Coverage Report

Created: 2025-08-26 06:27

/src/tpm2/CpriECC.c
Line
Count
Source (jump to first uncovered line)
1
// This file was extracted from the TCG Published
2
// Trusted Platform Module Library
3
// Part 4: Supporting Routines
4
// Family "2.0"
5
// Level 00 Revision 01.16
6
// October 30, 2014
7
8
#include <string.h>
9
10
#include   "OsslCryptoEngine.h"
11
12
#ifdef TPM_ALG_ECC
13
#include   "CpriDataEcc.h"
14
#include   "CpriDataEcc.c"
15
//
16
//
17
//      Functions
18
//
19
//      _cpri__EccStartup()
20
//
21
//     This function is called at TPM Startup to initialize the crypto units.
22
//     In this implementation, no initialization is performed at startup but a future version may initialize the self-
23
//     test functions here.
24
//
25
LIB_EXPORT BOOL
26
_cpri__EccStartup(
27
    void
28
    )
29
759
{
30
759
    return TRUE;
31
759
}
32
//
33
//
34
//      _cpri__GetCurveIdByIndex()
35
//
36
//     This function returns the number of the i-th implemented curve. The normal use would be to call this
37
//     function with i starting at 0. When the i is greater than or equal to the number of implemented curves,
38
//     TPM_ECC_NONE is returned.
39
//
40
LIB_EXPORT TPM_ECC_CURVE
41
_cpri__GetCurveIdByIndex(
42
    UINT16                i
43
    )
44
0
{
45
0
    if(i >= ECC_CURVE_COUNT)
46
0
        return TPM_ECC_NONE;
47
0
    return eccCurves[i].curveId;
48
0
}
49
LIB_EXPORT UINT32
50
_cpri__EccGetCurveCount(
51
    void
52
    )
53
0
{
54
0
    return ECC_CURVE_COUNT;
55
0
}
56
//
57
//
58
//      _cpri__EccGetParametersByCurveId()
59
//
60
//     This function returns a pointer to the curve data that is associated with the indicated curveId. If there is no
61
//     curve with the indicated ID, the function returns NULL.
62
//
63
//
64
//
65
//
66
//     Return Value                      Meaning
67
//
68
//     NULL                              curve with the      indicated   TPM_ECC_CURVE    value   is   not
69
//                                       implemented
70
//     non-NULL                          pointer to the curve data
71
//
72
LIB_EXPORT const ECC_CURVE *
73
_cpri__EccGetParametersByCurveId(
74
   TPM_ECC_CURVE       curveId               // IN: the curveID
75
   )
76
38
{
77
38
   int          i;
78
38
   for(i = 0; i < ECC_CURVE_COUNT; i++)
79
38
   {
80
38
       if(eccCurves[i].curveId == curveId)
81
38
           return &eccCurves[i];
82
38
   }
83
0
   FAIL(FATAL_ERROR_INTERNAL);
84
85
0
   return NULL; // Never reached.
86
38
}
87
static const ECC_CURVE_DATA *
88
GetCurveData(
89
   TPM_ECC_CURVE       curveId               // IN: the curveID
90
   )
91
10
{
92
10
   const ECC_CURVE     *curve = _cpri__EccGetParametersByCurveId(curveId);
93
10
   return curve->curveData;
94
10
}
95
//
96
//
97
//      Point2B()
98
//
99
//     This function makes a TPMS_ECC_POINT from a BIGNUM EC_POINT.
100
//
101
static BOOL
102
Point2B(
103
   EC_GROUP           *group,                //   IN: group for the point
104
   TPMS_ECC_POINT     *p,                    //   OUT: receives the converted point
105
   EC_POINT           *ecP,                  //   IN: the point to convert
106
   INT16               size,                 //   IN: size of the coordinates
107
   BN_CTX             *context               //   IN: working context
108
   )
109
2
{
110
2
   BIGNUM             *bnX;
111
2
   BIGNUM             *bnY;
112
2
   BN_CTX_start(context);
113
2
   bnX = BN_CTX_get(context);
114
2
   bnY = BN_CTX_get(context);
115
2
   if(        bnY == NULL
116
        // Get the coordinate values
117
2
       || EC_POINT_get_affine_coordinates_GFp(group, ecP, bnX, bnY, context) != 1
118
       // Convert x
119
2
       || (!BnTo2B(&p->x.b, bnX, size))
120
       // Convert y
121
2
       || (!BnTo2B(&p->y.b, bnY, size))
122
2
      )
123
0
            FAIL(FATAL_ERROR_INTERNAL);
124
2
   BN_CTX_end(context);
125
2
   return TRUE;
126
2
}
127
//
128
//
129
//       EccCurveInit()
130
//
131
//      This function initializes the OpenSSL() group definition structure
132
//      This function is only used within this file.
133
//      It is a fatal error if groupContext is not provided.
134
//
135
//      Return Value                       Meaning
136
//
137
//      NULL                               the TPM_ECC_CURVE is not valid
138
//      non-NULL                           points to a structure in groupContext static EC_GROUP *
139
//
140
static EC_GROUP *
141
EccCurveInit(
142
    TPM_ECC_CURVE         curveId,             // IN: the ID of the curve
143
    BN_CTX               *groupContext         // IN: the context in which the group is to be
144
                                               //     created
145
    )
146
3
{
147
3
    const ECC_CURVE_DATA            *curveData = GetCurveData(curveId);
148
3
    EC_GROUP                        *group = NULL;
149
3
    EC_POINT                        *P = NULL;
150
3
    BN_CTX                          *context;
151
3
    BIGNUM                          *bnP;
152
3
    BIGNUM                          *bnA;
153
3
    BIGNUM                          *bnB;
154
3
    BIGNUM                          *bnX;
155
3
    BIGNUM                          *bnY;
156
3
    BIGNUM                          *bnN;
157
3
    BIGNUM                          *bnH;
158
3
    int                              ok = FALSE;
159
    // Context must be provided and curve selector must be valid
160
3
    pAssert(groupContext != NULL && curveData != NULL);
161
3
    context = BN_CTX_new();
162
3
    if(context == NULL)
163
0
        FAIL(FATAL_ERROR_ALLOCATION);
164
3
    BN_CTX_start(context);
165
3
    bnP = BN_CTX_get(context);
166
3
    bnA = BN_CTX_get(context);
167
3
    bnB = BN_CTX_get(context);
168
3
    bnX = BN_CTX_get(context);
169
3
    bnY = BN_CTX_get(context);
170
3
    bnN = BN_CTX_get(context);
171
3
    bnH = BN_CTX_get(context);
172
3
    if (bnH == NULL)
173
0
        goto Cleanup;
174
    // Convert the number formats
175
3
    BnFrom2B(bnP,      curveData->p);
176
3
    BnFrom2B(bnA,      curveData->a);
177
3
    BnFrom2B(bnB,      curveData->b);
178
3
    BnFrom2B(bnX,      curveData->x);
179
3
    BnFrom2B(bnY,      curveData->y);
180
3
    BnFrom2B(bnN,      curveData->n);
181
3
    BnFrom2B(bnH,      curveData->h);
182
   // initialize EC group, associate a generator point and initialize the point
183
   // from the parameter data
184
3
   ok = (   (group = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, groupContext)) != NULL
185
3
         && (P = EC_POINT_new(group)) != NULL
186
3
         && EC_POINT_set_affine_coordinates_GFp(group, P, bnX, bnY, groupContext)
187
3
         && EC_GROUP_set_generator(group, P, bnN, bnH)
188
3
        );
189
3
Cleanup:
190
3
   if (!ok && group != NULL)
191
0
   {
192
0
       EC_GROUP_free(group);
193
0
       group = NULL;
194
0
   }
195
3
   if(P != NULL)
196
3
       EC_POINT_free(P);
197
3
   BN_CTX_end(context);
198
3
   BN_CTX_free(context);
199
3
   return group;
200
3
}
201
//
202
//
203
//       PointFrom2B()
204
//
205
//      This function sets the coordinates of an existing BN Point from a TPMS_ECC_POINT.
206
//
207
static EC_POINT *
208
PointFrom2B(
209
   EC_GROUP           *group,           //   IN:   the group for the point
210
   EC_POINT           *ecP,             //   IN:   an existing BN point in the group
211
   TPMS_ECC_POINT     *p,               //   IN:   the 2B coordinates of the point
212
   BN_CTX             *context          //   IN:   the BIGNUM context
213
   )
214
0
{
215
0
   BIGNUM             *bnX;
216
0
   BIGNUM             *bnY;
217
   // If the point is not allocated then just return a NULL
218
0
   if(ecP == NULL)
219
0
       return NULL;
220
0
   BN_CTX_start(context);
221
0
   bnX = BN_CTX_get(context);
222
0
   bnY = BN_CTX_get(context);
223
0
   if( // Set the coordinates of the point
224
0
         bnY == NULL
225
0
      || BN_bin2bn(p->x.t.buffer, p->x.t.size, bnX) == NULL
226
0
      || BN_bin2bn(p->y.t.buffer, p->y.t.size, bnY) == NULL
227
0
      )
228
0
      FAIL(FATAL_ERROR_INTERNAL);
229
0
   if(   !EC_POINT_set_affine_coordinates_GFp(group, ecP, bnX, bnY, context)
230
0
      || EC_POINT_is_on_curve(group, ecP, context) <= 0
231
0
      )
232
0
      ecP = NULL; // Point is not on curve
233
0
   BN_CTX_end(context);
234
0
   return ecP;
235
0
}
236
//
237
//
238
//       EccInitPoint2B()
239
//
240
//      This function allocates a point in the provided group and initializes it with the values in a
241
//      TPMS_ECC_POINT.
242
//
243
static EC_POINT *
244
EccInitPoint2B(
245
   EC_GROUP           *group,           // IN: group for the point
246
   TPMS_ECC_POINT     *p,               // IN: the coordinates for the point
247
    BN_CTX              *context                // IN: the BIGNUM context
248
    )
249
0
{
250
0
    EC_POINT            *ecP;
251
0
    BN_CTX_start(context);
252
0
    ecP = EC_POINT_new(group);
253
0
    if(PointFrom2B(group, ecP, p, context) == NULL)
254
0
    {
255
0
        EC_POINT_free(ecP);
256
0
        ecP = NULL;
257
0
    }
258
0
    BN_CTX_end(context);
259
0
    return ecP;
260
0
}
261
//
262
//
263
//       PointMul()
264
//
265
//      This function does a point multiply and checks for the result being the point at infinity. Q = ([A]G + [B]P)
266
//
267
//      Return Value                      Meaning
268
//
269
//      CRYPT_NO_RESULT                   point is at infinity
270
//      CRYPT_SUCCESS                     point not at infinity
271
//
272
static CRYPT_RESULT
273
PointMul(
274
    EC_GROUP            *group,                 //      IN: group curve
275
    EC_POINT            *ecpQ,                  //      OUT: result
276
    BIGNUM              *bnA,                   //      IN: scalar for [A]G
277
    EC_POINT            *ecpP,                  //      IN: point for [B]P
278
    BIGNUM              *bnB,                   //      IN: scalar for [B]P
279
    BN_CTX              *context                //      IN: working context
280
    )
281
3
{
282
3
       if(EC_POINT_mul(group, ecpQ, bnA, ecpP, bnB, context) != 1)
283
0
            FAIL(FATAL_ERROR_INTERNAL);
284
3
        if(EC_POINT_is_at_infinity(group, ecpQ))
285
1
            return CRYPT_NO_RESULT;
286
2
        return CRYPT_SUCCESS;
287
3
}
288
//
289
//
290
//       GetRandomPrivate()
291
//
292
//      This function gets a random value (d) to use as a private ECC key and then qualifies the key so that it is
293
//      between 0 < d < n.
294
//      It is a fatal error if dOut or pIn is not provided or if the size of pIn is larger than MAX_ECC_KEY_BYTES
295
//      (the largest buffer size of a TPM2B_ECC_PARAMETER)
296
//
297
static void
298
GetRandomPrivate(
299
    TPM2B_ECC_PARAMETER            *dOut,                    // OUT: the qualified random value
300
    const TPM2B                    *pIn                      // IN: the maximum value for the key
301
    )
302
0
{
303
0
    int             i;
304
0
    BYTE           *pb;
305
0
    pAssert(pIn != NULL && dOut != NULL && pIn->size <= MAX_ECC_KEY_BYTES);
306
    // Set the size of the output
307
0
    dOut->t.size = pIn->size;
308
    // Get some random bits
309
0
    while(TRUE)
310
0
    {
311
0
        _cpri__GenerateRandom(dOut->t.size, dOut->t.buffer);
312
        // See if the d < n
313
0
        if(memcmp(dOut->t.buffer, pIn->buffer, pIn->size) < 0)
314
0
        {
315
            // dOut < n so make sure that 0 < dOut
316
0
            for(pb = dOut->t.buffer, i = dOut->t.size; i > 0; i--)
317
0
            {
318
0
                if(*pb++ != 0)
319
0
                    return;
320
0
            }
321
0
        }
322
0
    }
323
0
}
324
//
325
//
326
//       _cpri__EccPointMultiply
327
//
328
//      This function computes 'R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are points on
329
//      the specified curve and G is the default generator of the curve.
330
//      The xOut and yOut parameters are optional and may be set to NULL if not used.
331
//      It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be provided. If dIn and
332
//      QIn are specified but uIn is not provided, then R = [dIn]QIn.
333
//      If the multiply produces the point at infinity, the CRYPT_NO_RESULT is returned.
