
    gid = tls1_group_name2id(garg->ctx, etmp);
1438
    /*
1439
     * Handle the case where no valid groupID was returned
1440
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1441
     */
1442
0
    if (gid == 0) {
1443
        /* Is it one of the GOST groups ? */
1444
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1445
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1446
0
                gid = name2id_arr[i].groupID;
1447
0
                break;
1448
0
            }
1449
0
        }
1450
0
        if (gid == 0) { /* still not found */
1451
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1452
0
            retval = ignore_unknown;
1453
0
            goto done;
1454
0
        }
1455
0
    }
1456
1457
    /* Make sure that at least one provider is supporting this groupID */
1458
0
    found_group = 0;
1459
0
    for (j = 0; j < garg->ctx->group_list_len; j++)
1460
0
        if (garg->ctx->group_list[j].group_id == gid) {
1461
0
            found_group = 1;
1462
0
            break;
1463
0
        }
1464
1465
    /*
1466
     * No provider supports this group - ignore if
1467
     * ignore_unknown; trigger error otherwise
1468
     */
1469
0
    if (found_group == 0) {
1470
0
        retval = ignore_unknown;
1471
0
        goto done;
1472
0
    }
1473
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1474
0
    if (remove_group) {
1475
        /* Is the current group specified anywhere in the entire list so far? */
1476
0
        found_group = 0;
1477
0
        for (i = 0; i < garg->gidcnt; i++)
1478
0
            if (garg->gid_arr[i] == gid) {
1479
0
                found_group = 1;
1480
0
                break;
1481
0
            }
1482
        /* The group to remove is at position i in the list of (zero indexed) groups */
1483
0
        if (found_group) {
1484
            /* We remove that group from its position (which is at i)... */
1485
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1486
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1487
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1488
1489
            /*
1490
             * We also must update the number of groups either in a previous tuple (which we
1491
             * must identify and check whether it becomes empty due to the deletion) or in
1492
             * the current tuple, pending where the deleted group resides
1493
             */
1494
0
            k = 0;
1495
0
            for (j = 0; j < garg->tplcnt; j++) {
1496
0
                k += garg->tuplcnt_arr[j];
1497
                /* Remark: i is zero-indexed, k is one-indexed */
1498
0
                if (k > i) { /* remove from one of the previous tuples */
1499
0
                    garg->tuplcnt_arr[j]--;
1500
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1501
0
                }
1502
0
            }
1503
0
            if (k <= i) /* remove from current tuple */
1504
0
                garg->tuplcnt_arr[j]--;
1505
1506
            /* We also remove the group from the list of keyshares (if present) */
1507
0
            found_group = 0;
1508
0
            for (i = 0; i < garg->ksidcnt; i++)
1509
0
                if (garg->ksid_arr[i] == gid) {
1510
0
                    found_group = 1;
1511
0
                    break;
1512
0
                }
1513
0
            if (found_group) {
1514
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1515
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1516
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1517
                /* ... and update the book keeping */
1518
0
                garg->ksidcnt--;
1519
0
            }
1520
0
        }
1521
0
    } else { /* Processing addition of a single new group */
1522
1523
        /* Check for duplicates */
1524
0
        for (i = 0; i < garg->gidcnt; i++)
1525
0
            if (garg->gid_arr[i] == gid) {
1526
                /* Duplicate group anywhere in the list of groups - ignore */
1527
0
                goto done;
1528
0
            }
1529
1530
        /* Add the current group to the 'flat' list of groups */
1531
0
        garg->gid_arr[garg->gidcnt++] = gid;
1532
        /* and update the book keeping for the number of groups in current tuple */
1533
0
        garg->tuplcnt_arr[garg->tplcnt]++;
1534
1535
        /* We memorize if needed that we want to add a key share for the current group */
1536
0
        if (add_keyshare)
1537
0
            garg->ksid_arr[garg->ksidcnt++] = gid;
1538
0
    }
1539
1540
0
done:
1541
0
    return retval;
1542
0
}
1543
1544
/* Extract and process a tuple of groups */
1545
static int tuple_cb(const char *tuple, int len, void *arg)
1546
0
{
1547
0
    gid_cb_st *garg = arg;
1548
0
    int retval = 1; /* We assume success */
1549
0
    char *restored_tuple_string;
1550
1551
    /* Sanity checks */
1552
0
    if (garg == NULL || tuple == NULL || len <= 0) {
1553
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1554
0
        return 0;
1555
0
    }
1556
1557
    /* Memory management for tuples */
1558
0
    if (garg->tplcnt == garg->tplmax) {
1559
0
        size_t *tmp =
1560
0
            OPENSSL_realloc_array(garg->tuplcnt_arr,
1561
0
                                  garg->tplmax + GROUPLIST_INCREMENT,
1562
0
                                  sizeof(*garg->tuplcnt_arr));
1563
1564
0
        if (tmp == NULL)
1565
0
            return 0;
1566
0
        garg->tplmax += GROUPLIST_INCREMENT;
1567
0
        garg->tuplcnt_arr = tmp;
1568
0
    }
1569
1570
    /* Convert to \0-terminated string */
1571
0
    restored_tuple_string = OPENSSL_malloc(len + 1 /* \0 */);
1572
0
    if (restored_tuple_string == NULL)
1573
0
        return 0;
1574
0
    memcpy(restored_tuple_string, tuple, len);
1575
0
    restored_tuple_string[len] = '\0';
1576
1577
    /* Analyze group list of this tuple */
1578
0
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1579
1580
    /* We don't need the \o-terminated string anymore */
1581
0
    OPENSSL_free(restored_tuple_string);
1582
1583
0
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1584
0
        if (garg->tuple_mode) {
1585
            /* We 'close' the tuple */
1586
0
            garg->tplcnt++;
1587
0
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1588
0
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1589
0
        }
1590
0
    }
1591
1592
0
    return retval;
1593
0
}
1594
1595
/*
1596
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1597
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1598
 * (1) add a key share for this group, (2) ignore the group if unknown to the current
1599
 * context, (3) delete a previous occurrence of the group in the current tuple.
1600
 *
1601
 * The list parsing is done in two hierarchical steps: The top-level step extracts the
1602
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1603
 * parse and process the groups inside a tuple
1604
 */
1605
int tls1_set_groups_list(SSL_CTX *ctx,
1606
                         uint16_t **grpext, size_t *grpextlen,
1607
                         uint16_t **ksext, size_t *ksextlen,
1608
                         size_t **tplext, size_t *tplextlen,
1609
                         const char *str)
1610
0
{
1611
0
    size_t i = 0, j;
1612
0
    int ret = 0, parse_ret = 0;
1613
0
    gid_cb_st gcb;
1614
1615
    /* Sanity check */
1616
0
    if (ctx == NULL) {
1617
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1618
0
        return 0;
1619
0
    }
1620
1621
0
    memset(&gcb, 0, sizeof(gcb));
1622
0
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1623
0
    gcb.ignore_unknown_default = 0;
1624
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1625
0
    gcb.tplmax = GROUPLIST_INCREMENT;
1626
0
    gcb.ksidmax = GROUPLIST_INCREMENT;
1627
0
    gcb.ctx = ctx;
1628
1629
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1630
0
    gcb.gid_arr = OPENSSL_malloc_array(gcb.gidmax, sizeof(*gcb.gid_arr));
1631
0
    if (gcb.gid_arr == NULL)
1632
0
        goto end;
1633
0
    gcb.tuplcnt_arr = OPENSSL_malloc_array(gcb.tplmax, sizeof(*gcb.tuplcnt_arr));
1634
0
    if (gcb.tuplcnt_arr == NULL)
1635
0
        goto end;
1636
0
    gcb.tuplcnt_arr[0] = 0;
1637
0
    gcb.ksid_arr = OPENSSL_malloc_array(gcb.ksidmax, sizeof(*gcb.ksid_arr));
1638
0
    if (gcb.ksid_arr == NULL)
1639
0
        goto end;
1640
1641
0
    while (str[0] != '\0' && isspace((unsigned char)*str))
1642
0
        str++;
1643
0
    if (str[0] == '\0')
1644
0
        goto empty_list;
1645
1646
    /*
1647
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1648
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1649
     */
1650
0
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1651
1652
0
    if (parse_ret == 0)
1653
0
        goto end;
1654
0
    if (parse_ret == -1) {
1655
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1656
0
                       "Syntax error in '%s'", str);
1657
0
        goto end;
1658
0
    }
1659
1660
    /*
1661
     * We check whether a tuple was completely emptied by using "-" prefix
1662
     * excessively, in which case we remove the tuple
1663
     */
1664
0
    for (i = j = 0; j < gcb.tplcnt; j++) {
1665
0
        if (gcb.tuplcnt_arr[j] == 0)
1666
0
            continue;
1667
        /* If there's a gap, move to first unfilled slot */
1668
0
        if (j == i)
1669
0
            ++i;
1670
0
        else
1671
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1672
0
    }
1673
0
    gcb.tplcnt = i;
1674
1675
0
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1676
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1677
0
                       "To many keyshares requested in '%s' (max = %d)",
1678
0
                       str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1679
0
        goto end;
1680
0
    }
1681
1682
    /*
1683
     * For backward compatibility we let the rest of the code know that a key share
1684
     * for the first valid group should be added if no "*" prefix was used anywhere
1685
     */
1686
0
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1687
        /*
1688
         * No key share group prefix character was used, hence we indicate that a single
1689
         * key share should be sent and flag that it should come from the supported_groups list
1690
         */
1691
0
        gcb.ksidcnt = 1;
1692
0
        gcb.ksid_arr[0] = 0;
1693
0
    }
1694
1695
0
 empty_list:
1696
    /*
1697
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1698
     * to NULL only does a syntax check, hence we're done here and report success
1699
     */
1700
0
    if (grpext == NULL || ksext == NULL || tplext == NULL ||
1701
0
        grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1702
0
        ret = 1;
1703
0
        goto end;
1704
0
    }
1705
1706
    /*
1707
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1708
     * can just go ahead and set the results (after disposing the existing)
1709
     */
1710
0
    OPENSSL_free(*grpext);
1711
0
    *grpext = gcb.gid_arr;
1712
0
    *grpextlen = gcb.gidcnt;
1713
0
    OPENSSL_free(*ksext);
1714
0
    *ksext = gcb.ksid_arr;
1715
0
    *ksextlen = gcb.ksidcnt;
1716
0
    OPENSSL_free(*tplext);
1717
0
    *tplext = gcb.tuplcnt_arr;
1718
0
    *tplextlen = gcb.tplcnt;
1719
1720
0
    return 1;
1721
1722
0
 end:
1723
0
    OPENSSL_free(gcb.gid_arr);
1724
0
    OPENSSL_free(gcb.tuplcnt_arr);
1725
0
    OPENSSL_free(gcb.ksid_arr);
1726
0
    return ret;
1727
0
}
1728
1729
/* Check a group id matches preferences */
1730
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1731
                        int check_own_groups)
1732
0
    {
1733
0
    const uint16_t *groups;
1734
0
    size_t groups_len;
1735
1736
0
    if (group_id == 0)
1737
0
        return 0;
1738
1739
    /* Check for Suite B compliance */
1740
0
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1741
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1742
1743
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1744
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1745
0
                return 0;
1746
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1747
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1748
0
                return 0;
1749
0
        } else {
1750
            /* Should never happen */
1751
0
            return 0;
1752
0
        }
1753
0
    }
1754
1755
0
    if (check_own_groups) {
1756
        /* Check group is one of our preferences */
1757
0
        tls1_get_supported_groups(s, &groups, &groups_len);
1758
0
        if (!tls1_in_list(group_id, groups, groups_len))
1759
0
            return 0;
1760
0
    }
1761
1762
0
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1763
0
        return 0;
1764
1765
    /* For clients, nothing more to check */
1766
0
    if (!s->server)
1767
0
        return 1;
1768
1769
    /* Check group is one of peers preferences */
1770
0
    tls1_get_peer_groups(s, &groups, &groups_len);
1771
1772
    /*
1773
     * RFC 4492 does not require the supported elliptic curves extension
1774
     * so if it is not sent we can just choose any curve.
1775
     * It is invalid to send an empty list in the supported groups
1776
     * extension, so groups_len == 0 always means no extension.
1777
     */
1778
0
    if (groups_len == 0)
1779
0
            return 1;
1780
0
    return tls1_in_list(group_id, groups, groups_len);
1781
0
}
1782
1783
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1784
                         size_t *num_formats)
1785
0
{
1786
    /*
1787
     * If we have a custom point format list use it otherwise use default
1788
     */
1789
0
    if (s->ext.ecpointformats) {
1790
0
        *pformats = s->ext.ecpointformats;
1791
0
        *num_formats = s->ext.ecpointformats_len;
1792
0
    } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
1793
0
        *pformats = ecformats_all;
1794
        /* For Suite B we don't support char2 fields */
1795
0
        if (tls1_suiteb(s))
1796
0
            *num_formats = sizeof(ecformats_all) - 1;
1797
0
        else
1798
0
            *num_formats = sizeof(ecformats_all);
1799
0
    } else {
1800
0
        *pformats = ecformats_default;
1801
0
        *num_formats = sizeof(ecformats_default);
1802
0
    }
1803
0
}
1804
1805
/* Check a key is compatible with compression extension */
1806
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1807
0
{
1808
0
    unsigned char comp_id;
1809
0
    size_t i;
1810
0
    int point_conv;
1811
1812
    /* If not an EC key nothing to check */
1813
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1814
0
        return 1;
1815
1816
1817
    /* Get required compression id */
1818
0
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1819
0
    if (point_conv == 0)
1820
0
        return 0;
1821
0
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1822
0
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1823
0
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1824
        /*
1825
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1826
         * this check.