334
//      The sizes of xOut and yOut' will be set to be the size of the degree of the curve
335
//      It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is unspecified.
336
//
337
//
338
//
339
//
340
//      Return Value                    Meaning
341
//
342
//      CRYPT_SUCCESS                   point multiplication succeeded
343
//      CRYPT_POINT                     the point Qin is not on the curve
344
//      CRYPT_NO_RESULT                 the product point is at infinity
345
//
346
LIB_EXPORT CRYPT_RESULT
347
_cpri__EccPointMultiply(
348
   TPMS_ECC_POINT                *Rout,                  //   OUT: the product point R
349
   TPM_ECC_CURVE                  curveId,               //   IN: the curve to use
350
   TPM2B_ECC_PARAMETER           *dIn,                   //   IN: value to multiply against the
351
                                                         //       curve generator
352
   TPMS_ECC_POINT                *Qin,                   //   IN: point Q
353
   TPM2B_ECC_PARAMETER           *uIn                    //   IN: scalar value for the multiplier
354
                                                         //       of Q
355
   )
356
3
{
357
3
   BN_CTX                    *context;
358
3
   BIGNUM                    *bnD;
359
3
   BIGNUM                    *bnU;
360
3
   EC_GROUP                  *group;
361
3
   EC_POINT                  *R = NULL;
362
3
   EC_POINT                  *Q = NULL;
363
3
   CRYPT_RESULT               retVal = CRYPT_SUCCESS;
364
   // Validate that the required parameters are provided.
365
3
   pAssert((dIn != NULL || uIn != NULL) && (Qin != NULL || dIn != NULL));
366
   // If a point is provided for the multiply, make sure that it is on the curve
367
3
   if(Qin != NULL && !_cpri__EccIsPointOnCurve(curveId, Qin))
368
0
       return CRYPT_POINT;
369
3
   context = BN_CTX_new();
370
3
   if(context == NULL)
371
0
       FAIL(FATAL_ERROR_ALLOCATION);
372
3
   BN_CTX_start(context);
373
3
   bnU = BN_CTX_get(context);
374
3
   bnD = BN_CTX_get(context);
375
3
   group = EccCurveInit(curveId, context);
376
   // There should be no path for getting a bad curve ID into this function.
377
3
   pAssert(group != NULL);
378
   // check allocations should have worked and allocate R
379
3
   if(   bnD == NULL
380
3
      || (R = EC_POINT_new(group)) == NULL)
381
0
       FAIL(FATAL_ERROR_ALLOCATION);
382
   // If Qin is present, create the point
383
3
   if(Qin != NULL)
384
0
   {
385
       // Assume the size variables do not overflow. This should not happen in
386
       // the contexts in which this function will be called.
387
0
       assert2Bsize(Qin->x.t);
388
0
       assert2Bsize(Qin->x.t);
389
0
       if (!(Q = EccInitPoint2B(group, Qin, context)))
390
0
       {
391
0
          retVal = CRYPT_POINT;
392
0
          goto Cleanup;
393
0
       }
394
0
   }
395
3
   if(dIn != NULL)
396
3
   {
397
       // Assume the size variables do not overflow, which should not happen in
398
       // the contexts that this function will be called.
399
3
       assert2Bsize(dIn->t);
400
3
        BnFrom2B(bnD, &dIn->b);
401
3
    }
402
0
    else
403
0
        bnD = NULL;
404
    // If uIn is specified, initialize its BIGNUM
405
3
    if(uIn != NULL)
406
0
    {
407
        // Assume the size variables do not overflow, which should not happen in
408
        // the contexts that this function will be called.
409
0
        assert2Bsize(uIn->t);
410
0
        BnFrom2B(bnU, &uIn->b);
411
0
    }
412
    // If uIn is not specified but Q is, then we are going to
413
    // do R = [d]Q
414
3
    else if(Qin != NULL)
415
0
    {
416
0
        bnU = bnD;
417
0
        bnD = NULL;
418
0
    }
419
    // If neither Q nor u is specified, then null this pointer
420
3
    else
421
3
        bnU = NULL;
422
    // Use the generator of the curve
423
3
    if((retVal = PointMul(group, R, bnD, Q, bnU, context)) == CRYPT_SUCCESS)
424
2
        Point2B(group, Rout, R, (INT16) ((EC_GROUP_get_degree(group)+7)/8), context);
425
3
Cleanup:
426
3
    if (Q)
427
0
        EC_POINT_free(Q);
428
3
    if(R)
429
3
        EC_POINT_free(R);
430
3
    if(group)
431
3
        EC_GROUP_free(group);
432
3
    BN_CTX_end(context);
433
3
    BN_CTX_free(context);
434
3
    return retVal;
435
3
}
436
#if defined TPM_ALG_ECDAA || defined TPM_ALG_SM2 //%
437
//
438
//
439
//       ClearPoint2B()
440
//
441
//      Initialize the size values of a point
442
//
443
static void
444
ClearPoint2B(
445
    TPMS_ECC_POINT       *p                 // IN: the point
446
    )
447
0
{
448
0
    if(p != NULL) {
449
0
        p->x.t.size = 0;
450
0
        p->y.t.size = 0;
451
0
    }
452
0
}
453
//
454
//
455
//       _cpri__EccCommitCompute()
456
//
457
//      This function performs the point multiply operations required by TPM2_Commit().
458
//      If B or M is provided, they must be on the curve defined by curveId. This routine does not check that they
459
//      are on the curve and results are unpredictable if they are not.
460
//
461
//
462
//
463
//      It is a fatal error if r or d is NULL. If B is not NULL, then it is a fatal error if K and L are both NULL. If M is
464
//      not NULL, then it is a fatal error if E is NULL.
465
//
466
//      Return Value                       Meaning
467
//
468
//      CRYPT_SUCCESS                      computations completed normally
469
//      CRYPT_NO_RESULT                    if K, L or E was computed to be the point at infinity
470
//      CRYPT_CANCEL                       a cancel indication was asserted during this function
471
//
472
LIB_EXPORT CRYPT_RESULT
473
_cpri__EccCommitCompute(
474
    TPMS_ECC_POINT                  *K,                   //   OUT: [d]B or [r]Q
475
    TPMS_ECC_POINT                  *L,                   //   OUT: [r]B
476
    TPMS_ECC_POINT                  *E,                   //   OUT: [r]M
477
    TPM_ECC_CURVE                    curveId,             //   IN: the curve for the computations
478
    TPMS_ECC_POINT                  *M,                   //   IN: M (optional)
479
    TPMS_ECC_POINT                  *B,                   //   IN: B (optional)
480
    TPM2B_ECC_PARAMETER             *d,                   //   IN: d (required)
481
    TPM2B_ECC_PARAMETER             *r                    //   IN: the computed r value (required)
482
    )
483
0
{
484
0
    BN_CTX                    *context;
485
0
    BIGNUM                    *bnY, *bnR, *bnD;
486
0
    EC_GROUP                  *group;
487
0
    EC_POINT                  *pK = NULL, *pL = NULL, *pE = NULL, *pM = NULL, *pB = NULL;
488
0
    UINT16                     keySizeInBytes;
489
0
    CRYPT_RESULT               retVal = CRYPT_SUCCESS;
490
    // Validate that the required parameters are provided.
491
    // Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do
492
    // E := [r]Q if both M and B are NULL.
493
494
0
    pAssert((r && (K || !B) && (L || !B)) || (E || (!M && B)));
495
0
    context = BN_CTX_new();
496
0
    if(context == NULL)
497
0
        FAIL(FATAL_ERROR_ALLOCATION);
498
0
    BN_CTX_start(context);
499
0
    bnR = BN_CTX_get(context);
500
0
    bnD = BN_CTX_get(context);
501
0
    bnY = BN_CTX_get(context);
502
0
    if(bnY == NULL)
503
0
        FAIL(FATAL_ERROR_ALLOCATION);
504
    // Initialize the output points in case they are not computed
505
0
    ClearPoint2B(K);
506
0
    ClearPoint2B(L);
507
0
    ClearPoint2B(E);
508
0
    if((group = EccCurveInit(curveId, context)) == NULL)
509
0
    {
510
0
        retVal = CRYPT_PARAMETER;
511
0
        goto Cleanup2;
512
0
    }
513
0
    keySizeInBytes = (UINT16) ((EC_GROUP_get_degree(group)+7)/8);
514
    // Size of the r parameter may not be zero
515
0
    pAssert((int) r->t.size > 0);
516
    // Convert scalars to BIGNUM
517
0
    BnFrom2B(bnR, &r->b);
518
   // If B is provided, compute K=[d]B and L=[r]B
519
0
   if(B != NULL)
520
0
   {
521
       // Size of the d parameter may not be zero
522
0
       pAssert((int) d->t.size > 0);
523
0
       BnFrom2B(bnD, &d->b);
524
525
       // Allocate the points to receive the value
526
0
       if(    (pK = EC_POINT_new(group)) == NULL
527
0
           || (pL = EC_POINT_new(group)) == NULL)
528
0
       FAIL(FATAL_ERROR_ALLOCATION);
529
       // need to compute K = [d]B
530
       // Allocate and initialize BIGNUM version of B
531
0
       if (!(pB = EccInitPoint2B(group, B, context)))
532
0
       {
533
0
            retVal = CRYPT_POINT;
534
0
            goto Cleanup;
535
0
       }
536
        // do the math for K = [d]B
537
0
        if((retVal = PointMul(group, pK, NULL, pB, bnD, context)) != CRYPT_SUCCESS)
538
0
            goto Cleanup;
539
        // Convert BN K to TPM2B K
540
0
        Point2B(group, K, pK, (INT16)keySizeInBytes, context);
541
        // compute L= [r]B after checking for cancel
542
0
        if(_plat__IsCanceled())
543
0
        {
544
0
            retVal = CRYPT_CANCEL;
545
0
            goto Cleanup;
546
0
        }
547
        // compute L = [r]B
548
0
        if((retVal = PointMul(group, pL, NULL, pB, bnR, context)) != CRYPT_SUCCESS)
549
0
            goto Cleanup;
550
        // Convert BN L to TPM2B L
551
0
        Point2B(group, L, pL, (INT16)keySizeInBytes, context);
552
0
   }
553
0
   if(M != NULL || B == NULL)
554
0
   {
555
       // if this is the third point multiply, check for cancel first
556
0
       if(B != NULL && _plat__IsCanceled())
557
0
       {
558
0
           retVal = CRYPT_CANCEL;
559
0
           goto Cleanup;
560
0
       }
561
        // Allocate E
562
0
        if((pE = EC_POINT_new(group)) == NULL)
563
0
            FAIL(FATAL_ERROR_ALLOCATION);
564
        // Create BIGNUM version of M unless M is NULL
565
0
        if(M != NULL)
566
0
        {
567
             // M provided so initialize a BIGNUM M and compute E = [r]M
568
0
             if (!(pM = EccInitPoint2B(group, M, context)))
569
0
             {
570
0
                 retVal = CRYPT_POINT;
571
0
                 goto Cleanup;
572
0
             }
573
0
             retVal = PointMul(group, pE, NULL, pM, bnR, context);
574
0
        }
575
0
        else
576
             // compute E = [r]G (this is only done if M and B are both NULL
577
0
             retVal = PointMul(group, pE, bnR, NULL, NULL, context);
578
0
        if(retVal == CRYPT_SUCCESS)
579
            // Convert E to 2B format
580
0
            Point2B(group, E, pE, (INT16)keySizeInBytes, context);
581
0
   }
582
0
Cleanup:
583
0
   EC_GROUP_free(group);
584
0
   if(pK != NULL) EC_POINT_free(pK);
585
0
   if(pL != NULL) EC_POINT_free(pL);
586
0
   if(pE != NULL) EC_POINT_free(pE);
587
0
   if(pM != NULL) EC_POINT_free(pM);
588
0
   if(pB != NULL) EC_POINT_free(pB);
589
0
Cleanup2:
590
0
   BN_CTX_end(context);
591
0
   BN_CTX_free(context);
592
0
   return retVal;
593
0
}
594
#endif //%
595
//
596
//
597
//       _cpri__EccIsPointOnCurve()
598
//
599
//      This function is used to test if a point is on a defined curve. It does this by checking that y^2 mod p = x^3
600
//      + a*x + b mod p
601
//      It is a fatal error if Q is not specified (is NULL).
602
//
603
//      Return Value                        Meaning
604
//
605
//      TRUE                                point is on curve
606
//      FALSE                               point is not on curve or curve is not supported
607
//
608
LIB_EXPORT BOOL
609
_cpri__EccIsPointOnCurve(
610
    TPM_ECC_CURVE          curveId,             // IN: the curve selector
611
    TPMS_ECC_POINT        *Q                    // IN: the point.
612
    )
613
7
{
614
7
    BN_CTX                           *context;
615
7
    BIGNUM                           *bnX;
616
7
    BIGNUM                           *bnY;
617
7
    BIGNUM                           *bnA;
618
7
    BIGNUM                           *bnB;
619
7
    BIGNUM                           *bnP;
620
7
    BIGNUM                           *bn3;
621
7
    const ECC_CURVE_DATA             *curveData = GetCurveData(curveId);
622
7
    BOOL                              retVal;
623
7
    pAssert(Q != NULL && curveData != NULL);
624
7
    if((context = BN_CTX_new()) == NULL)
625
0
        FAIL(FATAL_ERROR_ALLOCATION);
626
7
    BN_CTX_start(context);
627
7
    bnX = BN_CTX_get(context);
628
7
    bnY = BN_CTX_get(context);
629
7
    bnA = BN_CTX_get(context);
630
7
    bnB = BN_CTX_get(context);
631
7
    bn3 = BN_CTX_get(context);
632
7
    bnP = BN_CTX_get(context);
633
7
    if(bnP == NULL)
634
0
        FAIL(FATAL_ERROR_ALLOCATION);
635
    // Convert values
636
7
    if (    !BN_bin2bn(Q->x.t.buffer, Q->x.t.size, bnX)
637
7
         || !BN_bin2bn(Q->y.t.buffer, Q->y.t.size, bnY)
638
7
         || !BN_bin2bn(curveData->p->buffer, curveData->p->size, bnP)
639
7
         || !BN_bin2bn(curveData->a->buffer, curveData->a->size, bnA)
640
7
         || !BN_set_word(bn3, 3)
641
7
         || !BN_bin2bn(curveData->b->buffer, curveData->b->size, bnB)
642
7
       )
643
0
         FAIL(FATAL_ERROR_INTERNAL);
644
    // The following sequence is probably not optimal but it seems to be correct.
645
    // compute x^3 + a*x + b mod p
646
            // first, compute a*x mod p
647
7
    if(   !BN_mod_mul(bnA, bnA, bnX, bnP, context)
648
//
649
              // next, compute a*x + b mod p
650
7
         || !BN_mod_add(bnA, bnA, bnB, bnP, context)
651
              // next, compute X^3 mod p
652
7
         || !BN_mod_exp(bnX, bnX, bn3, bnP, context)
653
              // finally, compute x^3 + a*x + b mod p
654
7
         || !BN_mod_add(bnX, bnX, bnA, bnP, context)
655
              // then compute y^2
656
7
         || !BN_mod_mul(bnY, bnY, bnY, bnP, context)
657
7
        )
658
0
          FAIL(FATAL_ERROR_INTERNAL);
659
7
    retVal = BN_cmp(bnX, bnY) == 0;
660
7
    BN_CTX_end(context);
661
7
    BN_CTX_free(context);
662
7
    return retVal;
663
7
}
664
//
665
//
666
//       _cpri__GenerateKeyEcc()
667
//
668
//      This function generates an ECC key pair based on the input parameters. This routine uses KDFa() to
669
//      produce candidate numbers. The method is according to FIPS 186-3, section B.4.1 "GKey() Pair
670
//      Generation Using Extra Random Bits." According to the method in FIPS 186-3, the resulting private value
671
//      d should be 1 <= d < n where n is the order of the base point. In this implementation, the range of the
672
//      private value is further restricted to be 2^(nLen/2) <= d < n where nLen is the order of n.
673
//
674
//      EXAMPLE:         If the curve is NIST-P256, then nLen is 256 bits and d will need to be between 2^128 <= d < n
675
//
676
//      It is a fatal error if Qout, dOut, or seed is not provided (is NULL).
677
//
678
//      Return Value                         Meaning
679
//
680
//      CRYPT_PARAMETER                      the hash algorithm is not supported
681
//
682
LIB_EXPORT CRYPT_RESULT
683
_cpri__GenerateKeyEcc(
684
    TPMS_ECC_POINT                    *Qout,                  //   OUT: the public point
685
    TPM2B_ECC_PARAMETER               *dOut,                  //   OUT: the private scalar
686
    TPM_ECC_CURVE                      curveId,               //   IN: the curve identifier
687
    TPM_ALG_ID                         hashAlg,               //   IN: hash algorithm to use in the key
688
                                                              //       generation process
689
    TPM2B                             *seed,                  //   IN: the seed to use
690
    const char                        *label,                 //   IN: A label for the generation
691
                                                              //       process.
692
    TPM2B                             *extra,                 //   IN: Party 1 data for the KDF
693
    UINT32                            *counter                //   IN/OUT: Counter value to allow KDF
694
                                                              //       iteration to be propagated across
695
                                                              //       multiple functions
696
    )
697
0
{
698
0
    const ECC_CURVE_DATA              *curveData = GetCurveData(curveId);
699
0
    INT16                              keySizeInBytes;
700
0
    UINT32                             count = 0;
701
0
    CRYPT_RESULT                       retVal;
702
0
    UINT16                             hLen = _cpri__GetDigestSize(hashAlg);
703
0
    BIGNUM                            *bnNm1;          // Order of the curve minus one
704
0
    BIGNUM                            *bnD;            // the private scalar
705
0
    BN_CTX                            *context;        // the context for the BIGNUM values
706
0
    BYTE                               withExtra[MAX_ECC_KEY_BYTES + 8]; // trial key with
707
                                                                           //extra bits
708
0
    TPM2B_4_BYTE_VALUE                 marshaledCounter = {.t = {4}};
709
0
    UINT32                             totalBits;
710
    // Validate parameters (these are fatal)
711
0
   pAssert(     seed != NULL && dOut != NULL && Qout != NULL && curveData != NULL);
712
   // Non-fatal parameter checks.
713
0
   if(hLen <= 0)
714
0
       return CRYPT_PARAMETER;
715
   // allocate the local BN values
716
0
   context = BN_CTX_new();
717
0
   if(context == NULL)
718
0
       FAIL(FATAL_ERROR_ALLOCATION);
719
0
   BN_CTX_start(context);
720
0
   bnNm1 = BN_CTX_get(context);
721
0
   bnD = BN_CTX_get(context);
722
   // The size of the input scalars is limited by the size of the size of a
723
   // TPM2B_ECC_PARAMETER. Make sure that it is not irrational.
724
0
   pAssert((int) curveData->n->size <= MAX_ECC_KEY_BYTES);
725
0
   if(   bnD == NULL
726
0
      || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnNm1) == NULL
727
0
      || (keySizeInBytes = (INT16) BN_num_bytes(bnNm1)) > MAX_ECC_KEY_BYTES)
728
0
       FAIL(FATAL_ERROR_INTERNAL);
729
   // get the total number of bits
730
0
   totalBits = BN_num_bits(bnNm1) + 64;
731
   // Reduce bnNm1 from 'n' to 'n' - 1
732
0
   BN_sub_word(bnNm1, 1);
733
   // Initialize the count value
734
0
   if(counter != NULL)
735
0
       count = *counter;
736
0
   if(count == 0)
737
0
       count = 1;
738
   // Start search for key (should be quick)
739
0
   for(; count != 0; count++)
740
0
   {
741
0
        UINT32_TO_BYTE_ARRAY(count, marshaledCounter.t.buffer);
742
0
        _cpri__KDFa(hashAlg, seed, label, extra, &marshaledCounter.b,
743
0
                    totalBits, withExtra, NULL, FALSE);
744
        // Convert the result and modular reduce
745
        // Assume the size variables do not overflow, which should not happen in
746
        // the contexts that this function will be called.
747
0
        pAssert(keySizeInBytes <= MAX_ECC_KEY_BYTES);
748
0
        if (    BN_bin2bn(withExtra, keySizeInBytes+8, bnD) == NULL
749
0
             || BN_mod(bnD, bnD, bnNm1, context) != 1)
750
0
             FAIL(FATAL_ERROR_INTERNAL);
751
        // Add one to get 0 < d < n
752
0
        BN_add_word(bnD, 1);
753
0
        if(BnTo2B(&dOut->b, bnD, keySizeInBytes) != 1)
754
0
                FAIL(FATAL_ERROR_INTERNAL);
755
        // Do the point multiply to create the public portion of the key. If
756
        // the multiply generates the point at infinity (unlikely), do another
757
        // iteration.
758
0
        if(    (retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL))
759
0
            != CRYPT_NO_RESULT)
760
0
            break;
761
0
   }
762
0
   if(count == 0) // if counter wrapped, then the TPM should go into failure mode
763
0
       FAIL(FATAL_ERROR_INTERNAL);
764
   // Free up allocated BN values
765
0
   BN_CTX_end(context);
766
0
   BN_CTX_free(context);
767
0
   if(counter != NULL)
768
0
       *counter = count;
769
0
   return retVal;
770
0
}
771
//
772
//
773
//       _cpri__GetEphemeralEcc()
774
//
775
//      This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part of the
776
//      key will be discarded
777
//
778
LIB_EXPORT CRYPT_RESULT
779
_cpri__GetEphemeralEcc(
780
   TPMS_ECC_POINT                *Qout,            // OUT: the public point
781
   TPM2B_ECC_PARAMETER           *dOut,            // OUT: the private scalar
782
   TPM_ECC_CURVE                  curveId          // IN: the curve for the key
783
   )
784
0
{
785
0
   CRYPT_RESULT                   retVal;
786
0
   const ECC_CURVE_DATA          *curveData = GetCurveData(curveId);
787
0
   pAssert(curveData != NULL);
788
   // Keep getting random values until one is found that doesn't create a point
789
   // at infinity. This will never, ever, ever, ever, ever, happen but if it does
790
   // we have to get a next random value.
791
0
   while(TRUE)
792
0
   {
793
0
       GetRandomPrivate(dOut, curveData->p);
794
        // _cpri__EccPointMultiply does not return CRYPT_ECC_POINT if no point is
795
        // provided. CRYPT_PARAMTER should not be returned because the curve ID
796
        // has to be supported. Thus the only possible error is CRYPT_NO_RESULT.
797
0
        retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL);
798
0
        if(retVal != CRYPT_NO_RESULT)
799
0
            return retVal; // Will return CRYPT_SUCCESS
800
0
   }
801
0
}
802
#ifdef TPM_ALG_ECDSA      //%
803
//
804
//
805
//       SignEcdsa()
806
//
807
//      This function implements the ECDSA signing algorithm. The method is described in the comments below.
808
//      It is a fatal error if rOut, sOut, dIn, or digest are not provided.
809
//
810
LIB_EXPORT CRYPT_RESULT
811
SignEcdsa(
812
   TPM2B_ECC_PARAMETER           *rOut,            //   OUT: r component of the signature
813
   TPM2B_ECC_PARAMETER           *sOut,            //   OUT: s component of the signature
814
   TPM_ECC_CURVE                  curveId,         //   IN: the curve used in the signature
815
                                                   //       process
816
   TPM2B_ECC_PARAMETER           *dIn,             //   IN: the private key
817
   TPM2B                         *digest           //   IN: the value to sign
818
   )
819
0
{
820
0
   BIGNUM                        *bnK;
821
0
   BIGNUM                        *bnIk;
822
0
   BIGNUM                        *bnN;
823
0
   BIGNUM                        *bnR;
824
//
825
0
    BIGNUM                    *bnD;
826
0
    BIGNUM                    *bnZ;
827
0
    TPM2B_ECC_PARAMETER        k;
828
0
    TPMS_ECC_POINT             R;
829
0
    BN_CTX                    *context;
830
0
    CRYPT_RESULT               retVal = CRYPT_SUCCESS;
831
0
    const ECC_CURVE_DATA      *curveData = GetCurveData(curveId);
832
0
    pAssert(rOut != NULL && sOut != NULL && dIn != NULL && digest != NULL);
833
0
    context = BN_CTX_new();
834
0
    if(context == NULL)
835
0
        FAIL(FATAL_ERROR_ALLOCATION);
836
0
    BN_CTX_start(context);
837
0
    bnN = BN_CTX_get(context);
838
0
    bnZ = BN_CTX_get(context);
839
0
    bnR = BN_CTX_get(context);
840
0
    bnD = BN_CTX_get(context);
841
0
    bnIk = BN_CTX_get(context);
842
0
    bnK = BN_CTX_get(context);
843
    // Assume the size variables do not overflow, which should not happen in
844
    // the contexts that this function will be called.
845
0
    pAssert(curveData->n->size <= MAX_ECC_PARAMETER_BYTES);
846
0
    if(   bnK == NULL
847
0
       || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
848
0
        FAIL(FATAL_ERROR_INTERNAL);
849
//   The algorithm as described in "Suite B Implementer's Guide to FIPS 186-3(ECDSA)"
850
//   1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a per-message
851
//      secret number and its inverse modulo n. Since n is prime, the
852
//      output will be invalid only if there is a failure in the RBG.
853
//   2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar
854
//      multiplication (see [Routines]), where G is the base point included in
855
//      the set of domain parameters.
856
//   3. Compute r = xR mod n. If r = 0, then return to Step 1. 1.
857
//   4. Use the selected hash function to compute H = Hash(M).
858
//   5. Convert the bit string H to an integer e as described in Appendix B.2.
859
//   6. Compute s = (k^-1 * (e + d * r)) mod n. If s = 0, return to Step 1.2.
860
//   7. Return (r, s).
861
    // Generate a random value k in the range 1 <= k < n
862
    // Want a K value that is the same size as the curve order
863
0
    k.t.size = curveData->n->size;
864
0
    while(TRUE) // This implements the loop at step 6. If s is zero, start over.
865
0
    {
866
0
        while(TRUE)
867
0
        {
868
            // Step 1 and 2 -- generate an ephemeral key and the modular inverse
869
            // of the private key.
870
0
            while(TRUE)
871
0
            {
872
0
                GetRandomPrivate(&k, curveData->n);
873
                  // Do the point multiply to generate a point and check to see if
874
                  // the point it at infinity
875
0
                  if(    _cpri__EccPointMultiply(&R, curveId, &k, NULL, NULL)
876
0
                      != CRYPT_NO_RESULT)
877
0
                      break; // can only be CRYPT_SUCCESS
878
0
              }
879
              // x coordinate is mod p. Make it mod n
880
              // Assume the size variables do not overflow, which should not happen
881
              // in the contexts that this function will be called.