1827
         */
1828
0
        return 1;
1829
0
    } else {
1830
0
        int field_type = EVP_PKEY_get_field_type(pkey);
1831
1832
0
        if (field_type == NID_X9_62_prime_field)
1833
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1834
0
        else if (field_type == NID_X9_62_characteristic_two_field)
1835
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1836
0
        else
1837
0
            return 0;
1838
0
    }
1839
    /*
1840
     * If point formats extension present check it, otherwise everything is
1841
     * supported (see RFC4492).
1842
     */
1843
0
    if (s->ext.peer_ecpointformats == NULL)
1844
0
        return 1;
1845
1846
0
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1847
0
        if (s->ext.peer_ecpointformats[i] == comp_id)
1848
0
            return 1;
1849
0
    }
1850
0
    return 0;
1851
0
}
1852
1853
/* Return group id of a key */
1854
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1855
0
{
1856
0
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1857
1858
0
    if (curve_nid == NID_undef)
1859
0
        return 0;
1860
0
    return tls1_nid2group_id(curve_nid);
1861
0
}
1862
1863
/*
1864
 * Check cert parameters compatible with extensions: currently just checks EC
1865
 * certificates have compatible curves and compression.
1866
 */
1867
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1868
0
{
1869
0
    uint16_t group_id;
1870
0
    EVP_PKEY *pkey;
1871
0
    pkey = X509_get0_pubkey(x);
1872
0
    if (pkey == NULL)
1873
0
        return 0;
1874
    /* If not EC nothing to do */
1875
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
1876
0
        return 1;
1877
    /* Check compression */
1878
0
    if (!tls1_check_pkey_comp(s, pkey))
1879
0
        return 0;
1880
0
    group_id = tls1_get_group_id(pkey);
1881
    /*
1882
     * For a server we allow the certificate to not be in our list of supported
1883
     * groups.
1884
     */
1885
0
    if (!tls1_check_group_id(s, group_id, !s->server))
1886
0
        return 0;
1887
    /*
1888
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1889
     * SHA384+P-384.
1890
     */
1891
0
    if (check_ee_md && tls1_suiteb(s)) {
1892
0
        int check_md;
1893
0
        size_t i;
1894
1895
        /* Check to see we have necessary signing algorithm */
1896
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1897
0
            check_md = NID_ecdsa_with_SHA256;
1898
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1899
0
            check_md = NID_ecdsa_with_SHA384;
1900
0
        else
1901
0
            return 0;           /* Should never happen */
1902
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1903
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1904
0
                return 1;
1905
0
        }
1906
0
        return 0;
1907
0
    }
1908
0
    return 1;
1909
0
}
1910
1911
/*
1912
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1913
 * @s: SSL connection
1914
 * @cid: Cipher ID we're considering using
1915
 *
1916
 * Checks that the kECDHE cipher suite we're considering using
1917
 * is compatible with the client extensions.
1918
 *
1919
 * Returns 0 when the cipher can't be used or 1 when it can.
1920
 */
1921
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1922
0
{
1923
    /* If not Suite B just need a shared group */
1924
0
    if (!tls1_suiteb(s))
1925
0
        return tls1_shared_group(s, 0) != 0;
1926
    /*
1927
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1928
     * curves permitted.
1929
     */
1930
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1931
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1932
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1933
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1934
1935
0
    return 0;
1936
0
}
1937
1938
/* Default sigalg schemes */
1939
static const uint16_t tls12_sigalgs[] = {
1940
    TLSEXT_SIGALG_mldsa65,
1941
    TLSEXT_SIGALG_mldsa87,
1942
    TLSEXT_SIGALG_mldsa44,
1943
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1944
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1945
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1946
    TLSEXT_SIGALG_ed25519,
1947
    TLSEXT_SIGALG_ed448,
1948
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1949
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1950
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1951
1952
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1953
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1954
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1955
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1956
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1957
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1958
1959
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1960
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1961
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1962
1963
    TLSEXT_SIGALG_ecdsa_sha224,
1964
    TLSEXT_SIGALG_ecdsa_sha1,
1965
1966
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1967
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1968
1969
    TLSEXT_SIGALG_dsa_sha224,
1970
    TLSEXT_SIGALG_dsa_sha1,
1971
1972
    TLSEXT_SIGALG_dsa_sha256,
1973
    TLSEXT_SIGALG_dsa_sha384,
1974
    TLSEXT_SIGALG_dsa_sha512,
1975
1976
#ifndef OPENSSL_NO_GOST
1977
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1978
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1979
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1980
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1981
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1982
#endif
1983
};
1984
1985
1986
static const uint16_t suiteb_sigalgs[] = {
1987
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1988
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1989
};
1990
1991
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1992
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1993
     "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1994
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1995
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1996
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1997
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1998
     "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1999
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2000
     NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
2001
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2002
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
2003
     "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
2004
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2005
     NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
2006
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2007
2008
    {TLSEXT_SIGALG_ed25519_name,
2009
     NULL, TLSEXT_SIGALG_ed25519,
2010
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
2011
     NID_undef, NID_undef, 1, 0,
2012
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2013
    {TLSEXT_SIGALG_ed448_name,
2014
     NULL, TLSEXT_SIGALG_ed448,
2015
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
2016
     NID_undef, NID_undef, 1, 0,
2017
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2018
2019
    {TLSEXT_SIGALG_ecdsa_sha224_name,
2020
     "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2021
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2022
     NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2023
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2024
    {TLSEXT_SIGALG_ecdsa_sha1_name,
2025
     "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2026
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2027
     NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2028
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2029
2030
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2031
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2032
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2033
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2034
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2035
     TLS1_3_VERSION, 0, -1, -1},
2036
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2037
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2038
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2039
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2040
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2041
     TLS1_3_VERSION, 0, -1, -1},
2042
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2043
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2044
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2045
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2046
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2047
     TLS1_3_VERSION, 0, -1, -1},
2048
2049
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2050
     "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2051
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2052
     NID_undef, NID_undef, 1, 0,
2053
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2054
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2055
     "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2056
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2057
     NID_undef, NID_undef, 1, 0,
2058
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2059
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2060
     "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2061
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2062
     NID_undef, NID_undef, 1, 0,
2063
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2064
2065
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2066
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2067
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2068
     NID_undef, NID_undef, 1, 0,
2069
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2070
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2071
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2072
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2073
     NID_undef, NID_undef, 1, 0,
2074
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2075
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2076
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2077
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2078
     NID_undef, NID_undef, 1, 0,
2079
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2080
2081
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2082
     "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2083
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2084
     NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2085
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2086
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2087
     "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2088
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2089
     NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2090
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2091
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2092
     "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2093
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2094
     NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2095
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2096
2097
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2098
     "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2099
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2100
     NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2101
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2102
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2103
     "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2104
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2105
     NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2106
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2107
2108
    {TLSEXT_SIGALG_dsa_sha256_name,
2109
     "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2110
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2111
     NID_dsa_with_SHA256, NID_undef, 1, 0,
2112
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2113
    {TLSEXT_SIGALG_dsa_sha384_name,
2114
     "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2115
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2116
     NID_undef, NID_undef, 1, 0,
2117
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2118
    {TLSEXT_SIGALG_dsa_sha512_name,
2119
     "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2120
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2121
     NID_undef, NID_undef, 1, 0,
2122
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2123
    {TLSEXT_SIGALG_dsa_sha224_name,
2124
     "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2125
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2126
     NID_undef, NID_undef, 1, 0,
2127
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2128
    {TLSEXT_SIGALG_dsa_sha1_name,
2129
     "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2130
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2131
     NID_dsaWithSHA1, NID_undef, 1, 0,
2132
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133
2134
#ifndef OPENSSL_NO_GOST
2135
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2136
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2137
     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2138
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2139
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2140
     NID_undef, NID_undef, 1, 0,
2141
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2142
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2143
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2144
     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2145
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2146
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2147
     NID_undef, NID_undef, 1, 0,
2148
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2149
2150
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2151
     NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2152
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2153
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2154
     NID_undef, NID_undef, 1, 0,
2155
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2156
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2157
     NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2158
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2159
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2160
     NID_undef, NID_undef, 1, 0,
2161
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2162
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2163
     NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2164
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2165
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2166
     NID_undef, NID_undef, 1, 0,
2167
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2168
#endif
2169
};
2170
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2171
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2172
    "rsa_pkcs1_md5_sha1", NULL, 0,
2173
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2174
     EVP_PKEY_RSA, SSL_PKEY_RSA,
2175
     NID_undef, NID_undef, 1, 0,
2176
     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2177
};
2178
2179
/*
2180
 * Default signature algorithm values used if signature algorithms not present.
2181
 * From RFC5246. Note: order must match certificate index order.
2182
 */
2183
static const uint16_t tls_default_sigalg[] = {
2184
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2185
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2186
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2187
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2188
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2189
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2190
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2191
    0, /* SSL_PKEY_ED25519 */
2192
    0, /* SSL_PKEY_ED448 */
2193
};
2194
2195
int ssl_setup_sigalgs(SSL_CTX *ctx)
2196
0
{
2197
0
    size_t i, cache_idx, sigalgs_len, enabled;
2198
0
    const SIGALG_LOOKUP *lu;
2199
0
    SIGALG_LOOKUP *cache = NULL;
2200
0
    uint16_t *tls12_sigalgs_list = NULL;
2201
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2202
0
    int istls;
2203
0
    int ret = 0;
2204
2205
0
    if (ctx == NULL)
2206
0
        goto err;
2207
2208
0
    istls = !SSL_CTX_IS_DTLS(ctx);
2209
2210
0
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2211
2212
0
    cache = OPENSSL_calloc(sigalgs_len, sizeof(const SIGALG_LOOKUP));
2213
0
    if (cache == NULL || tmpkey == NULL)
2214
0
        goto err;
2215
2216
0
    tls12_sigalgs_list = OPENSSL_calloc(sigalgs_len, sizeof(uint16_t));
2217
0
    if (tls12_sigalgs_list == NULL)
2218
0
        goto err;
2219
2220
0
    ERR_set_mark();
2221
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2222
0
    for (i = 0, lu = sigalg_lookup_tbl;
2223
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2224
0
        EVP_PKEY_CTX *pctx;
2225
2226
0
        cache[i] = *lu;
2227
2228
        /*
2229
         * Check hash is available.
2230
         * This test is not perfect. A provider could have support
2231
         * for a signature scheme, but not a particular hash. However the hash
2232
         * could be available from some other loaded provider. In that case it
2233
         * could be that the signature is available, and the hash is available
2234
         * independently - but not as a combination. We ignore this for now.
2235
         */
2236
0
        if (lu->hash != NID_undef
2237
0
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2238
0
            cache[i].available = 0;
2239
0
            continue;
2240
0
        }
2241
2242
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2243
0
            cache[i].available = 0;
2244
0
            continue;
2245
0
        }
2246
0
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2247
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2248
0
        if (pctx == NULL)
2249
0
            cache[i].available = 0;
2250
0
        EVP_PKEY_CTX_free(pctx);
2251
0
    }
2252
2253
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2254
0
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2255
0
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2256
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2257
0
        cache[cache_idx].name = si.name;
2258
0
        cache[cache_idx].name12 = si.sigalg_name;
2259
0
        cache[cache_idx].sigalg = si.code_point;
2260
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
2261
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2262
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2263
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2264
0
        cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
2265
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2266
0
        cache[cache_idx].curve = NID_undef;
2267
0
        cache[cache_idx].mintls = TLS1_3_VERSION;
2268
0
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2269
0
        cache[cache_idx].mindtls = -1;
2270
0
        cache[cache_idx].maxdtls = -1;
2271
        /* Compatibility with TLS 1.3 is checked on load */
2272
0
        cache[cache_idx].available = istls;
2273
0
        cache[cache_idx].advertise = 0;
2274
0
        cache_idx++;
2275
0
    }
2276
0
    ERR_pop_to_mark();
2277
2278
0
    enabled = 0;
2279
0
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2280
0
        SIGALG_LOOKUP *ent = cache;
2281
0
        size_t j;
2282
2283
0
        for (j = 0; j < sigalgs_len; ent++, j++) {
2284
0
            if (ent->sigalg != tls12_sigalgs[i])
2285
0
                continue;
2286
            /* Dedup by marking cache entry as default enabled. */
2287
0
            if (ent->available && !ent->advertise) {
2288
0
                ent->advertise = 1;
2289
0
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2290
0
            }
2291
0
            break;
2292
0
        }
2293
0
    }
2294
2295
    /* Append any provider sigalgs not yet handled */
2296
0
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2297
0
        SIGALG_LOOKUP *ent = &cache[i];
2298
2299
0
        if (ent->available && !ent->advertise)
2300
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2301
0
    }
2302
2303
0
    ctx->sigalg_lookup_cache = cache;
2304
0
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2305
0
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2306
0
    ctx->tls12_sigalgs_len = enabled;
2307
0
    cache = NULL;
2308
0
    tls12_sigalgs_list = NULL;
2309
2310
0
    ret = 1;
2311
0
 err:
2312
0
    OPENSSL_free(cache);
2313
0
    OPENSSL_free(tls12_sigalgs_list);
2314
0
    EVP_PKEY_free(tmpkey);
2315
0
    return ret;
2316
0
}
2317
2318
0
#define SIGLEN_BUF_INCREMENT 100
2319
2320
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2321
0
{
2322
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2323
0
    const SIGALG_LOOKUP *lu;
2324
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2325
0
    char *retval = OPENSSL_malloc(maxretlen);
2326
2327
0
    if (retval == NULL)
2328
0
        return NULL;
2329
2330
    /* ensure retval string is NUL terminated */
2331
0
    retval[0] = (char)0;
2332
2333
0
    for (i = 0, lu = sigalg_lookup_tbl;
2334
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2335
0
        EVP_PKEY_CTX *pctx;
2336
0
        int enabled = 1;
2337
2338
0
        ERR_set_mark();
2339
        /* Check hash is available in some provider. */
2340
0
        if (lu->hash != NID_undef) {
2341
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2342
2343
            /* If unable to create we assume the hash algorithm is unavailable */
2344
0
            if (hash == NULL) {
2345
0
                enabled = 0;
2346
0
                ERR_pop_to_mark();
2347
0
                continue;
2348
0
            }
2349
0
            EVP_MD_free(hash);
2350
0
        }
2351
2352
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2353
0
            enabled = 0;
2354
0
            ERR_pop_to_mark();
2355
0
            continue;
2356
0
        }
2357
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2358
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2359
0
        if (pctx == NULL)
2360
0
            enabled = 0;
2361
0
        ERR_pop_to_mark();
2362
0
        EVP_PKEY_CTX_free(pctx);
2363
2364
0
        if (enabled) {
2365
0
            const char *sa = lu->name;
2366
2367
0
            if (sa != NULL) {
2368
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2369
0
                    char *tmp;
2370
2371
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2372
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2373
0
                    if (tmp == NULL) {
2374
0
                        OPENSSL_free(retval);
2375
0
                        return NULL;
2376
0
                    }
2377
0
                    retval = tmp;
2378
0
                }
2379
0
                if (strlen(retval) > 0)
2380
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2381
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2382
0
            } else {
2383
                /* lu->name must not be NULL */
2384
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2385
0
            }
2386
0
        }
2387
0
    }
2388
2389
0
    EVP_PKEY_free(tmpkey);
2390
0
    return retval;
2391
0
}
2392
2393
/* Lookup TLS signature algorithm */
2394
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2395
                                               uint16_t sigalg)
2396
0
{
2397
0
    size_t i;
2398
0
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2399
2400
0
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2401
0
        if (lu->sigalg == sigalg) {
2402
0
            if (!lu->available)
2403
0
                return NULL;
2404
0
            return lu;
2405
0
        }
2406
0
    }
2407
0
    return NULL;
2408
0
}
2409
2410
/* Lookup hash: return 0 if invalid or not enabled */
2411
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2412
0
{
2413
0
    const EVP_MD *md;
2414
2415
0
    if (lu == NULL)
2416
0
        return 0;
2417
    /* lu->hash == NID_undef means no associated digest */
2418
0
    if (lu->hash == NID_undef) {
2419
0
        md = NULL;
2420
0
    } else {
2421
0
        md = ssl_md(ctx, lu->hash_idx);
2422
0
        if (md == NULL)
2423
0
            return 0;
2424
0
    }
2425
0
    if (pmd)
2426
0
        *pmd = md;
2427
0
    return 1;
2428
0
}
2429
2430
/*
2431
 * Check if key is large enough to generate RSA-PSS signature.
2432
 *
2433
 * The key must greater than or equal to 2 * hash length + 2.
2434
 * SHA512 has a hash length of 64 bytes, which is incompatible
2435
 * with a 128 byte (1024 bit) key.
2436
 */
2437
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2438
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2439
                                      const SIGALG_LOOKUP *lu)
2440
0
{
2441
0
    const EVP_MD *md;
2442
2443
0
    if (pkey == NULL)
2444
0
        return 0;
2445
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2446
0
        return 0;
2447
0
    if (EVP_MD_get_size(md) <= 0)
2448
0
        return 0;
2449
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2450
0
        return 0;
2451
0
    return 1;
2452
0
}
2453
2454
/*
2455
 * Returns a signature algorithm when the peer did not send a list of supported
2456
 * signature algorithms. The signature algorithm is fixed for the certificate
2457
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2458
 * certificate type from |s| will be used.
2459
 * Returns the signature algorithm to use, or NULL on error.
2460
 */
2461
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2462
                                                   int idx)
2463
0
{
2464
0
    if (idx == -1) {
2465
0
        if (s->server) {
2466
0
            size_t i;
2467
2468
            /* Work out index corresponding to ciphersuite */
2469
0
            for (i = 0; i < s->ssl_pkey_num; i++) {
2470
0
                const SSL_CERT_LOOKUP *clu
2471
0
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2472
2473
0
                if (clu == NULL)
2474
0
                    continue;
2475
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2476
0
                    idx = (int)i;
2477
0
                    break;
2478
0
                }
2479
0
            }
2480
2481
            /*
2482
             * Some GOST ciphersuites allow more than one signature algorithms
2483
             * */
2484
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2485
0
                int real_idx;
2486
2487
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2488
0
                     real_idx--) {
2489
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2490
0
                        idx = real_idx;
2491
0
                        break;
2492
0
                    }
2493
0
                }
2494
0
            }
2495
            /*
2496
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2497
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2498
             */
2499
0
            else if (idx == SSL_PKEY_GOST12_256) {
2500
0
                int real_idx;
2501
2502
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2503
0
                     real_idx--) {
2504
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2505
0
                         idx = real_idx;
2506
0
                         break;
2507
0
                     }
2508
0
                }
2509
0
            }
2510
0
        } else {
2511
0
            idx = (int)(s->cert->key - s->cert->pkeys);
2512
0
        }
2513
0
    }
2514
0
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2515
0
        return NULL;
2516
2517
0
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2518
0
        const SIGALG_LOOKUP *lu =
2519
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2520
0
                               tls_default_sigalg[idx]);
2521
2522
0
        if (lu == NULL)
2523
0
            return NULL;
2524
0
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2525
0
            return NULL;
2526
0
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2527
0
            return NULL;
2528
0
        return lu;
2529
0
    }
2530
0
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2531
0
        return NULL;
2532
0
    return &legacy_rsa_sigalg;
2533
0
}
2534
/* Set peer sigalg based key type */
2535
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2536
0
{
2537
0
    size_t idx;
2538
0
    const SIGALG_LOOKUP *lu;
2539
2540
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2541
0
        return 0;
2542
0
    lu = tls1_get_legacy_sigalg(s, (int)idx);
2543
0
    if (lu == NULL)
2544
0
        return 0;
2545
0
    s->s3.tmp.peer_sigalg = lu;
2546
0
    return 1;
2547
0
}
2548
2549
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2550
0
{
2551
    /*
2552
     * If Suite B mode use Suite B sigalgs only, ignore any other
2553
     * preferences.
2554
     */
2555
0
    switch (tls1_suiteb(s)) {
2556
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2557
0
        *psigs = suiteb_sigalgs;
2558
0
        return OSSL_NELEM(suiteb_sigalgs);
2559
2560
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2561
0
        *psigs = suiteb_sigalgs;
2562
0
        return 1;
2563
2564
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2565
0
        *psigs = suiteb_sigalgs + 1;
2566
0
        return 1;
2567
0
    }
2568
    /*
2569
     *  We use client_sigalgs (if not NULL) if we're a server
2570
     *  and sending a certificate request or if we're a client and
2571
     *  determining which shared algorithm to use.
2572
     */
2573
0
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2574
0
        *psigs = s->cert->client_sigalgs;
2575
0
        return s->cert->client_sigalgslen;
2576
0
    } else if (s->cert->conf_sigalgs) {
2577
0
        *psigs = s->cert->conf_sigalgs;
2578
0
        return s->cert->conf_sigalgslen;
2579
0
    } else {
2580
0
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2581
0
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2582
0
    }
2583
0
}
2584
2585
/*
2586
 * Called by servers only. Checks that we have a sig alg that supports the
2587
 * specified EC curve.
2588
 */
2589
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2590
0
{
2591
0
   const uint16_t *sigs;
2592
0
   size_t siglen, i;
2593
2594
0
    if (s->cert->conf_sigalgs) {
2595
0
        sigs = s->cert->conf_sigalgs;
2596
0
        siglen = s->cert->conf_sigalgslen;
2597
0
    } else {
2598
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2599
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2600
0
    }
2601
2602
0
    for (i = 0; i < siglen; i++) {
2603
0
        const SIGALG_LOOKUP *lu =
2604
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2605
2606
0
        if (lu == NULL)
2607
0
            continue;
2608
0
        if (lu->sig == EVP_PKEY_EC
2609
0
                && lu->curve != NID_undef
2610
0
                && curve == lu->curve)
2611
0
            return 1;
2612
0
    }
2613
2614
0
    return 0;
2615
0
}
2616
2617
/*
2618
 * Return the number of security bits for the signature algorithm, or 0 on
2619
 * error.
2620
 */
2621
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2622
0
{
2623
0
    const EVP_MD *md = NULL;
2624
0
    int secbits = 0;
2625
2626
0
    if (!tls1_lookup_md(ctx, lu, &md))
2627
0
        return 0;
2628
0
    if (md != NULL)
2629
0
    {
2630
0
        int md_type = EVP_MD_get_type(md);
2631
2632
        /* Security bits: half digest bits */
2633
0
        secbits = EVP_MD_get_size(md) * 4;
2634
0
        if (secbits <= 0)
2635
0
            return 0;
2636
        /*
2637
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2638
         * they're no longer accepted at security level 1. The real values don't
2639
         * really matter as long as they're lower than 80, which is our
2640
         * security level 1.
2641
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2642
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2643
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2644
         * puts a chosen-prefix attack for MD5 at 2^39.
2645
         */
2646
0
        if (md_type == NID_sha1)
2647
0
            secbits = 64;
2648
0
        else if (md_type == NID_md5_sha1)
2649
0
            secbits = 67;
2650
0
        else if (md_type == NID_md5)
2651
0
            secbits = 39;
2652
0
    } else {
2653
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2654
0
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2655
0
            secbits = 128;
2656
0
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2657
0
            secbits = 224;
2658
0
    }
2659
    /*
2660
     * For provider-based sigalgs we have secbits information available
2661
     * in the (provider-loaded) sigalg_list structure
2662
     */
2663
0
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2664
0
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2665
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2666
0
    }
2667
0
    return secbits;
2668
0
}
2669
2670
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2671
0
{
2672
0
    int minversion, maxversion;
2673
0
    int minproto, maxproto;
2674
2675
0
    if (!lu->available)
2676
0
        return 0;
2677
2678
0
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2679
0
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2680
0
            minproto = sc->min_proto_version;
2681
0
            maxproto = sc->max_proto_version;
2682
0
        } else {
2683
0
            maxproto = minproto = sc->version;
2684
0
        }
2685
0
        minversion = lu->mindtls;
2686
0
        maxversion = lu->maxdtls;
2687
0
    } else {
2688
0
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2689
0
            minproto = sc->min_proto_version;
2690
0
            maxproto = sc->max_proto_version;
2691
0
        } else {
2692
0
            maxproto = minproto = sc->version;
2693
0
        }
2694
0
        minversion = lu->mintls;
2695
0
        maxversion = lu->maxtls;
2696
0
    }
2697
0
    if (minversion == -1 || maxversion == -1
2698
0
        || (minversion != 0 && maxproto != 0
2699
0
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2700
0
        || (maxversion != 0 && minproto != 0
2701
0
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2702
0
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2703
0
        return 0;
2704
0
    return 1;
2705
0
}
2706
2707
/*
2708
 * Check signature algorithm is consistent with sent supported signature
2709
 * algorithms and if so set relevant digest and signature scheme in
2710
 * s.
2711
 */
2712
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2713
0
{
2714
0
    const uint16_t *sent_sigs;
2715
0
    const EVP_MD *md = NULL;
2716
0
    char sigalgstr[2];
2717
0
    size_t sent_sigslen, i, cidx;
2718
0
    int pkeyid = -1;
2719
0
    const SIGALG_LOOKUP *lu;
2720
0
    int secbits = 0;
2721
2722
0
    pkeyid = EVP_PKEY_get_id(pkey);
2723
2724
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
2725
        /* Disallow DSA for TLS 1.3 */
2726
0
        if (pkeyid == EVP_PKEY_DSA) {
2727
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2728
0
            return 0;
2729
0
        }
2730
        /* Only allow PSS for TLS 1.3 */
2731
0
        if (pkeyid == EVP_PKEY_RSA)
2732
0
            pkeyid = EVP_PKEY_RSA_PSS;
2733
0
    }
2734
2735
    /* Is this code point available and compatible with the protocol */
2736
0
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2737
0
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2738
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2739
0
        return 0;
2740
0
    }
2741
2742
    /* If we don't know the pkey nid yet go and find it */
2743
0
    if (pkeyid == EVP_PKEY_KEYMGMT) {
2744
0
        const SSL_CERT_LOOKUP *scl =
2745
0
            ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2746
2747
0
        if (scl == NULL) {
2748
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2749
0
            return 0;
2750
0
        }
2751
0
        pkeyid = scl->pkey_nid;
2752
0
    }
2753
2754
    /* Should never happen */
2755
0
    if (pkeyid == -1) {
2756
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2757
0
        return -1;
2758
0
    }
2759
2760
    /*
2761
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2762
     * is consistent with signature: RSA keys can be used for RSA-PSS
2763
     */
2764
0
    if ((SSL_CONNECTION_IS_TLS13(s)
2765
0
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2766
0
        || (pkeyid != lu->sig
2767
0
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2768
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2769
0
        return 0;
2770
0
    }
2771
    /* Check the sigalg is consistent with the key OID */
2772
0
    if (!ssl_cert_lookup_by_nid(
2773
0
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2774
0
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2775
0
            || lu->sig_idx != (int)cidx) {
2776
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2777
0
        return 0;
2778
0
    }
2779
2780
0
    if (pkeyid == EVP_PKEY_EC) {
2781
2782
        /* Check point compression is permitted */
2783
0
        if (!tls1_check_pkey_comp(s, pkey)) {
2784
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2785
0
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2786
0
            return 0;
2787
0
        }
2788
2789
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2790
0
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2791
0
            int curve = ssl_get_EC_curve_nid(pkey);
2792
2793
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2794
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2795
0
                return 0;
2796
0
            }
2797
0
        }
2798
0
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2799
            /* Check curve matches extensions */
2800
0
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2801
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2802
0
                return 0;
2803
0
            }
2804
0
            if (tls1_suiteb(s)) {
2805
                /* Check sigalg matches a permissible Suite B value */
2806
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2807
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2808
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2809
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2810
0
                    return 0;
2811
0
                }
2812
0
            }
2813
0
        }
2814
0
    } else if (tls1_suiteb(s)) {
2815
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2816
0
        return 0;
2817
0
    }
2818
2819
    /* Check signature matches a type we sent */
2820
0
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2821
0
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2822
0
        if (sig == *sent_sigs)
2823
0
            break;
2824
0
    }
2825
    /* Allow fallback to SHA1 if not strict mode */
2826
0
    if (i == sent_sigslen && (lu->hash != NID_sha1
2827
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2828
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2829
0
        return 0;
2830
0
    }
2831
0
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2832
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2833
0
        return 0;
2834
0
    }
2835
    /*
2836
     * Make sure security callback allows algorithm. For historical
2837
     * reasons we have to pass the sigalg as a two byte char array.