882
0
              assert2Bsize(R.x.t);
883
0
              BN_bin2bn(R.x.t.buffer, R.x.t.size, bnR);
884
0
              BN_mod(bnR, bnR, bnN, context);
885
              // Make sure that it is not zero;
886
0
              if(BN_is_zero(bnR))
887
0
                  continue;
888
              // Make sure that a modular inverse exists
889
              // Assume the size variables do not overflow, which should not happen
890
              // in the contexts that this function will be called.
891
0
              assert2Bsize(k.t);
892
0
              BN_bin2bn(k.t.buffer, k.t.size, bnK);
893
0
              if( BN_mod_inverse(bnIk, bnK, bnN, context) != NULL)
894
0
                  break;
895
0
        }
896
        // Set z = leftmost bits of the digest
897
        // NOTE: This is implemented such that the key size needs to be
898
        //        an even number of bytes in length.
899
0
        if(digest->size > curveData->n->size)
900
0
        {
901
             // Assume the size variables do not overflow, which should not happen
902
             // in the contexts that this function will be called.
903
0
             pAssert(curveData->n->size <= MAX_ECC_KEY_BYTES);
904
             // digest is larger than n so truncate
905
0
             BN_bin2bn(digest->buffer, curveData->n->size, bnZ);
906
0
        }
907
0
        else
908
0
        {
909
             // Assume the size variables do not overflow, which should not happen
910
             // in the contexts that this function will be called.
911
0
             pAssert(digest->size <= MAX_DIGEST_SIZE);
912
             // digest is same or smaller than n so use it all
913
0
             BN_bin2bn(digest->buffer, digest->size, bnZ);
914
0
        }
915
        // Assume the size variables do not overflow, which should not happen in
916
        // the contexts that this function will be called.
917
0
        assert2Bsize(dIn->t);
918
0
        if(   bnZ == NULL
919
             // need the private scalar of the signing key
920
0
             || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL)
921
0
              FAIL(FATAL_ERROR_INTERNAL);
922
        //   NOTE: When the result of an operation is going to be reduced mod x
923
        //   any modular multiplication is done so that the intermediate values
924
        //   don't get too large.
925
        //
926
        // now have inverse of K (bnIk), z (bnZ), r (bnR),      d (bnD) and n (bnN)
927
        // Compute s = k^-1 (z + r*d)(mod n)
928
            // first do d = r*d mod n
929
0
        if( !BN_mod_mul(bnD, bnR, bnD, bnN, context)
930
             // d = z + r * d
931
0
             || !BN_add(bnD, bnZ, bnD)
932
             // d = k^(-1)(z + r * d)(mod n)
933
0
             || !BN_mod_mul(bnD, bnIk, bnD, bnN, context)
934
             // convert to TPM2B format
935
0
             || !BnTo2B(&sOut->b, bnD, curveData->n->size)
936
             //   and write the modular reduced version of r
937
             //   NOTE: this was deferred to reduce the number of
938
             //   error checks.
939
0
             ||   !BnTo2B(&rOut->b, bnR, curveData->n->size))
940
0
              FAIL(FATAL_ERROR_INTERNAL);
941
0
        if(!BN_is_zero(bnD))
942
0
            break; // signature not zero so done
943
        // if the signature value was zero, start over
944
0
   }
945
   // Free up allocated BN values
946
0
   BN_CTX_end(context);
947
0
   BN_CTX_free(context);
948
0
   return retVal;
949
0
}
950
#endif //%
951
#if defined TPM_ALG_ECDAA || defined TPM_ALG_ECSCHNORR                //%
952
//
953
//
954
//       EcDaa()
955
//
956
//      This function is used to perform a modified Schnorr signature for ECDAA.
957
//      This function performs s = k + T * d mod n where
958
//      a) 'k is a random, or pseudo-random value used in the commit phase
959
//      b) T is the digest to be signed, and
960
//      c) d is a private key.
961
//      If tIn is NULL then use tOut as T
962
//
963
//      Return Value                        Meaning
964
//
965
//      CRYPT_SUCCESS                       signature created
966
//
967
static CRYPT_RESULT
968
EcDaa(
969
   TPM2B_ECC_PARAMETER              *tOut,             //   OUT: T component of the signature
970
   TPM2B_ECC_PARAMETER              *sOut,             //   OUT: s component of the signature
971
   TPM_ECC_CURVE                     curveId,          //   IN: the curve used in signing
972
   TPM2B_ECC_PARAMETER              *dIn,              //   IN: the private key
973
   TPM2B                            *tIn,              //   IN: the value to sign
974
   TPM2B_ECC_PARAMETER              *kIn               //   IN: a random value from commit
975
   )
976
0
{
977
0
   BIGNUM                           *bnN, *bnK, *bnT, *bnD;
978
0
   BN_CTX                           *context;
979
0
   const TPM2B                      *n;
980
0
   const ECC_CURVE_DATA             *curveData = GetCurveData(curveId);
981
0
   BOOL                              OK = TRUE;
982
   // Parameter checks
983
0
    pAssert(   sOut != NULL && dIn != NULL && tOut != NULL
984
0
            && kIn != NULL && curveData != NULL);
985
   // this just saves key strokes
986
0
   n = curveData->n;
987
0
   if(tIn != NULL)
988
0
       Copy2B(&tOut->b, tIn);
989
   // The size of dIn and kIn input scalars is limited by the size of the size
990
   // of a TPM2B_ECC_PARAMETER and tIn can be no larger than a digest.
991
   // Make sure they are within range.
992
0
   pAssert(   (int) dIn->t.size <= MAX_ECC_KEY_BYTES
993
0
           && (int) kIn->t.size <= MAX_ECC_KEY_BYTES
994
//
995
0
             && (int) tOut->t.size <= MAX_DIGEST_SIZE
996
0
            );
997
0
   context = BN_CTX_new();
998
0
   if(context == NULL)
999
0
       FAIL(FATAL_ERROR_ALLOCATION);
1000
0
   BN_CTX_start(context);
1001
0
   bnN = BN_CTX_get(context);
1002
0
   bnK = BN_CTX_get(context);
1003
0
   bnT = BN_CTX_get(context);
1004
0
   bnD = BN_CTX_get(context);
1005
   // Check for allocation problems
1006
0
   if(bnD == NULL)
1007
0
       FAIL(FATAL_ERROR_ALLOCATION);
1008
   // Convert values
1009
0
   if(   BN_bin2bn(n->buffer, n->size, bnN) == NULL
1010
0
      || BN_bin2bn(kIn->t.buffer, kIn->t.size, bnK) == NULL
1011
0
      || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL
1012
0
      || BN_bin2bn(tOut->t.buffer, tOut->t.size, bnT) == NULL)
1013
0
       FAIL(FATAL_ERROR_INTERNAL);
1014
   // Compute T = T mod n
1015
0
   OK = OK && BN_mod(bnT, bnT, bnN, context);
1016
   // compute (s = k + T * d mod n)
1017
           //   d = T * d mod n
1018
0
   OK = OK && BN_mod_mul(bnD, bnT, bnD, bnN, context) == 1;
1019
           //   d = k + T * d mod n
1020
0
   OK = OK && BN_mod_add(bnD, bnK, bnD, bnN, context) == 1;
1021
           //   s = d
1022
0
   OK = OK && BnTo2B(&sOut->b, bnD, n->size);
1023
           //   r = T
1024
0
   OK = OK && BnTo2B(&tOut->b, bnT, n->size);
1025
0
   if(!OK)
1026
0
       FAIL(FATAL_ERROR_INTERNAL);
1027
   // Cleanup
1028
0
   BN_CTX_end(context);
1029
0
   BN_CTX_free(context);
1030
0
   return CRYPT_SUCCESS;
1031
0
}
1032
#endif //%
1033
#ifdef TPM_ALG_ECSCHNORR //%
1034
//
1035
//
1036
//       Mod2B()
1037
//
1038
//      Function does modular reduction of TPM2B values.
1039
//
1040
static CRYPT_RESULT
1041
Mod2B(
1042
    TPM2B                *x,                 // IN/OUT: value to reduce
1043
    const TPM2B          *n                  // IN: mod
1044
    )
1045
0
{
1046
0
    int         compare;
1047
0
    compare = _math__uComp(x->size, x->buffer, n->size, n->buffer);
1048
0
    if(compare < 0)
1049
        // if x < n, then mod is x
1050
0
        return CRYPT_SUCCESS;
1051
0
    if(compare == 0)
1052
0
    {
1053
        // if x == n then mod is 0
1054
0
        x->size = 0;
1055
0
        x->buffer[0] = 0;
1056
0
        return CRYPT_SUCCESS;
1057
0
    }
1058
0
   return _math__Div(x, n, NULL, x);
1059
0
}
1060
1061
//
1062
//
1063
//       SchnorrEcc()
1064
//
1065
//      This function is used to perform a modified Schnorr signature.
1066
//      This function will generate a random value k and compute
1067
//      a) (xR, yR) = [k]G
1068
//      b) r = hash(P || xR)(mod n)
1069
//      c) s= k + r * ds
1070
//      d) return the tuple T, s
1071
//
1072
//
1073
//
1074
//
1075
//      Return Value                  Meaning
1076
//
1077
//      CRYPT_SUCCESS                 signature created
1078
//      CRYPT_SCHEME                  hashAlg can't produce zero-length digest
1079
//
1080
static CRYPT_RESULT
1081
SchnorrEcc(
1082
   TPM2B_ECC_PARAMETER        *rOut,               //   OUT: r component of the signature
1083
   TPM2B_ECC_PARAMETER        *sOut,               //   OUT: s component of the signature
1084
   TPM_ALG_ID                  hashAlg,            //   IN: hash algorithm used
1085
   TPM_ECC_CURVE               curveId,            //   IN: the curve used in signing
1086
   TPM2B_ECC_PARAMETER        *dIn,                //   IN: the private key
1087
   TPM2B                      *digest,             //   IN: the digest to sign
1088
   TPM2B_ECC_PARAMETER        *kIn                 //   IN: for testing
1089
   )
1090
0
{
1091
0
   TPM2B_ECC_PARAMETER      k;
1092
0
   BIGNUM                  *bnR, *bnN, *bnK, *bnT, *bnD;
1093
0
   BN_CTX                  *context;
1094
0
   const TPM2B             *n;
1095
0
   EC_POINT                *pR = NULL;
1096
0
   EC_GROUP                *group = NULL;
1097
0
   CPRI_HASH_STATE          hashState;
1098
0
   UINT16                   digestSize = _cpri__GetDigestSize(hashAlg);
1099
0
   const ECC_CURVE_DATA    *curveData = GetCurveData(curveId);
1100
0
   TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_PARAMETER_BYTES));
1101
0
   TPM2B_T                  T2b;
1102
0
   BOOL                     OK = TRUE;
1103
   // Parameter checks
1104
   // Must have a place for the 'r' and 's' parts of the signature, a private
1105
   // key ('d')
1106
0
   pAssert(   rOut != NULL && sOut != NULL && dIn != NULL
1107
0
           && digest != NULL && curveData != NULL);
1108
   // to save key strokes
1109
0
   n = curveData->n;
1110
   // If the digest does not produce a hash, then null the signature and return
1111
   // a failure.