2838
     */
2839
0
    sigalgstr[0] = (sig >> 8) & 0xff;
2840
0
    sigalgstr[1] = sig & 0xff;
2841
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2842
0
    if (secbits == 0 ||
2843
0
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2844
0
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2845
0
                      (void *)sigalgstr)) {
2846
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2847
0
        return 0;
2848
0
    }
2849
    /* Store the sigalg the peer uses */
2850
0
    s->s3.tmp.peer_sigalg = lu;
2851
0
    return 1;
2852
0
}
2853
2854
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2855
0
{
2856
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2857
2858
0
    if (sc == NULL)
2859
0
        return 0;
2860
2861
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2862
0
        return 0;
2863
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2864
0
    return 1;
2865
0
}
2866
2867
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2868
0
{
2869
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2870
2871
0
    if (sc == NULL)
2872
0
        return 0;
2873
2874
0
    if (sc->s3.tmp.sigalg == NULL)
2875
0
        return 0;
2876
0
    *pnid = sc->s3.tmp.sigalg->sig;
2877
0
    return 1;
2878
0
}
2879
2880
/*
2881
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2882
 * supported, doesn't appear in supported signature algorithms, isn't supported
2883
 * by the enabled protocol versions or by the security level.
2884
 *
2885
 * This function should only be used for checking which ciphers are supported
2886
 * by the client.
2887
 *
2888
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2889
 */
2890
int ssl_set_client_disabled(SSL_CONNECTION *s)
2891
0
{
2892
0
    s->s3.tmp.mask_a = 0;
2893
0
    s->s3.tmp.mask_k = 0;
2894
0
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2895
0
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2896
0
                                &s->s3.tmp.max_ver, NULL) != 0)
2897
0
        return 0;
2898
0
#ifndef OPENSSL_NO_PSK
2899
    /* with PSK there must be client callback set */
2900
0
    if (!s->psk_client_callback) {
2901
0
        s->s3.tmp.mask_a |= SSL_aPSK;
2902
0
        s->s3.tmp.mask_k |= SSL_PSK;
2903
0
    }
2904
0
#endif                          /* OPENSSL_NO_PSK */
2905
0
#ifndef OPENSSL_NO_SRP
2906
0
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2907
0
        s->s3.tmp.mask_a |= SSL_aSRP;
2908
0
        s->s3.tmp.mask_k |= SSL_kSRP;
2909
0
    }
2910
0
#endif
2911
0
    return 1;
2912
0
}
2913
2914
/*
2915
 * ssl_cipher_disabled - check that a cipher is disabled or not
2916
 * @s: SSL connection that you want to use the cipher on
2917
 * @c: cipher to check
2918
 * @op: Security check that you want to do
2919
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2920
 *
2921
 * Returns 1 when it's disabled, 0 when enabled.
2922
 */
2923
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2924
                        int op, int ecdhe)
2925
0
{
2926
0
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2927
0
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2928
2929
0
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2930
0
        || c->algorithm_auth & s->s3.tmp.mask_a)
2931
0
        return 1;
2932
0
    if (s->s3.tmp.max_ver == 0)
2933
0
        return 1;
2934
2935
0
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2936
        /* For QUIC, only allow these ciphersuites. */
2937
0
        switch (SSL_CIPHER_get_id(c)) {
2938
0
        case TLS1_3_CK_AES_128_GCM_SHA256:
2939
0
        case TLS1_3_CK_AES_256_GCM_SHA384:
2940
0
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2941
0
            break;
2942
0
        default:
2943
0
            return 1;
2944
0
        }
2945
2946
    /*
2947
     * For historical reasons we will allow ECHDE to be selected by a server
2948
     * in SSLv3 if we are a client
2949
     */
2950
0
    if (minversion == TLS1_VERSION
2951
0
            && ecdhe
2952
0
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2953
0
        minversion = SSL3_VERSION;
2954
2955
0
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2956
0
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2957
0
        return 1;
2958
2959
0
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2960
0
}
2961
2962
int tls_use_ticket(SSL_CONNECTION *s)
2963
0
{
2964
0
    if ((s->options & SSL_OP_NO_TICKET))
2965
0
        return 0;
2966
0
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2967
0
}
2968
2969
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2970
0
{
2971
0
    size_t i;
2972
2973
    /* Clear any shared signature algorithms */
2974
0
    OPENSSL_free(s->shared_sigalgs);
2975
0
    s->shared_sigalgs = NULL;
2976
0
    s->shared_sigalgslen = 0;
2977
2978
    /* Clear certificate validity flags */
2979
0
    if (s->s3.tmp.valid_flags)
2980
0
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2981
0
    else
2982
0
        s->s3.tmp.valid_flags = OPENSSL_calloc(s->ssl_pkey_num, sizeof(uint32_t));
2983
0
    if (s->s3.tmp.valid_flags == NULL) {
2984
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2985
0
        return 0;
2986
0
    }
2987
    /*
2988
     * If peer sent no signature algorithms check to see if we support
2989
     * the default algorithm for each certificate type
2990
     */
2991
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2992
0
            && s->s3.tmp.peer_sigalgs == NULL) {
2993
0
        const uint16_t *sent_sigs;
2994
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2995
2996
0
        for (i = 0; i < s->ssl_pkey_num; i++) {
2997
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
2998
0
            size_t j;
2999
3000
0
            if (lu == NULL)
3001
0
                continue;
3002
            /* Check default matches a type we sent */
3003
0
            for (j = 0; j < sent_sigslen; j++) {
3004
0
                if (lu->sigalg == sent_sigs[j]) {
3005
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
3006
0
                        break;
3007
0
                }
3008
0
            }
3009
0
        }
3010
0
        return 1;
3011
0
    }
3012
3013
0
    if (!tls1_process_sigalgs(s)) {
3014
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
3015
0
        return 0;
3016
0
    }
3017
0
    if (s->shared_sigalgs != NULL)
3018
0
        return 1;
3019
3020
    /* Fatal error if no shared signature algorithms */
3021
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3022
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
3023
0
    return 0;
3024
0
}
3025
3026
/*-
3027
 * Gets the ticket information supplied by the client if any.
3028
 *
3029
 *   hello: The parsed ClientHello data
3030
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
3031
 *       point to the resulting session.
3032
 */
3033
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3034
                                             CLIENTHELLO_MSG *hello,
3035
                                             SSL_SESSION **ret)
3036
0
{
3037
0
    size_t size;
3038
0
    RAW_EXTENSION *ticketext;
3039
3040
0
    *ret = NULL;
3041
0
    s->ext.ticket_expected = 0;
3042
3043
    /*
3044
     * If tickets disabled or not supported by the protocol version
3045
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3046
     * resumption.
3047
     */
3048
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3049
0
        return SSL_TICKET_NONE;
3050
3051
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3052
0
    if (!ticketext->present)
3053
0
        return SSL_TICKET_NONE;
3054
3055
0
    size = PACKET_remaining(&ticketext->data);
3056
3057
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3058
0
                              hello->session_id, hello->session_id_len, ret);
3059
0
}
3060
3061
/*-
3062
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3063
 *
3064
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3065
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3066
 * session tickets and one will never be decrypted, nor will
3067
 * s->ext.ticket_expected be set to 1.
3068
 *
3069
 * Side effects:
3070
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3071
 *   a new session ticket to the client because the client indicated support
3072
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3073
 *   a session ticket or we couldn't use the one it gave us, or if
3074
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3075
 *   Otherwise, s->ext.ticket_expected is set to 0.
3076
 *
3077
 *   etick: points to the body of the session ticket extension.
3078
 *   eticklen: the length of the session tickets extension.
3079
 *   sess_id: points at the session ID.
3080
 *   sesslen: the length of the session ID.
3081
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3082
 *       point to the resulting session.
3083
 */
3084
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3085
                                     const unsigned char *etick,
3086
                                     size_t eticklen,
3087
                                     const unsigned char *sess_id,
3088
                                     size_t sesslen, SSL_SESSION **psess)
3089
0
{
3090
0
    SSL_SESSION *sess = NULL;
3091
0
    unsigned char *sdec;
3092
0
    const unsigned char *p;
3093
0
    int slen, ivlen, renew_ticket = 0, declen;
3094
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3095
0
    size_t mlen;
3096
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3097
0
    SSL_HMAC *hctx = NULL;
3098
0
    EVP_CIPHER_CTX *ctx = NULL;
3099
0
    SSL_CTX *tctx = s->session_ctx;
3100
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3101
3102
0
    if (eticklen == 0) {
3103
        /*
3104
         * The client will accept a ticket but doesn't currently have
3105
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3106
         */
3107
0
        ret = SSL_TICKET_EMPTY;
3108
0
        goto end;
3109
0
    }
3110
0
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3111
        /*
3112
         * Indicate that the ticket couldn't be decrypted rather than
3113
         * generating the session from ticket now, trigger
3114
         * abbreviated handshake based on external mechanism to
3115
         * calculate the master secret later.
3116
         */
3117
0
        ret = SSL_TICKET_NO_DECRYPT;
3118
0
        goto end;
3119
0
    }
3120
3121
    /* Need at least keyname + iv */
3122
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3123
0
        ret = SSL_TICKET_NO_DECRYPT;
3124
0
        goto end;
3125
0
    }
3126
3127
    /* Initialize session ticket encryption and HMAC contexts */
3128
0
    hctx = ssl_hmac_new(tctx);
3129
0
    if (hctx == NULL) {
3130
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3131
0
        goto end;
3132
0
    }
3133
0
    ctx = EVP_CIPHER_CTX_new();
3134
0
    if (ctx == NULL) {
3135
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3136
0
        goto end;
3137
0
    }
3138
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3139
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3140
#else
3141
    if (tctx->ext.ticket_key_evp_cb != NULL)
3142
#endif
3143
0
    {
3144
0
        unsigned char *nctick = (unsigned char *)etick;
3145
0
        int rv = 0;
3146
3147
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3148
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3149
0
                                             nctick,
3150
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
3151
0
                                             ctx,
3152
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
3153
0
                                             0);
3154
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3155
0
        else if (tctx->ext.ticket_key_cb != NULL)
3156
            /* if 0 is returned, write an empty ticket */
3157
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3158
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
3159
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3160
0
#endif
3161
0
        if (rv < 0) {
3162
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3163
0
            goto end;
3164
0
        }
3165
0
        if (rv == 0) {
3166
0
            ret = SSL_TICKET_NO_DECRYPT;
3167
0
            goto end;
3168
0
        }
3169
0
        if (rv == 2)
3170
0
            renew_ticket = 1;
3171
0
    } else {
3172
0
        EVP_CIPHER *aes256cbc = NULL;
3173
3174
        /* Check key name matches */
3175
0
        if (memcmp(etick, tctx->ext.tick_key_name,
3176
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
3177
0
            ret = SSL_TICKET_NO_DECRYPT;
3178
0
            goto end;
3179
0
        }
3180
3181
0
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3182
0
                                     sctx->propq);
3183
0
        if (aes256cbc == NULL
3184
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3185
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
3186
0
                             "SHA256") <= 0
3187
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3188
0
                                  tctx->ext.secure->tick_aes_key,
3189
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3190
0
            EVP_CIPHER_free(aes256cbc);
3191
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3192
0
            goto end;
3193
0
        }
3194
0
        EVP_CIPHER_free(aes256cbc);
3195
0
        if (SSL_CONNECTION_IS_TLS13(s))
3196
0
            renew_ticket = 1;
3197
0
    }
3198
    /*
3199
     * Attempt to process session ticket, first conduct sanity and integrity
3200
     * checks on ticket.