1112
0
   if(digestSize == 0)
1113
0
   {
1114
0
       rOut->t.size = 0;
1115
0
       sOut->t.size = 0;
1116
0
       return CRYPT_SCHEME;
1117
0
   }
1118
   // Allocate big number values
1119
0
   context = BN_CTX_new();
1120
0
   if(context == NULL)
1121
0
       FAIL(FATAL_ERROR_ALLOCATION);
1122
0
   BN_CTX_start(context);
1123
0
   bnR = BN_CTX_get(context);
1124
0
   bnN = BN_CTX_get(context);
1125
0
   bnK = BN_CTX_get(context);
1126
0
   bnT = BN_CTX_get(context);
1127
0
   bnD = BN_CTX_get(context);
1128
0
   if(   bnD == NULL
1129
           // initialize the group parameters
1130
0
      || (group = EccCurveInit(curveId, context)) == NULL
1131
          // allocate a local point
1132
0
      || (pR = EC_POINT_new(group)) == NULL
1133
0
     )
1134
0
        FAIL(FATAL_ERROR_ALLOCATION);
1135
0
   if(BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
1136
0
       FAIL(FATAL_ERROR_INTERNAL);
1137
0
   while(OK)
1138
0
   {
1139
// a) set k to a random value such that 1 k n-1
1140
0
       if(kIn != NULL)
1141
0
       {
1142
0
            Copy2B(&k.b, &kIn->b); // copy input k if testing
1143
0
            OK = FALSE;              // not OK to loop
1144
0
       }
1145
0
       else
1146
       // If get a random value in the correct range
1147
0
            GetRandomPrivate(&k, n);
1148
        // Convert 'k' and generate pR = ['k']G
1149
0
        BnFrom2B(bnK, &k.b);
1150
// b) compute E (xE, yE) [k]G
1151
0
       if(PointMul(group, pR, bnK, NULL, NULL, context) == CRYPT_NO_RESULT)
1152
// c) if E is the point at infinity, go to a)
1153
0
           continue;
1154
// d) compute e xE (mod n)
1155
       // Get the x coordinate of the point
1156
0
       EC_POINT_get_affine_coordinates_GFp(group, pR, bnR, NULL, context);
1157
        // make (mod n)
1158
0
        BN_mod(bnR, bnR, bnN, context);
1159
// e) if e is zero, go to a)
1160
0
       if(BN_is_zero(bnR))
1161
0
           continue;
1162
        // Convert xR to a string (use T as a temp)
1163
0
        BnTo2B(&T2b.b, bnR, (UINT16)(BN_num_bits(bnR)+7)/8);
1164
// f) compute r HschemeHash(P || e) (mod n)
1165
0
       _cpri__StartHash(hashAlg, FALSE, &hashState);
1166
0
       _cpri__UpdateHash(&hashState, digest->size, digest->buffer);
1167
0
       _cpri__UpdateHash(&hashState, T2b.t.size, T2b.t.buffer);
1168
0
       if(_cpri__CompleteHash(&hashState, digestSize, T2b.b.buffer) != digestSize)
1169
0
           FAIL(FATAL_ERROR_INTERNAL);
1170
0
       T2b.t.size = digestSize;
1171
0
       BnFrom2B(bnT, &T2b.b);
1172
0
       BN_div(NULL, bnT, bnT, bnN, context);
1173
0
       BnTo2B(&rOut->b, bnT, (UINT16)BN_num_bytes(bnT));
1174
        // We have a value and we are going to exit the loop successfully
1175
0
        OK = TRUE;
1176
0
        break;
1177
0
   }
1178
   // Cleanup
1179
0
   EC_POINT_free(pR);
1180
0
   EC_GROUP_free(group);
1181
0
   BN_CTX_end(context);
1182
0
   BN_CTX_free(context);
1183
   // If we have a value, finish the signature
1184
0
   if(OK)
1185
0
       return EcDaa(rOut, sOut, curveId, dIn, NULL, &k);
1186
0
   else
1187
0
       return CRYPT_NO_RESULT;
1188
0
}
1189
#endif //%
1190
#ifdef TPM_ALG_SM2 //%
1191
#ifdef _SM2_SIGN_DEBUG //%
1192
static int
1193
cmp_bn2hex(
1194
   BIGNUM              *bn,               // IN: big number value
1195
   const char          *c                 // IN: character string number
1196
   )
1197
{
1198
   int         result;
1199
   BIGNUM      *bnC = BN_new();
1200
   pAssert(bnC != NULL);
1201
   BN_hex2bn(&bnC, c);
1202
   result = BN_ucmp(bn, bnC);
1203
   BN_free(bnC);
1204
   return result;
1205
}
1206
static int
1207
cmp_2B2hex(
1208
   TPM2B               *a,                // IN: TPM2B number to compare
1209
   const char          *c                 // IN: character string
1210
   )
1211
{
1212
   int            result;
1213
   int            sl = strlen(c);
1214
   BIGNUM         *bnA;
1215
   result = (a->size * 2) - sl;
1216
   if(result != 0)
1217
       return result;
1218
   pAssert((bnA = BN_bin2bn(a->buffer, a->size, NULL)) != NULL);
1219
   result = cmp_bn2hex(bnA, c);
1220
   BN_free(bnA);
1221
   return result;
1222
}
1223
static void
1224
cpy_hexTo2B(
1225
   TPM2B               *b,                // OUT: receives value
1226
   const char          *c                 // IN: source string
1227
   )
1228
{
1229
   BIGNUM      *bnB = BN_new();
1230
   pAssert((strlen(c) & 1) == 0);         // must have an even number of digits
1231
   b->size = strlen(c) / 2;
1232
   BN_hex2bn(&bnB, c);
1233
   pAssert(bnB != NULL);
1234
   BnTo2B(b, bnB, b->size);
1235
   BN_free(bnB);
1236
}
1237
#endif //% _SM2_SIGN_DEBUG
1238
//
1239
//
1240
//        SignSM2()
1241
//
1242
//       This function signs a digest using the method defined in SM2 Part 2. The method in the standard will add
1243
//       a header to the message to be signed that is a hash of the values that define the key. This then hashed
1244
//       with the message to produce a digest (e) that is signed. This function signs e.
1245
//
1246
//
1247
//
1248
//
1249
//       Return Value                      Meaning
1250
//
1251
//       CRYPT_SUCCESS                     sign worked
1252
//
1253
static CRYPT_RESULT
1254
SignSM2(
1255
   TPM2B_ECC_PARAMETER            *rOut,                 //   OUT: r component of the signature
1256
   TPM2B_ECC_PARAMETER            *sOut,                 //   OUT: s component of the signature
1257
   TPM_ECC_CURVE                   curveId,              //   IN: the curve used in signing
1258
   TPM2B_ECC_PARAMETER            *dIn,                  //   IN: the private key
1259
   TPM2B                          *digest                //   IN: the digest to sign
1260
   )
1261
0
{
1262
0
   BIGNUM                         *bnR;
1263
0
   BIGNUM                         *bnS;
1264
0
   BIGNUM                         *bnN;
1265
0
   BIGNUM                         *bnK;
1266
0
   BIGNUM                         *bnX1;
1267
0
   BIGNUM                         *bnD;
1268
0
   BIGNUM                         *bnT;        // temp
1269
0
   BIGNUM                         *bnE;
1270
0
   BN_CTX                  *context;
1271
0
   TPM2B_ECC_PARAMETER      k;
1272
0
   TPMS_ECC_POINT           p2Br;
1273
0
   const ECC_CURVE_DATA    *curveData = GetCurveData(curveId);
1274
0
   pAssert(curveData != NULL);
1275
0
   context = BN_CTX_new();
1276
0
   BN_CTX_start(context);
1277
0
   bnK = BN_CTX_get(context);
1278
0
   bnR = BN_CTX_get(context);
1279
0
   bnS = BN_CTX_get(context);
1280
0
   bnX1 = BN_CTX_get(context);
1281
0
   bnN = BN_CTX_get(context);
1282
0
   bnD = BN_CTX_get(context);
1283
0
   bnT = BN_CTX_get(context);
1284
0
   bnE = BN_CTX_get(context);
1285
0
   if(bnE == NULL)
1286
0
       FAIL(FATAL_ERROR_ALLOCATION);
1287
0
   BnFrom2B(bnE, digest);
1288
0
   BnFrom2B(bnN, curveData->n);
1289
0
   BnFrom2B(bnD, &dIn->b);
1290
#ifdef _SM2_SIGN_DEBUG
1291
BN_hex2bn(&bnE, "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76");
1292
BN_hex2bn(&bnD, "128B2FA8BD433C6C068C8D803DFF79792A519A55171B1B650C23661D15897263");
1293
#endif
1294
// A3: Use random number generator to generate random number 1 <= k <= n-1;
1295
// NOTE: Ax: numbers are from the SM2 standard
1296
0
   k.t.size = curveData->n->size;
1297
0
loop:
1298
0
   {
1299
       // Get a random number
1300
0
       _cpri__GenerateRandom(k.t.size, k.t.buffer);
1301
#ifdef _SM2_SIGN_DEBUG
1302
BN_hex2bn(&bnK, "6CB28D99385C175C94F94E934817663FC176D925DD72B727260DBAAE1FB2F96F");
1303
BnTo2B(&k.b,bnK, 32);
1304
k.t.size = 32;
1305
#endif
1306
       //make sure that the number is 0 < k < n
1307
0
       BnFrom2B(bnK, &k.b);
1308
0
        if(      BN_ucmp(bnK, bnN) >= 0
1309
0
              || BN_is_zero(bnK))
1310
0
              goto loop;
1311
// A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according
1312
// to details specified in 4.2.7 in Part 1 of this document, transform the
1313
// data type of x1 into an integer;
1314
0
       if(    _cpri__EccPointMultiply(&p2Br, curveId, &k, NULL, NULL)
1315
0
           == CRYPT_NO_RESULT)
1316
0
            goto loop;
1317
0
        BnFrom2B(bnX1, &p2Br.x.b);
1318
// A5: Figure out r = (e + x1) mod n,
1319
0
       if(!BN_mod_add(bnR, bnE, bnX1, bnN, context))
1320
0
           FAIL(FATAL_ERROR_INTERNAL);
1321
#ifdef _SM2_SIGN_DEBUG
1322
pAssert(cmp_bn2hex(bnR,
1323
               "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1")
1324
       == 0);
1325
#endif
1326
           // if r=0 or r+k=n, return to A3;
1327
0
         if(!BN_add(bnT, bnK, bnR))
1328
0
            FAIL(FATAL_ERROR_INTERNAL);
1329
0
        if(BN_is_zero(bnR) || BN_ucmp(bnT, bnN) == 0)
1330
0
            goto loop;
1331
// A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n, if s=0, return to A3;
1332
       // compute t = (1+d)-1
1333
0
       BN_copy(bnT, bnD);
1334
0
       if(     !BN_add_word(bnT, 1)
1335
0
           || !BN_mod_inverse(bnT, bnT, bnN, context) // (1 + dA)^-1 mod n
1336
0
           )
1337
0
             FAIL(FATAL_ERROR_INTERNAL);
1338
#ifdef _SM2_SIGN_DEBUG
1339
pAssert(cmp_bn2hex(bnT,
1340
                 "79BFCF3052C80DA7B939E0C6914A18CBB2D96D8555256E83122743A7D4F5F956")
1341
       == 0);
1342
#endif
1343
       // compute s = t * (k - r * dA) mod n
1344
0
       if(     !BN_mod_mul(bnS, bnD, bnR, bnN, context) // (r * dA) mod n
1345
0
           || !BN_mod_sub(bnS, bnK, bnS, bnN, context) // (k - (r * dA) mod n
1346
0
           || !BN_mod_mul(bnS, bnT, bnS, bnN, context))// t * (k - (r * dA) mod n
1347
0
           FAIL(FATAL_ERROR_INTERNAL);
1348
#ifdef _SM2_SIGN_DEBUG
1349
pAssert(cmp_bn2hex(bnS,
1350
                 "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7")
1351
       == 0);
1352
#endif
1353
0
        if(BN_is_zero(bnS))
1354
0
            goto loop;
1355
0
   }
1356
// A7: According to details specified in 4.2.1 in Part 1 of this document, transform
1357
// the data type of r, s into bit strings, signature of message M is (r, s).
1358
0
   BnTo2B(&rOut->b, bnR, curveData->n->size);
1359
0
   BnTo2B(&sOut->b, bnS, curveData->n->size);
1360
#ifdef _SM2_SIGN_DEBUG
1361
pAssert(cmp_2B2hex(&rOut->b,
1362
               "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1")
1363
       == 0);
1364
pAssert(cmp_2B2hex(&sOut->b,
1365
                  "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7")
1366
        == 0);
1367
#endif
1368
0
   BN_CTX_end(context);
1369
0
   BN_CTX_free(context);
1370
0
   return CRYPT_SUCCESS;
1371
0
}
1372
#endif //% TPM_ALG_SM2
1373
//
1374
//
1375
//        _cpri__SignEcc()
1376
//
1377
//       This function is the dispatch function for the various ECC-based signing schemes.
1378
//
1379
//       Return Value                      Meaning
1380
//
1381
//       CRYPT_SCHEME                      scheme is not supported
1382
//
1383
LIB_EXPORT CRYPT_RESULT
1384
_cpri__SignEcc(
1385
   TPM2B_ECC_PARAMETER            *rOut,              //   OUT: r component of the signature
1386
   TPM2B_ECC_PARAMETER            *sOut,              //   OUT: s component of the signature
1387
   TPM_ALG_ID                      scheme,            //   IN: the scheme selector
1388
   TPM_ALG_ID                      hashAlg,           //   IN: the hash algorithm if need
1389
   TPM_ECC_CURVE                   curveId,           //   IN: the curve used in the signature
1390
                                                      //       process
1391
   TPM2B_ECC_PARAMETER            *dIn,               //   IN: the private key
1392
   TPM2B                          *digest,            //   IN: the digest to sign
1393
   TPM2B_ECC_PARAMETER            *kIn                //   IN: k for input
1394
   )
1395
0
{
1396
0
   switch (scheme)
1397
0
   {
1398
0
       case TPM_ALG_ECDSA:
1399
           // SignEcdsa always works
1400
0
           return SignEcdsa(rOut, sOut, curveId, dIn, digest);
1401
0
           break;
1402
0
#ifdef TPM_ALG_ECDAA
1403
0
       case TPM_ALG_ECDAA:
1404
0
           if(rOut != NULL)
1405
0
                rOut->b.size = 0;
1406
0
           return EcDaa(rOut, sOut, curveId, dIn, digest, kIn);
1407
0
           break;
1408
0
#endif
1409
0
#ifdef TPM_ALG_ECSCHNORR
1410
0
       case TPM_ALG_ECSCHNORR:
1411
0
           return SchnorrEcc(rOut, sOut, hashAlg, curveId, dIn, digest, kIn);
1412
0
           break;
1413
0
#endif
1414
0
#ifdef TPM_ALG_SM2
1415
0
       case TPM_ALG_SM2:
1416
0
           return SignSM2(rOut, sOut, curveId, dIn, digest);
1417
0
           break;
1418
0
#endif
1419
0
       default:
1420
0
           return CRYPT_SCHEME;
1421
0
   }
1422
0
}
1423
#ifdef TPM_ALG_ECDSA //%
1424
//
1425
//
1426
//        ValidateSignatureEcdsa()
1427
//
1428
//       This function validates an ECDSA signature. rIn and sIn shoudl have been checked to make sure that
1429
//       they are not zero.
1430
//
1431
//       Return Value                  Meaning
1432
//
1433
//       CRYPT_SUCCESS                 signature valid
1434
//       CRYPT_FAIL                    signature not valid
1435
//
1436
static CRYPT_RESULT
1437
ValidateSignatureEcdsa(
1438
   TPM2B_ECC_PARAMETER        *rIn,                //   IN: r component of the signature
1439
   TPM2B_ECC_PARAMETER        *sIn,                //   IN: s component of the signature
1440
   TPM_ECC_CURVE               curveId,            //   IN: the curve used in the signature
1441
                                                   //       process
1442
   TPMS_ECC_POINT             *Qin,                //   IN: the public point of the key
1443
   TPM2B                      *digest              //   IN: the digest that was signed
1444
   )
1445
0
{
1446
0
   TPM2B_ECC_PARAMETER         U1;
1447
0
   TPM2B_ECC_PARAMETER         U2;
1448
0
   TPMS_ECC_POINT              R;
1449
0
   const TPM2B                *n;
1450
0
   BN_CTX                     *context;
1451
0
   EC_GROUP                   *group = NULL;
1452
0
   BIGNUM                     *bnU1;
1453
0
   BIGNUM                     *bnU2;
1454
0
   BIGNUM                     *bnR;
1455
0
   BIGNUM                     *bnS;
1456
0
   BIGNUM                     *bnW;
1457
0
   BIGNUM                     *bnV;
1458
0
   BIGNUM                     *bnN;
1459
0
   BIGNUM                     *bnE;
1460
0
   CRYPT_RESULT                retVal = CRYPT_FAIL;
1461
0
   int                         t;
1462
0
   const ECC_CURVE_DATA       *curveData = GetCurveData(curveId);
1463
   // The curve selector should have been filtered by the unmarshaling process
1464
0
   pAssert (curveData != NULL);
1465
0
   n = curveData->n;
1466
// 1. If r and s are not both integers in the interval [1, n - 1], output
1467
//    INVALID.
1468
// rIn and sIn are known to be greater than zero (was checked by the caller).
1469
0
   if(     _math__uComp(rIn->t.size, rIn->t.buffer, n->size, n->buffer) >= 0
1470
0
       || _math__uComp(sIn->t.size, sIn->t.buffer, n->size, n->buffer) >= 0
1471
0
     )
1472
0
      return CRYPT_FAIL;
1473
0
   context = BN_CTX_new();
1474
0
   if(context == NULL)
1475
0
       FAIL(FATAL_ERROR_ALLOCATION);
1476
0
   BN_CTX_start(context);
1477
0
   bnR = BN_CTX_get(context);
1478
0
   bnS = BN_CTX_get(context);
1479
0
   bnN = BN_CTX_get(context);
1480
0
   bnE = BN_CTX_get(context);
1481
0
   bnV = BN_CTX_get(context);
1482
0
   bnW = BN_CTX_get(context);
1483
0
   bnU1 = BN_CTX_get(context);
1484
0
   bnU2 = BN_CTX_get(context);
1485
   // Assume the size variables do not overflow, which should not happen in
1486
   // the contexts that this function will be called.
1487
0
   assert2Bsize(Qin->x.t);
1488
0
   assert2Bsize(rIn->t);
1489
0
   assert2Bsize(sIn->t);
1490
   // BN_CTX_get() is sticky so only need to check the last value to know that
1491
   // all worked.
1492
0
   if(   bnU2 == NULL
1493
        // initialize the group parameters
1494
0
       || (group = EccCurveInit(curveId, context)) == NULL
1495
       // convert the signature values
1496
0
       || BN_bin2bn(rIn->t.buffer, rIn->t.size, bnR) == NULL
1497
0
       || BN_bin2bn(sIn->t.buffer, sIn->t.size, bnS) == NULL
1498
       // convert the curve order
1499
0
       || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
1500
0
        FAIL(FATAL_ERROR_INTERNAL);
1501
// 2. Use the selected hash function to compute H0 = Hash(M0).
1502
   // This is an input parameter
1503
// 3. Convert the bit string H0 to an integer e as described in Appendix B.2.
1504
0
   t = (digest->size > rIn->t.size) ? rIn->t.size : digest->size;
1505
0
   if(BN_bin2bn(digest->buffer, t, bnE) == NULL)
1506
0
       FAIL(FATAL_ERROR_INTERNAL);
1507
// 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1.
1508
0
   if (BN_mod_inverse(bnW, bnS, bnN, context) == NULL)
1509
0
       FAIL(FATAL_ERROR_INTERNAL);
1510
// 5. Compute u1 = (e' *   w) mod n, and compute u2 = (r' *     w) mod n.
1511
0
   if(   !BN_mod_mul(bnU1, bnE, bnW, bnN, context)
1512
0
      || !BN_mod_mul(bnU2, bnR, bnW, bnN, context))
1513
0
       FAIL(FATAL_ERROR_INTERNAL);
1514
0
   BnTo2B(&U1.b, bnU1, (INT16) BN_num_bytes(bnU1));
1515
0
   BnTo2B(&U2.b, bnU2, (INT16) BN_num_bytes(bnU2));
1516
// 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC
1517
//    scalar multiplication and EC addition (see [Routines]). If R is equal to
1518
//    the point at infinity O, output INVALID.
1519
0
   if((retVal = _cpri__EccPointMultiply(&R, curveId, &U1, Qin, &U2)) == CRYPT_SUCCESS)
1520
0
   {
1521
       // 7. Compute v = Rx mod n.
1522
0
       if(    BN_bin2bn(R.x.t.buffer, R.x.t.size, bnV) == NULL
1523
0
           || !BN_mod(bnV, bnV, bnN, context))
1524
0
            FAIL(FATAL_ERROR_INTERNAL);
1525
   // 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID
1526
0
       if(BN_cmp(bnV, bnR))
1527
0
           retVal = CRYPT_FAIL;
1528
0
   }
1529
0
   if(group != NULL) EC_GROUP_free(group);
1530
0
   BN_CTX_end(context);
1531
0
   BN_CTX_free(context);
1532
0
   return retVal;
1533
0
}
1534
#endif      //% TPM_ALG_ECDSA
1535
#ifdef TPM_ALG_ECSCHNORR //%
1536
//
1537
//
1538
//        ValidateSignatureEcSchnorr()
1539
//
1540
//       This function is used to validate an EC Schnorr signature. rIn and sIn are required to be greater than
1541
//       zero. This is checked in _cpri__ValidateSignatureEcc().
1542
//
1543
//       Return Value                   Meaning
1544
//
1545
//       CRYPT_SUCCESS                  signature valid
1546
//       CRYPT_FAIL                     signature not valid
1547
//       CRYPT_SCHEME                   hashAlg is not supported
1548
//
1549
static CRYPT_RESULT
1550
ValidateSignatureEcSchnorr(
1551
   TPM2B_ECC_PARAMETER         *rIn,                //   IN: r component of the signature
1552
   TPM2B_ECC_PARAMETER         *sIn,                //   IN: s component of the signature
1553
   TPM_ALG_ID                   hashAlg,            //   IN: hash algorithm of the signature
1554
   TPM_ECC_CURVE                curveId,            //   IN: the curve used in the signature
1555
                                                    //       process
1556
   TPMS_ECC_POINT              *Qin,                //   IN: the public point of the key
1557
   TPM2B                       *digest              //   IN: the digest that was signed
1558
   )
1559
0
{
1560
0
   TPMS_ECC_POINT               pE;
1561
0
   const TPM2B                 *n;
1562
0
   CPRI_HASH_STATE              hashState;
1563
0
   TPM2B_DIGEST                 rPrime;
1564
0
   TPM2B_ECC_PARAMETER          minusR;
1565
0
   UINT16                       digestSize = _cpri__GetDigestSize(hashAlg);
1566
0
   const ECC_CURVE_DATA        *curveData = GetCurveData(curveId);
1567
   // The curve parameter should have been filtered by unmarshaling code
1568
0
   pAssert(curveData != NULL);
1569
0
   if(digestSize == 0)
1570
0
       return CRYPT_SCHEME;
1571
   // Input parameter validation
1572
0
   pAssert(rIn != NULL && sIn != NULL && Qin != NULL && digest != NULL);
1573
0
   n = curveData->n;
1574
   // if sIn or rIn are not between 1 and N-1, signature check fails
1575
   // sIn and rIn were verified to be non-zero by the caller
1576
0
   if(   _math__uComp(sIn->b.size, sIn->b.buffer, n->size, n->buffer) >= 0
1577
0
      || _math__uComp(rIn->b.size, rIn->b.buffer, n->size, n->buffer) >= 0
1578
0
     )
1579
0
       return CRYPT_FAIL;
1580
   //E = [s]InG - [r]InQ
1581
0
   _math__sub(n->size, n->buffer,
1582
0
              rIn->t.size, rIn->t.buffer,
1583
0
              &minusR.t.size, minusR.t.buffer);
1584
0
   if(_cpri__EccPointMultiply(&pE, curveId, sIn, Qin, &minusR) != CRYPT_SUCCESS)
1585
0
       return CRYPT_FAIL;
1586
   // Ex = Ex mod N
1587
0
   if(Mod2B(&pE.x.b, n) != CRYPT_SUCCESS)
1588
0
       FAIL(FATAL_ERROR_INTERNAL);
1589
0
   _math__Normalize2B(&pE.x.b);
1590
   // rPrime = h(digest || pE.x) mod n;
1591
0
   _cpri__StartHash(hashAlg, FALSE, &hashState);
1592
0
   _cpri__UpdateHash(&hashState, digest->size, digest->buffer);
1593
0
   _cpri__UpdateHash(&hashState, pE.x.t.size, pE.x.t.buffer);
1594
0
   if(_cpri__CompleteHash(&hashState, digestSize, rPrime.t.buffer) != digestSize)
1595
0
       FAIL(FATAL_ERROR_INTERNAL);
1596
0
   rPrime.t.size = digestSize;
1597
   // rPrime = rPrime (mod n)
1598
0
   if(Mod2B(&rPrime.b, n) != CRYPT_SUCCESS)
1599
0
       FAIL(FATAL_ERROR_INTERNAL);
1600
   // if the values don't match, then the signature is bad
1601
0
   if(_math__uComp(rIn->t.size, rIn->t.buffer,
1602
0
                   rPrime.t.size, rPrime.t.buffer) != 0)
1603
0
       return CRYPT_FAIL;
1604
0
   else
1605
0
       return CRYPT_SUCCESS;
1606
0
}
1607
#endif //% TPM_ALG_ECSCHNORR
1608
#ifdef TPM_ALG_SM2 //%
1609
//
1610
//
1611
//        ValidateSignatueSM2Dsa()
1612
//
1613
//       This function is used to validate an SM2 signature.
1614
//
1615
//       Return Value                      Meaning
1616
//
1617
//       CRYPT_SUCCESS                     signature valid
1618
//       CRYPT_FAIL                        signature not valid
1619
//
1620
static CRYPT_RESULT
1621
ValidateSignatureSM2Dsa(
1622
   TPM2B_ECC_PARAMETER            *rIn,                //   IN: r component of the signature
1623
   TPM2B_ECC_PARAMETER            *sIn,                //   IN: s component of the signature
1624
   TPM_ECC_CURVE                   curveId,            //   IN: the curve used in the signature
1625
                                                       //       process
1626
   TPMS_ECC_POINT                 *Qin,                //   IN: the public point of the key
1627
   TPM2B                          *digest              //   IN: the digest that was signed
1628
   )
1629
0
{
1630
0
   BIGNUM                         *bnR;
1631
0
   BIGNUM                         *bnRp;
1632
0
   BIGNUM                         *bnT;
1633
0
   BIGNUM                         *bnS;
1634
0
   BIGNUM                         *bnE;
1635
0
   BIGNUM                         *order;
1636
0
   EC_POINT                       *pQ;
1637
0
   BN_CTX                         *context;
1638
0
   EC_GROUP                       *group = NULL;
1639
0
   const ECC_CURVE_DATA           *curveData = GetCurveData(curveId);
1640
0
   BOOL                            fail = FALSE;
1641
//
1642
0
   if((context = BN_CTX_new()) == NULL || curveData == NULL)
1643
0
       FAIL(FATAL_ERROR_INTERNAL);
1644
0
   bnR = BN_CTX_get(context);
1645
0
   bnRp= BN_CTX_get(context);
1646
0
   bnE = BN_CTX_get(context);
1647
0
   bnT = BN_CTX_get(context);
1648
0
   bnS = BN_CTX_get(context);
1649
0
   order = BN_CTX_get(context);
1650
0
   if(   order == NULL
1651
0
      || (group = EccCurveInit(curveId, context)) == NULL)
1652
0
       FAIL(FATAL_ERROR_INTERNAL);
1653
#ifdef _SM2_SIGN_DEBUG
1654
   cpy_hexTo2B(&Qin->x.b,
1655
          "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A");
1656
   cpy_hexTo2B(&Qin->y.b,
1657
          "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857");
1658
   cpy_hexTo2B(digest,
1659
          "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76");
1660
#endif
1661
0
   if (!(pQ = EccInitPoint2B(group, Qin, context)))
1662
0
       goto Cleanup;
1663
#ifdef _SM2_SIGN_DEBUG
1664
   pAssert(EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, bnS, context));
1665
   pAssert(cmp_bn2hex(bnT,
1666
               "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A")
1667
           == 0);
1668
   pAssert(cmp_bn2hex(bnS,
1669
               "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857")
1670
           == 0);
1671
#endif
1672
0
   BnFrom2B(bnR, &rIn->b);
1673
0
   BnFrom2B(bnS, &sIn->b);
1674
0
   BnFrom2B(bnE, digest);
1675
#ifdef _SM2_SIGN_DEBUG
1676
// Make sure that the input signature is the test signature
1677
pAssert(cmp_2B2hex(&rIn->b,
1678
       "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") == 0);
1679
pAssert(cmp_2B2hex(&sIn->b,
1680
       "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") == 0);
1681
#endif
1682
// a) verify that r and s are in the inclusive interval 1 to (n   1)
1683
0
   if (!EC_GROUP_get_order(group, order, context)) goto Cleanup;
1684
0
   fail = (BN_ucmp(bnR, order) >= 0);
1685
0
   fail = (BN_ucmp(bnS, order) >= 0) || fail;
1686
0
   if(fail)
1687
   // There is no reason to continue. Since r and s are inputs from the caller,
1688
   // they can know that the values are not in the proper range. So, exiting here
1689
   // does not disclose any information.