3201
     */
3202
0
    mlen = ssl_hmac_size(hctx);
3203
0
    if (mlen == 0) {
3204
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3205
0
        goto end;
3206
0
    }
3207
3208
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3209
0
    if (ivlen < 0) {
3210
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3211
0
        goto end;
3212
0
    }
3213
3214
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3215
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3216
0
        ret = SSL_TICKET_NO_DECRYPT;
3217
0
        goto end;
3218
0
    }
3219
0
    eticklen -= mlen;
3220
    /* Check HMAC of encrypted ticket */
3221
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3222
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3223
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3224
0
        goto end;
3225
0
    }
3226
3227
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3228
0
        ret = SSL_TICKET_NO_DECRYPT;
3229
0
        goto end;
3230
0
    }
3231
    /* Attempt to decrypt session data */
3232
    /* Move p after IV to start of encrypted ticket, update length */
3233
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3234
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3235
0
    sdec = OPENSSL_malloc(eticklen);
3236
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3237
0
                                          (int)eticklen) <= 0) {
3238
0
        OPENSSL_free(sdec);
3239
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3240
0
        goto end;
3241
0
    }
3242
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3243
0
        OPENSSL_free(sdec);
3244
0
        ret = SSL_TICKET_NO_DECRYPT;
3245
0
        goto end;
3246
0
    }
3247
0
    slen += declen;
3248
0
    p = sdec;
3249
3250
0
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3251
0
    slen -= (int)(p - sdec);
3252
0
    OPENSSL_free(sdec);
3253
0
    if (sess) {
3254
        /* Some additional consistency checks */
3255
0
        if (slen != 0) {
3256
0
            SSL_SESSION_free(sess);
3257
0
            sess = NULL;
3258
0
            ret = SSL_TICKET_NO_DECRYPT;
3259
0
            goto end;
3260
0
        }
3261
        /*
3262
         * The session ID, if non-empty, is used by some clients to detect
3263
         * that the ticket has been accepted. So we copy it to the session
3264
         * structure. If it is empty set length to zero as required by
3265
         * standard.
3266
         */
3267
0
        if (sesslen) {
3268
0
            memcpy(sess->session_id, sess_id, sesslen);
3269
0
            sess->session_id_length = sesslen;
3270
0
        }
3271
0
        if (renew_ticket)
3272
0
            ret = SSL_TICKET_SUCCESS_RENEW;
3273
0
        else
3274
0
            ret = SSL_TICKET_SUCCESS;
3275
0
        goto end;
3276
0
    }
3277
0
    ERR_clear_error();
3278
    /*
3279
     * For session parse failure, indicate that we need to send a new ticket.
3280
     */
3281
0
    ret = SSL_TICKET_NO_DECRYPT;
3282
3283
0
 end:
3284
0
    EVP_CIPHER_CTX_free(ctx);
3285
0
    ssl_hmac_free(hctx);
3286
3287
    /*
3288
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3289
     * detected above. The callback is responsible for checking |ret| before it
3290
     * performs any action
3291
     */
3292
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
3293
0
            && (ret == SSL_TICKET_EMPTY
3294
0
                || ret == SSL_TICKET_NO_DECRYPT
3295
0
                || ret == SSL_TICKET_SUCCESS
3296
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
3297
0
        size_t keyname_len = eticklen;
3298
0
        int retcb;
3299
3300
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3301
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3302
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3303
0
                                                  sess, etick, keyname_len,
3304
0
                                                  ret,
3305
0
                                                  s->session_ctx->ticket_cb_data);
3306
0
        switch (retcb) {
3307
0
        case SSL_TICKET_RETURN_ABORT:
3308
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3309
0
            break;
3310
3311
0
        case SSL_TICKET_RETURN_IGNORE:
3312
0
            ret = SSL_TICKET_NONE;
3313
0
            SSL_SESSION_free(sess);
3314
0
            sess = NULL;
3315
0
            break;
3316
3317
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3318
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3319
0
                ret = SSL_TICKET_NO_DECRYPT;
3320
            /* else the value of |ret| will already do the right thing */
3321
0
            SSL_SESSION_free(sess);
3322
0
            sess = NULL;
3323
0
            break;
3324
3325
0
        case SSL_TICKET_RETURN_USE:
3326
0
        case SSL_TICKET_RETURN_USE_RENEW:
3327
0
            if (ret != SSL_TICKET_SUCCESS
3328
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
3329
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3330
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3331
0
                ret = SSL_TICKET_SUCCESS;
3332
0
            else
3333
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3334
0
            break;
3335
3336
0
        default:
3337
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3338
0
        }
3339
0
    }
3340
3341
0
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3342
0
        switch (ret) {
3343
0
        case SSL_TICKET_NO_DECRYPT:
3344
0
        case SSL_TICKET_SUCCESS_RENEW:
3345
0
        case SSL_TICKET_EMPTY:
3346
0
            s->ext.ticket_expected = 1;
3347
0
        }
3348
0
    }
3349
3350
0
    *psess = sess;
3351
3352
0
    return ret;
3353
0
}
3354
3355
/* Check to see if a signature algorithm is allowed */
3356
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3357
                                const SIGALG_LOOKUP *lu)
3358
0
{
3359
0
    unsigned char sigalgstr[2];
3360
0
    int secbits;
3361
3362
0
    if (lu == NULL || !lu->available)
3363
0
        return 0;
3364
    /* DSA is not allowed in TLS 1.3 */
3365
0
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3366
0
        return 0;
3367
    /*
3368
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3369
     * spec
3370
     */
3371
0
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3372
0
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3373
0
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3374
0
            || lu->hash_idx == SSL_MD_MD5_IDX
3375
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3376
0
        return 0;
3377
3378
    /* See if public key algorithm allowed */
3379
0
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3380
0
        return 0;
3381
3382
0
    if (lu->sig == NID_id_GostR3410_2012_256
3383
0
            || lu->sig == NID_id_GostR3410_2012_512
3384
0
            || lu->sig == NID_id_GostR3410_2001) {
3385
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3386
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3387
0
            return 0;
3388
0
        if (!s->server
3389
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3390
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3391
0
            int i, num;
3392
0
            STACK_OF(SSL_CIPHER) *sk;
3393
3394
            /*
3395
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3396
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3397
             * ciphersuites enabled.
3398
             */
3399
3400
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3401
0
                return 0;
3402
3403
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3404
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3405
0
            for (i = 0; i < num; i++) {
3406
0
                const SSL_CIPHER *c;
3407
3408
0
                c = sk_SSL_CIPHER_value(sk, i);
3409
                /* Skip disabled ciphers */
3410
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3411
0
                    continue;
3412
3413
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3414
0
                    break;
3415
0
            }
3416
0
            if (i == num)
3417
0
                return 0;
3418
0
        }
3419
0
    }
3420
3421
    /* Finally see if security callback allows it */
3422
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3423
0
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3424
0
    sigalgstr[1] = lu->sigalg & 0xff;
3425
0
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3426
0
}
3427
3428
/*
3429
 * Get a mask of disabled public key algorithms based on supported signature
3430
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3431
 * disabled.
3432
 */
3433
3434
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3435
0
{
3436
0
    const uint16_t *sigalgs;
3437
0
    size_t i, sigalgslen;
3438
0
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3439
    /*
3440
     * Go through all signature algorithms seeing if we support any
3441
     * in disabled_mask.
3442
     */
3443
0
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3444
0
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3445
0
        const SIGALG_LOOKUP *lu =
3446
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3447
0
        const SSL_CERT_LOOKUP *clu;
3448
3449
0
        if (lu == NULL)
3450
0
            continue;
3451
3452
0
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3453
0
                                     SSL_CONNECTION_GET_CTX(s));
3454
0
        if (clu == NULL)
3455
0
                continue;
3456
3457
        /* If algorithm is disabled see if we can enable it */
3458
0
        if ((clu->amask & disabled_mask) != 0
3459
0
                && tls12_sigalg_allowed(s, op, lu))
3460
0
            disabled_mask &= ~clu->amask;
3461
0
    }
3462
0
    *pmask_a |= disabled_mask;
3463
0
}
3464
3465
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3466
                       const uint16_t *psig, size_t psiglen)
3467
0
{
3468
0
    size_t i;
3469
0
    int rv = 0;
3470
3471
0
    for (i = 0; i < psiglen; i++, psig++) {
3472
0
        const SIGALG_LOOKUP *lu =
3473
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3474
3475
0
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3476
0
            continue;
3477
0
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3478
0
            return 0;
3479
        /*
3480
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3481
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3482
         */
3483
0
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3484
0
            || (lu->sig != EVP_PKEY_RSA
3485
0
                && lu->hash != NID_sha1
3486
0
                && lu->hash != NID_sha224)))
3487
0
            rv = 1;
3488
0
    }
3489
0
    if (rv == 0)
3490
0
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3491
0
    return rv;
3492
0
}
3493
3494
/* Given preference and allowed sigalgs set shared sigalgs */
3495
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3496
                                   const SIGALG_LOOKUP **shsig,
3497
                                   const uint16_t *pref, size_t preflen,
3498
                                   const uint16_t *allow, size_t allowlen)
3499
0
{
3500
0
    const uint16_t *ptmp, *atmp;
3501
0
    size_t i, j, nmatch = 0;
3502
0
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3503
0
        const SIGALG_LOOKUP *lu =
3504
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3505
3506
        /* Skip disabled hashes or signature algorithms */
3507
0
        if (lu == NULL
3508
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3509
0
            continue;
3510
0
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3511
0
            if (*ptmp == *atmp) {
3512
0
                nmatch++;
3513
0
                if (shsig)
3514
0
                    *shsig++ = lu;
3515
0
                break;
3516
0
            }
3517
0
        }
3518
0
    }
3519
0
    return nmatch;
3520
0
}
3521
3522
/* Set shared signature algorithms for SSL structures */
3523
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3524
0
{
3525
0
    const uint16_t *pref, *allow, *conf;
3526
0
    size_t preflen, allowlen, conflen;
3527
0
    size_t nmatch;
3528
0
    const SIGALG_LOOKUP **salgs = NULL;
3529
0
    CERT *c = s->cert;
3530
0
    unsigned int is_suiteb = tls1_suiteb(s);
3531
3532
0
    OPENSSL_free(s->shared_sigalgs);
3533
0
    s->shared_sigalgs = NULL;
3534
0
    s->shared_sigalgslen = 0;
3535
    /* If client use client signature algorithms if not NULL */
3536
0
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3537
0
        conf = c->client_sigalgs;
3538
0
        conflen = c->client_sigalgslen;
3539
0
    } else if (c->conf_sigalgs && !is_suiteb) {
3540
0
        conf = c->conf_sigalgs;
3541
0
        conflen = c->conf_sigalgslen;
3542
0
    } else
3543
0
        conflen = tls12_get_psigalgs(s, 0, &conf);
3544
0
    if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
3545
0
        pref = conf;
3546
0
        preflen = conflen;
3547
0
        allow = s->s3.tmp.peer_sigalgs;
3548
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3549
0
    } else {
3550
0
        allow = conf;
3551
0
        allowlen = conflen;
3552
0
        pref = s->s3.tmp.peer_sigalgs;
3553
0
        preflen = s->s3.tmp.peer_sigalgslen;
3554
0
    }
3555
0
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3556
0
    if (nmatch) {
3557
0
        if ((salgs = OPENSSL_malloc_array(nmatch, sizeof(*salgs))) == NULL)
3558
0
            return 0;
3559
0
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3560
0
    } else {
3561
0
        salgs = NULL;
3562
0
    }
3563
0
    s->shared_sigalgs = salgs;
3564
0
    s->shared_sigalgslen = nmatch;
3565
0
    return 1;
3566
0
}
3567
3568
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3569
0
{
3570
0
    unsigned int stmp;
3571
0
    size_t size, i;
3572
0
    uint16_t *buf;
3573
3574
0
    size = PACKET_remaining(pkt);
3575
3576
    /* Invalid data length */
3577
0
    if (size == 0 || (size & 1) != 0)
3578
0
        return 0;
3579
3580
0
    size >>= 1;
3581
3582
0
    if ((buf = OPENSSL_malloc_array(size, sizeof(*buf))) == NULL)
3583
0
        return 0;
3584
0
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3585
0
        buf[i] = stmp;
3586
3587
0
    if (i != size) {
3588
0
        OPENSSL_free(buf);
3589
0
        return 0;
3590
0
    }
3591
3592
0
    OPENSSL_free(*pdest);
3593
0
    *pdest = buf;
3594
0
    *pdestlen = size;
3595
3596
0
    return 1;
3597
0
}
3598
3599
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3600
0
{
3601
    /* Extension ignored for inappropriate versions */
3602
0
    if (!SSL_USE_SIGALGS(s))
3603
0
        return 1;
3604
    /* Should never happen */
3605
0
    if (s->cert == NULL)
3606
0
        return 0;
3607
3608
0
    if (cert)
3609
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3610
0
                             &s->s3.tmp.peer_cert_sigalgslen);
3611
0
    else
3612
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3613
0
                             &s->s3.tmp.peer_sigalgslen);
3614
3615
0
}
3616
3617
/* Set preferred digest for each key type */
3618
3619
int tls1_process_sigalgs(SSL_CONNECTION *s)
3620
0
{
3621
0
    size_t i;
3622
0
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3623
3624
0
    if (!tls1_set_shared_sigalgs(s))
3625
0
        return 0;
3626
3627
0
    for (i = 0; i < s->ssl_pkey_num; i++)
3628
0
        pvalid[i] = 0;
3629
3630
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3631
0
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3632
0
        int idx = sigptr->sig_idx;
3633
3634
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3635
0
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3636
0
            continue;
3637
        /* If not disabled indicate we can explicitly sign */
3638
0
        if (pvalid[idx] == 0
3639
0
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3640
0
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3641
0
    }
3642
0
    return 1;
3643
0
}
3644
3645
int SSL_get_sigalgs(SSL *s, int idx,
3646
                    int *psign, int *phash, int *psignhash,
3647
                    unsigned char *rsig, unsigned char *rhash)
3648
0
{
3649
0
    uint16_t *psig;
3650
0
    size_t numsigalgs;
3651
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3652
3653
0
    if (sc == NULL)
3654
0
        return 0;
3655
3656
0
    psig = sc->s3.tmp.peer_sigalgs;
3657