1690
0
       goto Cleanup;
1691
// b) compute t := (r + s) mod n
1692
0
   if(!BN_mod_add(bnT, bnR, bnS, order, context))
1693
0
       FAIL(FATAL_ERROR_INTERNAL);
1694
#ifdef _SM2_SIGN_DEBUG
1695
   pAssert(cmp_bn2hex(bnT,
1696
               "2B75F07ED7ECE7CCC1C8986B991F441AD324D6D619FE06DD63ED32E0C997C801")
1697
           == 0);
1698
#endif
1699
// c) verify that t > 0
1700
0
   if(BN_is_zero(bnT)) {
1701
0
       fail = TRUE;
1702
       // set to a value that should allow rest of the computations to run without
1703
         // trouble
1704
0
         BN_copy(bnT, bnS);
1705
0
   }
1706
// d) compute (x, y) := [s]G + [t]Q
1707
0
   if(!EC_POINT_mul(group, pQ, bnS, pQ, bnT, context))
1708
0
       FAIL(FATAL_ERROR_INTERNAL);
1709
   // Get the x coordinate of the point
1710
0
   if(!EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, NULL, context))
1711
0
       FAIL(FATAL_ERROR_INTERNAL);
1712
#ifdef _SM2_SIGN_DEBUG
1713
   pAssert(cmp_bn2hex(bnT,
1714
               "110FCDA57615705D5E7B9324AC4B856D23E6D9188B2AE47759514657CE25D112")
1715
               == 0);
1716
#endif
1717
// e) compute r' := (e + x) mod n (the x coordinate is in bnT)
1718
0
   if(!BN_mod_add(bnRp, bnE, bnT, order, context))
1719
0
       FAIL(FATAL_ERROR_INTERNAL);
1720
// f) verify that r' = r
1721
0
   fail = BN_ucmp(bnR, bnRp) != 0 || fail;
1722
0
Cleanup:
1723
0
   if(pQ) EC_POINT_free(pQ);
1724
0
   if(group) EC_GROUP_free(group);
1725
0
   BN_CTX_end(context);
1726
0
   BN_CTX_free(context);
1727
0
    if(fail)
1728
0
        return CRYPT_FAIL;
1729
0
    else
1730
0
        return CRYPT_SUCCESS;
1731
0
}
1732
#endif //% TPM_ALG_SM2
1733
//
1734
//
1735
//        _cpri__ValidateSignatureEcc()
1736
//
1737
//       This function validates
1738
//
1739
//       Return Value                      Meaning
1740
//
1741
//       CRYPT_SUCCESS                     signature is valid
1742
//       CRYPT_FAIL                        not a valid signature
1743
//       CRYPT_SCHEME                      unsupported scheme
1744
//
1745
LIB_EXPORT CRYPT_RESULT
1746
_cpri__ValidateSignatureEcc(
1747
    TPM2B_ECC_PARAMETER           *rIn,                  //   IN: r component of the signature
1748
    TPM2B_ECC_PARAMETER           *sIn,                  //   IN: s component of the signature
1749
    TPM_ALG_ID                     scheme,               //   IN: the scheme selector
1750
    TPM_ALG_ID                     hashAlg,              //   IN: the hash algorithm used (not used
1751
                                                         //       in all schemes)
1752
    TPM_ECC_CURVE                   curveId,             //   IN: the curve used in the signature
1753
                                                         //       process
1754
    TPMS_ECC_POINT                *Qin,                  //   IN: the public point of the key
1755
    TPM2B                         *digest                //   IN: the digest that was signed
1756
    )
1757
0
{
1758
0
    CRYPT_RESULT                  retVal;
1759
    // return failure if either part of the signature is zero
1760
0
    if(_math__Normalize2B(&rIn->b) == 0 || _math__Normalize2B(&sIn->b) == 0)
1761
0
        return CRYPT_FAIL;
1762
0
   switch (scheme)
1763
0
   {
1764
0
       case TPM_ALG_ECDSA:
1765
0
           retVal = ValidateSignatureEcdsa(rIn, sIn, curveId, Qin, digest);
1766
0
           break;
1767
0
#ifdef   TPM_ALG_ECSCHNORR
1768
0
        case TPM_ALG_ECSCHNORR:
1769
0
            retVal = ValidateSignatureEcSchnorr(rIn, sIn, hashAlg, curveId, Qin,
1770
0
                                              digest);
1771
0
            break;
1772
0
#endif
1773
0
#ifdef TPM_ALG_SM2
1774
0
       case TPM_ALG_SM2:
1775
0
           retVal = ValidateSignatureSM2Dsa(rIn, sIn, curveId, Qin, digest);
1776
0
#endif
1777
0
       default:
1778
0
           retVal = CRYPT_SCHEME;
1779
0
           break;
1780
0
   }
1781
0
   return retVal;
1782
0
}
1783
#if CC_ZGen_2Phase == YES //%
1784
#ifdef TPM_ALG_ECMQV
1785
//
1786
//
1787
//        avf1()
1788
//
1789
//       This function does the associated value computation required by MQV key exchange. Process:
1790
//       a) Convert xQ to an integer xqi using the convention specified in Appendix C.3.
1791
//       b) Calculate xqm = xqi mod 2^ceil(f/2) (where f = ceil(log2(n)).
1792
//       c) Calculate the associate value function avf(Q) = xqm + 2ceil(f / 2)
1793
//
1794
static BOOL
1795
avf1(
1796
   BIGNUM              *bnX,               // IN/OUT: the reduced value
1797
   BIGNUM              *bnN                // IN: the order of the curve
1798
   )
1799
{
1800
// compute f = 2^(ceil(ceil(log2(n)) / 2))
1801
   int                      f = (BN_num_bits(bnN) + 1) / 2;
1802
// x' = 2^f + (x mod 2^f)
1803
   BN_mask_bits(bnX, f);   // This is mod 2*2^f but it doesn't matter because
1804
                           // the next operation will SET the extra bit anyway
1805
   BN_set_bit(bnX, f);
1806
   return TRUE;
1807
}
1808
//
1809
//
1810
//        C_2_2_MQV()
1811
//
1812
//       This function performs the key exchange defined in SP800-56A 6.1.1.4 Full MQV, C(2, 2, ECC MQV).
1813
//       CAUTION: Implementation of this function may require use of essential claims in patents not owned by
1814
//       TCG members.
1815
//       Points QsB() and QeB() are required to be on the curve of inQsA. The function will fail, possibly
1816
//       catastrophically, if this is not the case.
1817
//
1818
//
1819
//
1820
//       Return Value                      Meaning
1821
//
1822
//       CRYPT_SUCCESS                     results is valid
1823
//       CRYPT_NO_RESULT                   the value for dsA does not give a valid point on the curve
1824
//
1825
static CRYPT_RESULT
1826
C_2_2_MQV(
1827
   TPMS_ECC_POINT                  *outZ,                //   OUT: the computed point
1828
   TPM_ECC_CURVE                    curveId,             //   IN: the curve for the computations
1829
   TPM2B_ECC_PARAMETER             *dsA,                 //   IN: static private TPM key
1830
   TPM2B_ECC_PARAMETER             *deA,                 //   IN: ephemeral private TPM key
1831
   TPMS_ECC_POINT                  *QsB,                 //   IN: static public party B key
1832
   TPMS_ECC_POINT                  *QeB                  //   IN: ephemeral public party B key
1833
   )
1834
{
1835
   BN_CTX                          *context;
1836
   EC_POINT                        *pQeA = NULL;
1837
   EC_POINT                        *pQeB = NULL;
1838
   EC_POINT                        *pQsB = NULL;
1839
   EC_GROUP                        *group = NULL;
1840
   BIGNUM                          *bnTa;
1841
   BIGNUM                          *bnDeA;
1842
   BIGNUM                          *bnDsA;
1843
   BIGNUM                          *bnXeA;         // x coordinate of ephemeral party A key
1844
   BIGNUM                          *bnH;
1845
   BIGNUM                          *bnN;
1846
   BIGNUM                          *bnXeB;
1847
   const ECC_CURVE_DATA            *curveData = GetCurveData(curveId);
1848
   CRYPT_RESULT                    retVal = CRYPT_POINT;
1849
   pAssert(       curveData != NULL && outZ != NULL && dsA != NULL
1850
           &&           deA != NULL && QsB != NULL && QeB != NULL);
1851
   context = BN_CTX_new();
1852
   if(context == NULL || curveData == NULL)
1853
       FAIL(FATAL_ERROR_ALLOCATION);
1854
   BN_CTX_start(context);
1855
   bnTa = BN_CTX_get(context);
1856
   bnDeA = BN_CTX_get(context);
1857
   bnDsA = BN_CTX_get(context);
1858
   bnXeA = BN_CTX_get(context);
1859
   bnH = BN_CTX_get(context);
1860
   bnN = BN_CTX_get(context);
1861
   bnXeB = BN_CTX_get(context);
1862
   if(bnXeB == NULL)
1863
       FAIL(FATAL_ERROR_ALLOCATION);
1864
// Process:
1865
// 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n.
1866
// 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).
1867
// 3. If P = O, output an error indicator.
1868
// 4. Z=xP, where xP is the x-coordinate of P.
1869
   // Initialize group parameters and local values of input
1870
   if((group = EccCurveInit(curveId, context)) == NULL)
1871
       FAIL(FATAL_ERROR_INTERNAL);
1872
   if((pQeA = EC_POINT_new(group)) == NULL)
1873
       FAIL(FATAL_ERROR_ALLOCATION);
1874
   BnFrom2B(bnDeA, &deA->b);
1875
   BnFrom2B(bnDsA, &dsA->b);
1876
   BnFrom2B(bnH, curveData->h);
1877
   BnFrom2B(bnN, curveData->n);
1878
   BnFrom2B(bnXeB, &QeB->x.b);
1879
   if (!(pQeB = EccInitPoint2B(group, QeB, context)))
1880
   {
1881
       retVal = CRYPT_POINT;
1882
       goto Cleanup;
1883
   }
1884
   if (!(pQsB = EccInitPoint2B(group, QsB, context)))
1885
   {
1886
       retVal = CRYPT_POINT;
1887
       goto Cleanup;
1888
   }
1889
   // Compute the public ephemeral key pQeA = [de,A]G
1890
   if(    (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context))
1891
      != CRYPT_SUCCESS)
1892
       goto Cleanup;
1893
   if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1)
1894
           FAIL(FATAL_ERROR_INTERNAL);
1895
// 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n.
1896
// tA := (ds,A + de,A avf(Xe,A)) mod n (3)
1897
// Compute 'tA' = ('deA' + 'dsA' avf('XeA')) mod n
1898
   // Ta = avf(XeA);
1899
   BN_copy(bnTa, bnXeA);
1900
   avf1(bnTa, bnN);
1901
   if(// do Ta = ds,A * Ta mod n = dsA * avf(XeA) mod n
1902
         !BN_mod_mul(bnTa, bnDsA, bnTa, bnN, context)
1903
       // now Ta = deA + Ta mod n = deA + dsA * avf(XeA) mod n
1904
       || !BN_mod_add(bnTa, bnDeA, bnTa, bnN, context)
1905
      )
1906
            FAIL(FATAL_ERROR_INTERNAL);
1907
// 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).
1908
// Put this in because almost every case of h is == 1 so skip the call when
1909
   // not necessary.
1910
   if(!BN_is_one(bnH))
1911
   {
1912
       // Cofactor is not 1 so compute Ta := Ta * h mod n
1913
       if(!BN_mul(bnTa, bnTa, bnH, context))
1914
           FAIL(FATAL_ERROR_INTERNAL);
1915
   }
1916
   // Now that 'tA' is (h * 'tA' mod n)
1917
   // 'outZ' = (tA)(Qe,B + avf(Qe,B)Qs,B).