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3658
3659
0
    if (psig == NULL || numsigalgs > INT_MAX)
3660
0
        return 0;
3661
0
    if (idx >= 0) {
3662
0
        const SIGALG_LOOKUP *lu;
3663
3664
0
        if (idx >= (int)numsigalgs)
3665
0
            return 0;
3666
0
        psig += idx;
3667
0
        if (rhash != NULL)
3668
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3669
0
        if (rsig != NULL)
3670
0
            *rsig = (unsigned char)(*psig & 0xff);
3671
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3672
0
        if (psign != NULL)
3673
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3674
0
        if (phash != NULL)
3675
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3676
0
        if (psignhash != NULL)
3677
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3678
0
    }
3679
0
    return (int)numsigalgs;
3680
0
}
3681
3682
int SSL_get_shared_sigalgs(SSL *s, int idx,
3683
                           int *psign, int *phash, int *psignhash,
3684
                           unsigned char *rsig, unsigned char *rhash)
3685
0
{
3686
0
    const SIGALG_LOOKUP *shsigalgs;
3687
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3688
3689
0
    if (sc == NULL)
3690
0
        return 0;
3691
3692
0
    if (sc->shared_sigalgs == NULL
3693
0
        || idx < 0
3694
0
        || idx >= (int)sc->shared_sigalgslen
3695
0
        || sc->shared_sigalgslen > INT_MAX)
3696
0
        return 0;
3697
0
    shsigalgs = sc->shared_sigalgs[idx];
3698
0
    if (phash != NULL)
3699
0
        *phash = shsigalgs->hash;
3700
0
    if (psign != NULL)
3701
0
        *psign = shsigalgs->sig;
3702
0
    if (psignhash != NULL)
3703
0
        *psignhash = shsigalgs->sigandhash;
3704
0
    if (rsig != NULL)
3705
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3706
0
    if (rhash != NULL)
3707
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3708
0
    return (int)sc->shared_sigalgslen;
3709
0
}
3710
3711
/* Maximum possible number of unique entries in sigalgs array */
3712
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3713
3714
typedef struct {
3715
    size_t sigalgcnt;
3716
    /* TLSEXT_SIGALG_XXX values */
3717
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3718
    SSL_CTX *ctx;
3719
} sig_cb_st;
3720
3721
static void get_sigorhash(int *psig, int *phash, const char *str)
3722
0
{
3723
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3724
0
        *psig = EVP_PKEY_RSA;
3725
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3726
0
               || OPENSSL_strcasecmp(str, "PSS") == 0) {
3727
0
        *psig = EVP_PKEY_RSA_PSS;
3728
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3729
0
        *psig = EVP_PKEY_DSA;
3730
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3731
0
        *psig = EVP_PKEY_EC;
3732
0
    } else {
3733
0
        *phash = OBJ_sn2nid(str);
3734
0
        if (*phash == NID_undef)
3735
0
            *phash = OBJ_ln2nid(str);
3736
0
    }
3737
0
}
3738
/* Maximum length of a signature algorithm string component */
3739
#define TLS_MAX_SIGSTRING_LEN   40
3740
3741
static int sig_cb(const char *elem, int len, void *arg)
3742
0
{
3743
0
    sig_cb_st *sarg = arg;
3744
0
    size_t i = 0;
3745
0
    const SIGALG_LOOKUP *s;
3746
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3747
0
    const char *iana, *alias;
3748
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3749
0
    int ignore_unknown = 0;
3750
3751
0
    if (elem == NULL)
3752
0
        return 0;
3753
0
    if (elem[0] == '?') {
3754
0
        ignore_unknown = 1;
3755
0
        ++elem;
3756
0
        --len;
3757
0
    }
3758
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3759
0
        return 0;
3760
0
    if (len > (int)(sizeof(etmp) - 1))
3761
0
        return 0;
3762
0
    memcpy(etmp, elem, len);
3763
0
    etmp[len] = 0;
3764
0
    p = strchr(etmp, '+');
3765
    /*
3766
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3767
     * if there's no '+' in the provided name, look for the new-style combined
3768
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3769
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3770
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3771
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3772
     * in the table.
3773
     */
3774
0
    if (p == NULL) {
3775
0
        if (sarg->ctx != NULL) {
3776
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3777
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3778
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3779
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3780
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3781
                    /* Ignore known, but unavailable sigalgs. */
3782
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3783
0
                        return 1;
3784
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3785
0
                        sarg->ctx->sigalg_lookup_cache[i].sigalg;
3786
0
                    goto found;
3787
0
                }
3788
0
            }
3789
0
        } else {
3790
            /* Syntax checks use the built-in sigalgs */
3791
0
            for (i = 0, s = sigalg_lookup_tbl;
3792
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3793
0
                iana = s->name;
3794
0
                alias = s->name12;
3795
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3796
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3797
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3798
0
                    goto found;
3799
0
                }
3800
0
            }
3801
0
        }
3802
0
    } else {
3803
0
        *p = 0;
3804
0
        p++;
3805
0
        if (*p == 0)
3806
0
            return 0;
3807
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3808
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3809
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3810
0
            if (sarg->ctx != NULL) {
3811
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3812
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3813
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3814
                        /* Ignore known, but unavailable sigalgs. */
3815
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3816
0
                            return 1;
3817
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3818
0
                        goto found;
3819
0
                    }
3820
0
                }
3821
0
            } else {
3822
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3823
0
                    s = &sigalg_lookup_tbl[i];
3824
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3825
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3826
0
                        goto found;
3827
0
                    }
3828
0
                }
3829
0
            }
3830
0
        }
3831
0
    }
3832
    /* Ignore unknown algorithms if ignore_unknown */
3833
0
    return ignore_unknown;
3834
3835
0
 found:
3836
    /* Ignore duplicates */
3837
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3838
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3839
0
            sarg->sigalgcnt--;
3840
0
            return 1;
3841
0
        }
3842
0
    }
3843
0
    return 1;
3844
0
}
3845
3846
/*
3847
 * Set supported signature algorithms based on a colon separated list of the
3848
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3849
 */
3850
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3851
0
{
3852
0
    sig_cb_st sig;
3853
0
    sig.sigalgcnt = 0;
3854
3855
0
    if (ctx != NULL)
3856
0
        sig.ctx = ctx;
3857
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3858
0
        return 0;
3859
0
    if (sig.sigalgcnt == 0) {
3860
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3861
0
                       "No valid signature algorithms in '%s'", str);
3862
0
        return 0;
3863
0
    }
3864
0
    if (c == NULL)
3865
0
        return 1;
3866
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3867
0
}
3868
3869
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3870
                     int client)
3871
0
{
3872
0
    uint16_t *sigalgs;
3873
3874
0
    if ((sigalgs = OPENSSL_malloc_array(salglen, sizeof(*sigalgs))) == NULL)
3875
0
        return 0;
3876
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3877
3878
0
    if (client) {
3879
0
        OPENSSL_free(c->client_sigalgs);
3880
0
        c->client_sigalgs = sigalgs;
3881
0
        c->client_sigalgslen = salglen;
3882
0
    } else {
3883
0
        OPENSSL_free(c->conf_sigalgs);
3884
0
        c->conf_sigalgs = sigalgs;
3885
0
        c->conf_sigalgslen = salglen;
3886
0
    }
3887
3888
0
    return 1;
3889
0
}
3890
3891
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3892
0
{
3893
0
    uint16_t *sigalgs, *sptr;
3894
0
    size_t i;
3895
3896
0
    if (salglen & 1)
3897
0
        return 0;
3898
0
    if ((sigalgs = OPENSSL_malloc_array(salglen / 2, sizeof(*sigalgs))) == NULL)
3899
0
        return 0;
3900
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3901
0
        size_t j;
3902
0
        const SIGALG_LOOKUP *curr;
3903
0
        int md_id = *psig_nids++;
3904
0
        int sig_id = *psig_nids++;
3905
3906
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3907
0
             j++, curr++) {
3908
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3909
0
                *sptr++ = curr->sigalg;
3910
0
                break;
3911
0
            }
3912
0
        }
3913
3914
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3915
0
            goto err;
3916
0
    }
3917
3918
0
    if (client) {
3919
0
        OPENSSL_free(c->client_sigalgs);
3920
0
        c->client_sigalgs = sigalgs;
3921
0
        c->client_sigalgslen = salglen / 2;
3922
0
    } else {
3923
0
        OPENSSL_free(c->conf_sigalgs);
3924
0
        c->conf_sigalgs = sigalgs;
3925
0
        c->conf_sigalgslen = salglen / 2;
3926
0
    }
3927
3928
0
    return 1;
3929
3930
0
 err:
3931
0
    OPENSSL_free(sigalgs);
3932
0
    return 0;
3933
0
}
3934
3935
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3936
0
{
3937
0
    int sig_nid, use_pc_sigalgs = 0;
3938
0
    size_t i;
3939
0
    const SIGALG_LOOKUP *sigalg;
3940
0
    size_t sigalgslen;
3941
3942
    /*-
3943
     * RFC 8446, section 4.2.3:
3944
     *
3945
     * The signatures on certificates that are self-signed or certificates
3946
     * that are trust anchors are not validated, since they begin a
3947
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3948
     * begins a certification path MAY use a signature algorithm that is not
3949
     * advertised as being supported in the "signature_algorithms"
3950
     * extension.
3951
     */
3952
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3953
0
        return 1;
3954
0
    sig_nid = X509_get_signature_nid(x);
3955
0
    if (default_nid)
3956
0
        return sig_nid == default_nid ? 1 : 0;
3957
3958
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3959
        /*
3960
         * If we're in TLSv1.3 then we only get here if we're checking the
3961
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3962
         * otherwise we default to normal sigalgs.
3963
         */
3964
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3965
0
        use_pc_sigalgs = 1;
3966
0
    } else {
3967
0
        sigalgslen = s->shared_sigalgslen;
3968
0
    }
3969
0
    for (i = 0; i < sigalgslen; i++) {
3970
0
        int mdnid, pknid;
3971
3972
0
        sigalg = use_pc_sigalgs
3973
0
                 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3974
0
                                      s->s3.tmp.peer_cert_sigalgs[i])
3975
0
                 : s->shared_sigalgs[i];
3976
0
        if (sigalg == NULL)
3977
0
            continue;
3978
0
        if (sig_nid == sigalg->sigandhash)
3979
0
            return 1;
3980
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3981
0
            continue;
3982
        /*
3983
         * Accept RSA PKCS#1 signatures in certificates when the signature
3984
         * algorithms include RSA-PSS with a matching digest algorithm.
3985
         *
3986
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3987
         * points, and we're doing strict checking of the certificate chain (in
3988
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3989
         * certificates in the chain, but the TLS requirement on PSS should not
3990
         * extend to certificates.  Though the peer can in fact list the legacy
3991
         * sigalgs for just this purpose, it is not likely that a better chain
3992
         * signed with RSA-PSS is available.
3993
         */
3994
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3995
0
            continue;
3996
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3997
0
            return 1;
3998
0
    }
3999
0
    return 0;
4000
0
}
4001
4002
/* Check to see if a certificate issuer name matches list of CA names */
4003
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
4004
0
{
4005
0
    const X509_NAME *nm;
4006
0
    int i;
4007
0
    nm = X509_get_issuer_name(x);
4008
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
4009
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
4010
0
            return 1;
4011
0
    }
4012
0
    return 0;
4013
0
}
4014
4015
/*
4016
 * Check certificate chain is consistent with TLS extensions and is usable by
4017
 * server. This servers two purposes: it allows users to check chains before
4018
 * passing them to the server and it allows the server to check chains before
4019
 * attempting to use them.
4020
 */
4021
4022
/* Flags which need to be set for a certificate when strict mode not set */
4023
4024
#define CERT_PKEY_VALID_FLAGS \
4025
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4026
/* Strict mode flags */
4027
#define CERT_PKEY_STRICT_FLAGS \
4028
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4029
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4030
4031
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4032
                     STACK_OF(X509) *chain, int idx)
4033
0
{
4034
0
    int i;
4035
0
    int rv = 0;
4036
0
    int check_flags = 0, strict_mode;
4037
0
    CERT_PKEY *cpk = NULL;
4038
0
    CERT *c = s->cert;
4039
0
    uint32_t *pvalid;
4040
0
    unsigned int suiteb_flags = tls1_suiteb(s);
4041
4042
    /*
4043
     * Meaning of idx:
4044
     * idx == -1 means SSL_check_chain() invocation
4045
     * idx == -2 means checking client certificate chains
4046
     * idx >= 0 means checking SSL_PKEY index
4047
     *
4048
     * For RPK, where there may be no cert, we ignore -1
4049
     */
4050
0
    if (idx != -1) {
4051
0
        if (idx == -2) {
4052
0
            cpk = c->key;
4053
0
            idx = (int)(cpk - c->pkeys);
4054
0
        } else
4055
0
            cpk = c->pkeys + idx;
4056
0
        pvalid = s->s3.tmp.valid_flags + idx;
4057
0
        x = cpk->x509;
4058
0
        pk = cpk->privatekey;
4059
0
        chain = cpk->chain;
4060
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4061
0
        if (tls12_rpk_and_privkey(s, idx)) {
4062
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4063
0
                return 0;
4064
0
            *pvalid = rv = CERT_PKEY_RPK;
4065
0
            return rv;
4066
0
        }
4067
        /* If no cert or key, forget it */
4068
0
        if (x == NULL || pk == NULL)
4069
0
            goto end;
4070
0
    } else {
4071
0
        size_t certidx;
4072
4073
0
        if (x == NULL || pk == NULL)
4074
0
            return 0;
4075
4076
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4077
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
4078
0
            return 0;
4079
0
        idx = (int)certidx;
4080
0
        pvalid = s->s3.tmp.valid_flags + idx;
4081
4082
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4083
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4084
0
        else
4085
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4086
0
        strict_mode = 1;
4087
0
    }
4088
4089
0
    if (suiteb_flags) {
4090
0
        int ok;
4091
0
        if (check_flags)
4092
0
            check_flags |= CERT_PKEY_SUITEB;
4093
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4094
0
        if (ok == X509_V_OK)
4095
0
            rv |= CERT_PKEY_SUITEB;
4096
0
        else if (!check_flags)
4097
0
            goto end;
4098
0
    }
4099
4100
    /*
4101
     * Check all signature algorithms are consistent with signature
4102
     * algorithms extension if TLS 1.2 or later and strict mode.
4103
     */
4104
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4105
0
        && strict_mode) {
4106
0
        int default_nid;
4107
0
        int rsign = 0;
4108
4109
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4110
0
                || s->s3.tmp.peer_sigalgs != NULL) {
4111
0
            default_nid = 0;
4112
        /* If no sigalgs extension use defaults from RFC5246 */
4113
0
        } else {
4114
0
            switch (idx) {
4115
0
            case SSL_PKEY_RSA:
4116
0
                rsign = EVP_PKEY_RSA;
4117
0
                default_nid = NID_sha1WithRSAEncryption;
4118
0
                break;
4119
4120
0
            case SSL_PKEY_DSA_SIGN:
4121
0
                rsign = EVP_PKEY_DSA;
4122
0
                default_nid = NID_dsaWithSHA1;
4123
0
                break;
4124
4125
0
            case SSL_PKEY_ECC:
4126
0
                rsign = EVP_PKEY_EC;
4127
0
                default_nid = NID_ecdsa_with_SHA1;
4128
0
                break;
4129
4130
0
            case SSL_PKEY_GOST01:
4131
0
                rsign = NID_id_GostR3410_2001;
4132
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4133
0
                break;
4134
4135
0
            case SSL_PKEY_GOST12_256:
4136
0
                rsign = NID_id_GostR3410_2012_256;
4137
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4138
0
                break;
4139
4140
0
            case SSL_PKEY_GOST12_512:
4141
0
                rsign = NID_id_GostR3410_2012_512;
4142
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4143
0
                break;
4144
4145
0
            default:
4146
0
                default_nid = -1;
4147
0
                break;
4148
0
            }
4149
0
        }
4150
        /*
4151
         * If peer sent no signature algorithms extension and we have set
4152
         * preferred signature algorithms check we support sha1.
4153
         */
4154
0
        if (default_nid > 0 && c->conf_sigalgs) {
4155
0
            size_t j;
4156
0
            const uint16_t *p = c->conf_sigalgs;
4157
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4158
0
                const SIGALG_LOOKUP *lu =
4159
0
                    tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4160
4161
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4162
0
                    break;
4163
0
            }
4164
0
            if (j == c->conf_sigalgslen) {
4165
0
                if (check_flags)
4166
0
                    goto skip_sigs;
4167
0
                else
4168
0
                    goto end;
4169
0
            }
4170
0
        }
4171
        /* Check signature algorithm of each cert in chain */
4172
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4173
            /*
4174
             * We only get here if the application has called SSL_check_chain(),
4175
             * so check_flags is always set.
4176
             */
4177
0
            if (find_sig_alg(s, x, pk) != NULL)
4178
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4179
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4180
0
            if (!check_flags)
4181
0
                goto end;
4182
0
        } else
4183
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4184
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4185
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4186
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4187
0
                if (check_flags) {
4188
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4189
0
                    break;
4190
0
                } else
4191
0
                    goto end;
4192
0
            }
4193
0
        }
4194
0
    }
4195
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4196
0
    else if (check_flags)
4197
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4198
0
 skip_sigs:
4199
    /* Check cert parameters are consistent */
4200
0
    if (tls1_check_cert_param(s, x, 1))
4201
0
        rv |= CERT_PKEY_EE_PARAM;
4202
0
    else if (!check_flags)
4203
0
        goto end;
4204
0
    if (!s->server)
4205
0
        rv |= CERT_PKEY_CA_PARAM;
4206
    /* In strict mode check rest of chain too */
4207
0
    else if (strict_mode) {
4208
0
        rv |= CERT_PKEY_CA_PARAM;
4209
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4210
0
            X509 *ca = sk_X509_value(chain, i);
4211
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4212
0
                if (check_flags) {
4213
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4214
0
                    break;
4215
0
                } else
4216
0
                    goto end;
4217
0
            }
4218
0
        }
4219
0
    }
4220
0
    if (!s->server && strict_mode) {
4221
0
        STACK_OF(X509_NAME) *ca_dn;
4222
0
        int check_type = 0;
4223
4224
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4225
0
            check_type = TLS_CT_RSA_SIGN;
4226
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4227
0
            check_type = TLS_CT_DSS_SIGN;
4228
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4229
0
            check_type = TLS_CT_ECDSA_SIGN;
4230
4231
0
        if (check_type) {
4232
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4233
0
            size_t j;
4234
4235
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4236
0
                if (*ctypes == check_type) {
4237
0
                    rv |= CERT_PKEY_CERT_TYPE;
4238
0
                    break;
4239
0
                }
4240
0
            }
4241
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4242
0
                goto end;
4243
0
        } else {
4244
0
            rv |= CERT_PKEY_CERT_TYPE;
4245
0
        }
4246
4247
0
        ca_dn = s->s3.tmp.peer_ca_names;
4248
4249
0
        if (ca_dn == NULL
4250
0
            || sk_X509_NAME_num(ca_dn) == 0
4251
0
            || ssl_check_ca_name(ca_dn, x))
4252
0
            rv |= CERT_PKEY_ISSUER_NAME;
4253
0
        else
4254
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4255
0
                X509 *xtmp = sk_X509_value(chain, i);
4256
4257
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4258
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4259
0
                    break;
4260
0
                }
4261
0
            }
4262
4263
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4264
0
            goto end;
4265
0
    } else
4266
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4267
4268
0
    if (!check_flags || (rv & check_flags) == check_flags)
4269
0
        rv |= CERT_PKEY_VALID;
4270
4271
0
 end:
4272
4273
0
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4274
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4275
0
    else
4276
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4277
4278
    /*
4279
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4280
     * chain is invalid.
4281
     */
4282
0
    if (!check_flags) {
4283
0
        if (rv & CERT_PKEY_VALID) {
4284
0
            *pvalid = rv;
4285
0
        } else {
4286
            /* Preserve sign and explicit sign flag, clear rest */
4287
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4288
0
            return 0;
4289
0
        }
4290
0
    }
4291
0
    return rv;
4292
0
}
4293
4294
/* Set validity of certificates in an SSL structure */
4295
void tls1_set_cert_validity(SSL_CONNECTION *s)
4296
0
{
4297
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4298
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4299
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4300
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4301
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4302
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4303
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4304
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4305
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4306
0
}
4307
4308
/* User level utility function to check a chain is suitable */
4309
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4310
0
{
4311
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4312
4313
0
    if (sc == NULL)
4314
0
        return 0;
4315
4316
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4317
0
}
4318
4319
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4320
0
{
4321
0
    EVP_PKEY *dhp = NULL;
4322
0
    BIGNUM *p;
4323
0
    int dh_secbits = 80, sec_level_bits;
4324
0
    EVP_PKEY_CTX *pctx = NULL;
4325
0
    OSSL_PARAM_BLD *tmpl = NULL;
4326
0
    OSSL_PARAM *params = NULL;
4327
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4328
4329
0
    if (s->cert->dh_tmp_auto != 2) {
4330
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4331
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4332
0
                dh_secbits = 128;
4333
0
            else
4334
0
                dh_secbits = 80;
4335
0
        } else {
4336
0
            if (s->s3.tmp.cert == NULL)
4337
0
                return NULL;
4338
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4339
0
        }
4340
0
    }
4341
4342
    /* Do not pick a prime that is too weak for the current security level */
4343
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4344
0
                                                 NULL, NULL);
4345
0
    if (dh_secbits < sec_level_bits)
4346
0
        dh_secbits = sec_level_bits;
4347
4348
0
    if (dh_secbits >= 192)
4349
0
        p = BN_get_rfc3526_prime_8192(NULL);
4350
0
    else if (dh_secbits >= 152)
4351
0
        p = BN_get_rfc3526_prime_4096(NULL);
4352
0
    else if (dh_secbits >= 128)
4353
0
        p = BN_get_rfc3526_prime_3072(NULL);
4354
0
    else if (dh_secbits >= 112)
4355
0
        p = BN_get_rfc3526_prime_2048(NULL);
4356
0
    else
4357
0
        p = BN_get_rfc2409_prime_1024(NULL);
4358
0
    if (p == NULL)
4359
0
        goto err;
4360
4361
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4362
0
    if (pctx == NULL
4363
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
4364
0
        goto err;
4365
4366
0
    tmpl = OSSL_PARAM_BLD_new();
4367
0
    if (tmpl == NULL
4368
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4369
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4370
0
        goto err;
4371
4372
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4373
0
    if (params == NULL
4374
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4375
0
        goto err;
4376
4377
0
err:
4378
0
    OSSL_PARAM_free(params);
4379
0
    OSSL_PARAM_BLD_free(tmpl);
4380
0
    EVP_PKEY_CTX_free(pctx);
4381
0
    BN_free(p);
4382
0
    return dhp;
4383
0
}
4384
4385
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4386
                                 int op)
4387
0
{
4388
0
    int secbits = -1;
4389
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4390
4391
0
    if (pkey) {
4392
        /*
4393
         * If no parameters this will return -1 and fail using the default
4394
         * security callback for any non-zero security level. This will
4395
         * reject keys which omit parameters but this only affects DSA and
4396
         * omission of parameters is never (?) done in practice.
4397
         */
4398
0
        secbits = EVP_PKEY_get_security_bits(pkey);
4399
0
    }
4400
0
    if (s != NULL)
4401
0
        return ssl_security(s, op, secbits, 0, x);
4402
0
    else
4403
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4404
0
}
4405
4406
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4407
                                 int op)
4408
0
{
4409
    /* Lookup signature algorithm digest */
4410
0
    int secbits, nid, pknid;
4411
4412
    /* Don't check signature if self signed */
4413
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4414
0
        return 1;
4415
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4416
0
        secbits = -1;
4417
    /* If digest NID not defined use signature NID */
4418
0
    if (nid == NID_undef)
4419
0
        nid = pknid;
4420
0
    if (s != NULL)
4421
0
        return ssl_security(s, op, secbits, nid, x);
4422
0
    else
4423
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4424
0
}
4425
4426
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4427
                      int is_ee)
4428
0
{
4429
0
    if (vfy)
4430
0
        vfy = SSL_SECOP_PEER;
4431
0
    if (is_ee) {
4432
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4433
0
            return SSL_R_EE_KEY_TOO_SMALL;
4434
0
    } else {
4435
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4436
0
            return SSL_R_CA_KEY_TOO_SMALL;
4437
0
    }
4438
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4439
0
        return SSL_R_CA_MD_TOO_WEAK;
4440
0
    return 1;
4441
0
}
4442
4443
/*
4444
 * Check security of a chain, if |sk| includes the end entity certificate then
4445
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4446
 * one to the peer. Return values: 1 if ok otherwise error code to use
4447
 */
4448
4449
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4450
                            X509 *x, int vfy)
4451
0
{
4452
0
    int rv, start_idx, i;
4453
4454
0
    if (x == NULL) {
4455
0
        x = sk_X509_value(sk, 0);
4456
0
        if (x == NULL)
4457
0
            return ERR_R_INTERNAL_ERROR;
4458
0
        start_idx = 1;
4459
0
    } else
4460
0
        start_idx = 0;
4461
4462
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4463
0
    if (rv != 1)
4464
0
        return rv;
4465
4466
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4467
0
        x = sk_X509_value(sk, i);
4468
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4469
0
        if (rv != 1)
4470
0
            return rv;
4471
0
    }
4472
0
    return 1;
4473
0
}
4474
4475
/*
4476
 * For TLS 1.2 servers check if we have a certificate which can be used
4477
 * with the signature algorithm "lu" and return index of certificate.
4478
 */
4479
4480
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4481
                                     const SIGALG_LOOKUP *lu)
4482
0
{
4483
0
    int sig_idx = lu->sig_idx;
4484
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4485
0
                                                        SSL_CONNECTION_GET_CTX(s));
4486
4487
    /* If not recognised or not supported by cipher mask it is not suitable */
4488
0
    if (clu == NULL
4489
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4490
0
            || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4491
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4492
0
        return -1;
4493
4494
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4495
0
    if (tls12_rpk_and_privkey(s, sig_idx))
4496
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4497
4498
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4499
0
}
4500
4501
/*
4502
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4503
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4504
 * the key.
4505
 * Returns true if the cert is usable and false otherwise.
4506
 */
4507
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4508
                             X509 *x, EVP_PKEY *pkey)
4509
0
{
4510
0
    const SIGALG_LOOKUP *lu;
4511
0
    int mdnid, pknid, supported;
4512
0
    size_t i;
4513
0
    const char *mdname = NULL;
4514
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4515
4516
    /*
4517
     * If the given EVP_PKEY cannot support signing with this digest,
4518
     * the answer is simply 'no'.
4519
     */
4520
0
    if (sig->hash != NID_undef)
4521
0
        mdname = OBJ_nid2sn(sig->hash);
4522
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4523
0
                                                    mdname,
4524
0
                                                    sctx->propq);
4525
0
    if (supported <= 0)
4526
0
        return 0;
4527
4528
    /*
4529
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4530
     * on the sigalg with which the certificate was signed (by its issuer).
4531
     */
4532
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4533
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4534
0
            return 0;
4535
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4536
0
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4537
0
                                    s->s3.tmp.peer_cert_sigalgs[i]);
4538
0
            if (lu == NULL)
4539
0
                continue;
4540
4541
            /*
4542
             * This does not differentiate between the
4543
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4544
             * have a chain here that lets us look at the key OID in the
4545
             * signing certificate.
4546
             */
4547
0
            if (mdnid == lu->hash && pknid == lu->sig)
4548
0
                return 1;
4549
0
        }
4550
0
        return 0;
4551
0
    }
4552
4553
    /*
4554
     * Without signat_algorithms_cert, any certificate for which we have
4555
     * a viable public key is permitted.
4556
     */
4557
0
    return 1;
4558
0
}
4559
4560
/*
4561
 * Returns true if |s| has a usable certificate configured for use
4562
 * with signature scheme |sig|.
4563
 * "Usable" includes a check for presence as well as applying
4564
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4565
 * Returns false if no usable certificate is found.
4566
 */
4567
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4568
0
{
4569
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4570
0
    if (idx == -1)
4571
0
        idx = sig->sig_idx;
4572
0
    if (!ssl_has_cert(s, idx))
4573
0
        return 0;
4574
4575
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4576
0
                             s->cert->pkeys[idx].privatekey);
4577
0
}
4578
4579
/*
4580
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4581
 * specified signature scheme |sig|, or false otherwise.
4582
 */
4583
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4584
                          EVP_PKEY *pkey)
4585
0
{
4586
0
    size_t idx;
4587
4588
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4589
0
        return 0;
4590
4591
    /* Check the key is consistent with the sig alg */
4592
0
    if ((int)idx != sig->sig_idx)
4593
0
        return 0;
4594
4595
0
    return check_cert_usable(s, sig, x, pkey);
4596
0
}
4597
4598
/*
4599
 * Find a signature scheme that works with the supplied certificate |x| and key
4600
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4601
 * available certs/keys to find one that works.
4602
 */
4603
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4604
                                         EVP_PKEY *pkey)
4605
0
{
4606
0
    const SIGALG_LOOKUP *lu = NULL;
4607
0
    size_t i;
4608
0
    int curve = -1;
4609
0
    EVP_PKEY *tmppkey;
4610
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4611
4612
    /* Look for a shared sigalgs matching possible certificates */
4613
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
4614
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4615
0
        lu = s->shared_sigalgs[i];
4616
0
        if (lu->hash == NID_sha1
4617
0
            || lu->hash == NID_sha224
4618
0
            || lu->sig == EVP_PKEY_DSA
4619
0
            || lu->sig == EVP_PKEY_RSA
4620
0
            || !tls_sigalg_compat(s, lu))
4621
0
            continue;
4622
4623
        /* Check that we have a cert, and signature_algorithms_cert */
4624
0
        if (!tls1_lookup_md(sctx, lu, NULL))
4625
0
            continue;
4626
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4627
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4628
0
            continue;
4629
4630
0
        tmppkey = (pkey != NULL) ? pkey
4631
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4632
4633
0
        if (lu->sig == EVP_PKEY_EC) {
4634
0
            if (curve == -1)
4635
0
                curve = ssl_get_EC_curve_nid(tmppkey);
4636
0
            if (lu->curve != NID_undef && curve != lu->curve)
4637
0
                continue;
4638
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4639
            /* validate that key is large enough for the signature algorithm */
4640
0
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4641
0
                continue;
4642
0
        }
4643
0
        break;
4644
0
    }
4645
4646
0
    if (i == s->shared_sigalgslen)
4647
0
        return NULL;
4648
4649
0
    return lu;
4650
0
}
4651
4652
/*
4653
 * Choose an appropriate signature algorithm based on available certificates
4654
 * Sets chosen certificate and signature algorithm.
4655
 *
4656
 * For servers if we fail to find a required certificate it is a fatal error,
4657
 * an appropriate error code is set and a TLS alert is sent.
4658
 *
4659
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4660
 * a fatal error: we will either try another certificate or not present one
4661
 * to the server. In this case no error is set.
4662
 */
4663
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4664
0
{
4665
0
    const SIGALG_LOOKUP *lu = NULL;
4666
0
    int sig_idx = -1;
4667
4668
0
    s->s3.tmp.cert = NULL;
4669
0
    s->s3.tmp.sigalg = NULL;
4670
4671
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
4672
0
        lu = find_sig_alg(s, NULL, NULL);
4673
0
        if (lu == NULL) {
4674
0
            if (!fatalerrs)
4675
0
                return 1;
4676
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4677
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4678
0
            return 0;
4679
0
        }
4680
0
    } else {
4681
        /* If ciphersuite doesn't require a cert nothing to do */
4682
0
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4683
0
            return 1;
4684
0
        if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
4685
0
                return 1;
4686
4687
0
        if (SSL_USE_SIGALGS(s)) {
4688
0
            size_t i;
4689
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
4690
0
                int curve = -1;
4691
0
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4692
4693
                /* For Suite B need to match signature algorithm to curve */
4694
0
                if (tls1_suiteb(s))
4695
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4696
0
                                                 .privatekey);
4697
4698
                /*
4699
                 * Find highest preference signature algorithm matching
4700
                 * cert type
4701
                 */
4702
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
4703
                    /* Check the sigalg version bounds */
4704
0
                    lu = s->shared_sigalgs[i];
4705
0
                    if (!tls_sigalg_compat(s, lu))
4706
0
                        continue;
4707
0
                    if (s->server) {
4708
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4709
0
                            continue;
4710
0
                    } else {
4711
0
                        int cc_idx = (int)(s->cert->key - s->cert->pkeys);
4712
4713
0
                        sig_idx = lu->sig_idx;
4714
0
                        if (cc_idx != sig_idx)
4715
0
                            continue;
4716
0
                    }
4717
                    /* Check that we have a cert, and sig_algs_cert */
4718
0
                    if (!has_usable_cert(s, lu, sig_idx))
4719
0
                        continue;
4720
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4721
                        /* validate that key is large enough for the signature algorithm */
4722
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4723
4724
0
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4725
0
                            continue;
4726
0
                    }
4727
0
                    if (curve == -1 || lu->curve == curve)
4728
0
                        break;
4729
0
                }
4730
0
#ifndef OPENSSL_NO_GOST
4731
                /*
4732
                 * Some Windows-based implementations do not send GOST algorithms indication
4733
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4734
                 * we have to assume GOST support.
4735
                 */
4736
0
                if (i == s->shared_sigalgslen
4737
0
                    && (s->s3.tmp.new_cipher->algorithm_auth
4738
0
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4739
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4740
0
                    if (!fatalerrs)
4741
0
                      return 1;
4742
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4743
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4744
0
                    return 0;
4745
0
                  } else {
4746
0
                    i = 0;
4747
0
                    sig_idx = lu->sig_idx;
4748
0
                  }
4749
0
                }
4750
0
#endif
4751
0
                if (i == s->shared_sigalgslen) {
4752
0
                    if (!fatalerrs)
4753
0
                        return 1;
4754
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4755
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4756
0
                    return 0;
4757
0
                }
4758
0
            } else {
4759
                /*
4760
                 * If we have no sigalg use defaults
4761
                 */
4762
0
                const uint16_t *sent_sigs;
4763
0
                size_t sent_sigslen;
4764
4765
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4766
0
                    if (!fatalerrs)
4767
0
                        return 1;
4768
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4769
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4770
0
                    return 0;
4771
0
                }
4772
4773
                /* Check signature matches a type we sent */
4774
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4775
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4776
0
                    if (lu->sigalg == *sent_sigs
4777
0
                            && has_usable_cert(s, lu, lu->sig_idx))
4778
0
                        break;
4779
0
                }
4780
0
                if (i == sent_sigslen) {
4781
0
                    if (!fatalerrs)
4782
0
                        return 1;
4783
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4784
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
4785
0
                    return 0;
4786
0
                }
4787
0
            }
4788
0
        } else {
4789
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4790
0
                if (!fatalerrs)
4791
0
                    return 1;
4792
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4793
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4794
0
                return 0;
4795
0
            }
4796
0
        }
4797
0
    }
4798
0
    if (sig_idx == -1)
4799
0
        sig_idx = lu->sig_idx;
4800
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4801
0
    s->cert->key = s->s3.tmp.cert;
4802
0
    s->s3.tmp.sigalg = lu;
4803
0
    return 1;
4804
0
}
4805
4806
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4807
0
{
4808
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4809
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4810
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4811
0
        return 0;
4812
0
    }
4813
4814
0
    ctx->ext.max_fragment_len_mode = mode;
4815
0
    return 1;
4816
0
}
4817
4818
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4819
0
{
4820
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4821
4822
0
    if (sc == NULL
4823
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4824
0
        return 0;
4825
4826
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4827
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4828
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4829
0
        return 0;
4830
0
    }
4831
4832
0
    sc->ext.max_fragment_len_mode = mode;
4833
0
    return 1;
4834
0
}
4835
4836
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4837
0
{
4838
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4839
0
        return TLSEXT_max_fragment_length_DISABLED;
4840
0
    return session->ext.max_fragment_len_mode;
4841
0
}
4842
4843
/*
4844
 * Helper functions for HMAC access with legacy support included.
4845
 */
4846
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4847
0
{
4848
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4849
0
    EVP_MAC *mac = NULL;
4850
4851
0
    if (ret == NULL)
4852
0
        return NULL;
4853
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4854
0
    if (ctx->ext.ticket_key_evp_cb == NULL
4855
0
            && ctx->ext.ticket_key_cb != NULL) {
4856
0
        if (!ssl_hmac_old_new(ret))
4857
0
            goto err;
4858
0
        return ret;
4859
0
    }
4860
0
#endif
4861
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4862
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4863
0
        goto err;
4864
0
    EVP_MAC_free(mac);
4865
0
    return ret;
4866
0
 err:
4867
0
    EVP_MAC_CTX_free(ret->ctx);
4868
0
    EVP_MAC_free(mac);
4869
0
    OPENSSL_free(ret);
4870
0
    return NULL;
4871
0
}
4872
4873
void ssl_hmac_free(SSL_HMAC *ctx)
4874
0
{
4875
0
    if (ctx != NULL) {
4876
0
        EVP_MAC_CTX_free(ctx->ctx);
4877
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4878
0
        ssl_hmac_old_free(ctx);
4879
0
#endif
4880
0
        OPENSSL_free(ctx);
4881
0
    }
4882
0
}
4883
4884
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4885
0
{
4886
0
    return ctx->ctx;
4887
0
}
4888
4889
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4890
0
{
4891
0
    OSSL_PARAM params[2], *p = params;
4892
4893
0
    if (ctx->ctx != NULL) {
4894
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4895
0
        *p = OSSL_PARAM_construct_end();
4896
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4897
0
            return 1;
4898
0
    }
4899
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4900
0
    if (ctx->old_ctx != NULL)
4901
0
        return ssl_hmac_old_init(ctx, key, len, md);
4902
0
#endif
4903
0
    return 0;
4904
0
}
4905
4906
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4907
0
{
4908
0
    if (ctx->ctx != NULL)
4909
0
        return EVP_MAC_update(ctx->ctx, data, len);
4910
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4911
0
    if (ctx->old_ctx != NULL)
4912
0
        return ssl_hmac_old_update(ctx, data, len);
4913
0
#endif
4914
0
    return 0;
4915
0
}
4916
4917
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4918
                   size_t max_size)
4919
0
{
4920
0
    if (ctx->ctx != NULL)
4921
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4922
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4923
0
    if (ctx->old_ctx != NULL)
4924
0
        return ssl_hmac_old_final(ctx, md, len);
4925
0
#endif
4926
0
    return 0;
4927
0
}
4928
4929
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4930
0
{
4931
0
    if (ctx->ctx != NULL)
4932
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4933
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4934
0
    if (ctx->old_ctx != NULL)
4935
0
        return ssl_hmac_old_size(ctx);
4936
0
#endif
4937
0
    return 0;
4938
0
}
4939
4940
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4941
0
{
4942
0
    char gname[OSSL_MAX_NAME_SIZE];
4943
4944
0
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4945
0
        return OBJ_txt2nid(gname);
4946
4947
0
    return NID_undef;
4948
0
}
4949
4950
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4951
                                     const unsigned char *enckey,
4952
                                     size_t enckeylen)
4953
0
{
4954
0
    if (EVP_PKEY_is_a(pkey, "DH")) {
4955
0
        int bits = EVP_PKEY_get_bits(pkey);
4956
4957
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4958
            /* the encoded key must be padded to the length of the p */
4959
0
            return 0;
4960
0
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4961
0
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4962
0
            || enckey[0] != 0x04)
4963
0
            return 0;
4964
0
    }
4965
4966
0
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4967
0
}