1918
   // first, compute XeB = avf(XeB)
1919
   avf1(bnXeB, bnN);
1920
   // QsB := [XeB]QsB
1921
   if(     !EC_POINT_mul(group, pQsB, NULL, pQsB, bnXeB, context)
1922
        // QeB := QsB + QeB
1923
        || !EC_POINT_add(group, pQeB, pQeB, pQsB, context)
1924
       )
1925
        FAIL(FATAL_ERROR_INTERNAL);
1926
   // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity
1927
   if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS)
1928
       // Convert BIGNUM E to TPM2B E
1929
       Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context);
1930
Cleanup:
1931
   if(pQeA != NULL) EC_POINT_free(pQeA);
1932
   if(pQeB != NULL) EC_POINT_free(pQeB);
1933
   if(pQsB != NULL) EC_POINT_free(pQsB);
1934
   if(group != NULL) EC_GROUP_free(group);
1935
   BN_CTX_end(context);
1936
   BN_CTX_free(context);
1937
   return retVal;
1938
}
1939
#endif // TPM_ALG_ECMQV
1940
#ifdef TPM_ALG_SM2 //%
1941
//
1942
//
1943
//        avfSm2()
1944
//
1945
//       This function does the associated value computation required by SM2 key exchange. This is different
1946
//       form the avf() in the international standards because it returns a value that is half the size of the value
1947
//       returned by the standard avf. For example, if n is 15, Ws (w in the standard) is 2 but the W here is 1. This
1948
//       means that an input value of 14 (1110b) would return a value of 110b with the standard but 10b with the
1949
//       scheme in SM2.
1950
//
1951
static BOOL
1952
avfSm2(
1953
    BIGNUM              *bnX,                  // IN/OUT: the reduced value
1954
    BIGNUM              *bnN                   // IN: the order of the curve
1955
    )
1956
{
1957
// a) set w := ceil(ceil(log2(n)) / 2) - 1
1958
   int                      w = ((BN_num_bits(bnN) + 1) / 2) - 1;
1959
// b) set x' := 2^w + ( x & (2^w - 1))
1960
// This is just like the avf for MQV where x' = 2^w + (x mod 2^w)
1961
   BN_mask_bits(bnX, w);   // as wiht avf1, this is too big by a factor of 2 but
1962
                           // it doesn't matter becasue we SET the extra bit anyway
1963
   BN_set_bit(bnX, w);
1964
   return TRUE;
1965
}
1966
//
1967
//       SM2KeyExchange() This function performs the key exchange defined in SM2. The first step is to compute
1968
//       tA = (dsA + deA avf(Xe,A)) mod n Then, compute the Z value from outZ = (h tA mod n) (QsA +
1969
//       [avf(QeB().x)](QeB())). The function will compute the ephemeral public key from the ephemeral private
1970
//       key. All points are required to be on the curve of inQsA. The function will fail catastrophically if this is not
1971
//       the case
1972
//
1973
//       Return Value                      Meaning
1974
//
1975
//       CRYPT_SUCCESS                     results is valid
1976
//       CRYPT_NO_RESULT                   the value for dsA does not give a valid point on the curve
1977
//
1978
static CRYPT_RESULT
1979
SM2KeyExchange(
1980
    TPMS_ECC_POINT                 *outZ,                //   OUT: the computed point
1981
    TPM_ECC_CURVE                   curveId,             //   IN: the curve for the computations
1982
    TPM2B_ECC_PARAMETER            *dsA,                 //   IN: static private TPM key
1983
    TPM2B_ECC_PARAMETER            *deA,                 //   IN: ephemeral private TPM key
1984
    TPMS_ECC_POINT                 *QsB,                 //   IN: static public party B key
1985
    TPMS_ECC_POINT                 *QeB                  //   IN: ephemeral public party B key
1986
    )
1987
{
1988
    BN_CTX                         *context;
1989
    EC_POINT                       *pQeA = NULL;
1990
    EC_POINT                       *pQeB = NULL;
1991
    EC_POINT                       *pQsB = NULL;
1992
    EC_GROUP                       *group = NULL;
1993
    BIGNUM                         *bnTa;
1994
    BIGNUM                         *bnDeA;
1995
    BIGNUM                         *bnDsA;
1996
    BIGNUM                         *bnXeA;               // x coordinate of ephemeral party A key
1997
    BIGNUM                         *bnH;
1998
    BIGNUM                         *bnN;
1999
    BIGNUM                         *bnXeB;
2000
//
2001
   const ECC_CURVE_DATA      *curveData = GetCurveData(curveId);
2002
   CRYPT_RESULT              retVal = CRYPT_POINT;
2003
   pAssert(       curveData != NULL && outZ != NULL && dsA != NULL
2004
           &&           deA != NULL && QsB != NULL && QeB != NULL);
2005
   context = BN_CTX_new();
2006
   if(context == NULL || curveData == NULL)
2007
       FAIL(FATAL_ERROR_ALLOCATION);
2008
   BN_CTX_start(context);
2009
   bnTa = BN_CTX_get(context);
2010
   bnDeA = BN_CTX_get(context);
2011
   bnDsA = BN_CTX_get(context);
2012
   bnXeA = BN_CTX_get(context);
2013
   bnH = BN_CTX_get(context);
2014
   bnN = BN_CTX_get(context);
2015
   bnXeB = BN_CTX_get(context);
2016
   if(bnXeB == NULL)
2017
       FAIL(FATAL_ERROR_ALLOCATION);
2018
   // Initialize group parameters and local values of input
2019
   if((group = EccCurveInit(curveId, context)) == NULL)
2020
       FAIL(FATAL_ERROR_INTERNAL);
2021
   if((pQeA = EC_POINT_new(group)) == NULL)
2022
       FAIL(FATAL_ERROR_ALLOCATION);
2023
   BnFrom2B(bnDeA, &deA->b);
2024
   BnFrom2B(bnDsA, &dsA->b);
2025
   BnFrom2B(bnH, curveData->h);
2026
   BnFrom2B(bnN, curveData->n);
2027
   BnFrom2B(bnXeB, &QeB->x.b);
2028
   if(!(pQeB = EccInitPoint2B(group, QeB, context)))
2029
       goto Cleanup;
2030
   if(!(pQsB = EccInitPoint2B(group, QsB, context)))
2031
       goto Cleanup;
2032
   // Compute the public ephemeral key pQeA = [de,A]G
2033
   if(    (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context))
2034
      != CRYPT_SUCCESS)
2035
       goto Cleanup;
2036
   if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1)
2037
           FAIL(FATAL_ERROR_INTERNAL);
2038
// tA := (ds,A + de,A avf(Xe,A)) mod n (3)
2039
// Compute 'tA' = ('dsA' + 'deA' avf('XeA')) mod n
2040
   // Ta = avf(XeA);
2041
   BN_copy(bnTa, bnXeA);
2042
   avfSm2(bnTa, bnN);
2043
   if(// do Ta = de,A * Ta mod n = deA * avf(XeA) mod n
2044
         !BN_mod_mul(bnTa, bnDeA, bnTa, bnN, context)
2045
       // now Ta = dsA + Ta mod n = dsA + deA * avf(XeA) mod n
2046
       || !BN_mod_add(bnTa, bnDsA, bnTa, bnN, context)
2047
      )
2048
            FAIL(FATAL_ERROR_INTERNAL);
2049
// outZ ? [h tA mod n] (Qs,B + [avf(Xe,B)](Qe,B)) (4)
2050
   // Put this in because almost every case of h is == 1 so skip the call when
2051
   // not necessary.
2052
   if(!BN_is_one(bnH))
2053
   {
2054
       // Cofactor is not 1 so compute Ta := Ta * h mod n
2055
       if(!BN_mul(bnTa, bnTa, bnH, context))
2056
           FAIL(FATAL_ERROR_INTERNAL);
2057
   }
2058
   // Now that 'tA' is (h * 'tA' mod n)
2059
   // 'outZ' = ['tA'](QsB + [avf(QeB.x)](QeB)).
2060
   // first, compute XeB = avf(XeB)
2061
   avfSm2(bnXeB, bnN);
2062
   // QeB := [XeB]QeB
2063
   if(     !EC_POINT_mul(group, pQeB, NULL, pQeB, bnXeB, context)
2064
         // QeB := QsB + QeB
2065
         || !EC_POINT_add(group, pQeB, pQeB, pQsB, context)
2066
        )
2067
         FAIL(FATAL_ERROR_INTERNAL);
2068
   // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity
2069
   if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS)
2070
       // Convert BIGNUM E to TPM2B E
2071
       Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context);
2072
Cleanup:
2073
   if(pQeA != NULL) EC_POINT_free(pQeA);
2074
   if(pQeB != NULL) EC_POINT_free(pQeB);
2075
   if(pQsB != NULL) EC_POINT_free(pQsB);
2076
   if(group != NULL) EC_GROUP_free(group);
2077
   BN_CTX_end(context);
2078
   BN_CTX_free(context);
2079
   return retVal;
2080
}
2081
#endif       //% TPM_ALG_SM2
2082
//
2083
//
2084
//        C_2_2_ECDH()
2085
//
2086
//       This function performs the two phase key exchange defined in SP800-56A, 6.1.1.2 Full Unified Model,
2087
//       C(2, 2, ECC CDH).
2088
//
2089
static CRYPT_RESULT
2090
C_2_2_ECDH(
2091
   TPMS_ECC_POINT                *outZ1,         //   OUT: Zs
2092
   TPMS_ECC_POINT                *outZ2,         //   OUT: Ze
2093
   TPM_ECC_CURVE                  curveId,       //   IN: the curve for the computations
2094
   TPM2B_ECC_PARAMETER           *dsA,           //   IN: static private TPM key
2095
   TPM2B_ECC_PARAMETER           *deA,           //   IN: ephemeral private TPM key
2096
   TPMS_ECC_POINT                *QsB,           //   IN: static public party B key
2097
   TPMS_ECC_POINT                *QeB            //   IN: ephemeral public party B key
2098
   )
2099
{
2100
   BIGNUM                        *order;
2101
   BN_CTX                        *context;
2102
   EC_POINT                      *pQ = NULL;
2103
   EC_GROUP                      *group = NULL;
2104
   BIGNUM                        *bnD;
2105
   INT16                          size;
2106
   CRYPT_RESULT                  retVal = CRYPT_POINT;
2107
   const ECC_CURVE_DATA          *curveData = GetCurveData(curveId);
2108
   context = BN_CTX_new();
2109
   if(context == NULL || curveData == NULL)
2110
       FAIL(FATAL_ERROR_ALLOCATION);
2111
   BN_CTX_start(context);
2112
   order = BN_CTX_get(context);
2113
   if((bnD = BN_CTX_get(context)) == NULL)
2114
       FAIL(FATAL_ERROR_INTERNAL);
2115
   // Initialize group parameters and local values of input
2116
   if((group = EccCurveInit(curveId, context)) == NULL)
2117
       FAIL(FATAL_ERROR_INTERNAL);
2118
   if (!EC_GROUP_get_order(group, order, context))
2119
       FAIL(FATAL_ERROR_INTERNAL);
2120
   size = (INT16)BN_num_bytes(order);
2121
   // Get the static private key of A
2122
   BnFrom2B(bnD, &dsA->b);
2123
   // Initialize the static public point from B
2124
   if (!(pQ = EccInitPoint2B(group, QsB, context)))
2125
       goto Cleanup;
2126
   // Do the point multiply for the Zs value
2127
   if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT)
2128
       // Convert the Zs value
2129
       Point2B(group, outZ1, pQ, size, context);
2130
   // Get the ephemeral private key of A
2131
   BnFrom2B(bnD, &deA->b);
2132
   // Initalize the ephemeral public point from B
2133
   if (!PointFrom2B(group, pQ, QeB, context))
2134
       goto Cleanup;
2135
   // Do the point multiply for the Ze value
2136
   if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT)
2137
       // Convert the Ze value.
2138
       {
2139
           Point2B(group, outZ2, pQ, size, context);
2140
           retVal = CRYPT_SUCCESS;
2141
       }
2142
Cleanup:
2143
   if(pQ != NULL) EC_POINT_free(pQ);
2144
   if(group != NULL) EC_GROUP_free(group);
2145
   BN_CTX_end(context);
2146
   BN_CTX_free(context);
2147
   return retVal;
2148
}
2149
//
2150
//
2151
//        _cpri__C_2_2_KeyExchange()
2152
//
2153
//       This function is the dispatch routine for the EC key exchange function that use two ephemeral and two
2154
//       static keys.
2155
//
2156
//       Return Value                   Meaning
2157
//
2158
//       CRYPT_SCHEME                   scheme is not defined
2159
//
2160
LIB_EXPORT CRYPT_RESULT
2161
_cpri__C_2_2_KeyExchange(
2162
   TPMS_ECC_POINT              *outZ1,                //   OUT: a computed point
2163
   TPMS_ECC_POINT              *outZ2,                //   OUT: and optional second point
2164
   TPM_ECC_CURVE                curveId,              //   IN: the curve for the computations
2165
   TPM_ALG_ID                   scheme,               //   IN: the key exchange scheme
2166
   TPM2B_ECC_PARAMETER         *dsA,                  //   IN: static private TPM key
2167
   TPM2B_ECC_PARAMETER         *deA,                  //   IN: ephemeral private TPM key
2168
   TPMS_ECC_POINT              *QsB,                  //   IN: static public party B key
2169
   TPMS_ECC_POINT              *QeB                   //   IN: ephemeral public party B key
2170
   )
2171
{
2172
   pAssert(   outZ1 != NULL
2173
           && dsA != NULL && deA != NULL
2174
           && QsB != NULL && QeB != NULL);
2175
   // Initalize the output points so that they are empty until one of the
2176
   // functions decides otherwise
2177
   outZ1->x.b.size = 0;
2178
   outZ1->y.b.size = 0;
2179
   if(outZ2 != NULL)
2180
   {
2181
       outZ2->x.b.size = 0;
2182
        outZ2->y.b.size = 0;
2183
   }
2184
   switch (scheme)
2185
   {
2186
       case TPM_ALG_ECDH:
2187
           return C_2_2_ECDH(outZ1, outZ2, curveId, dsA, deA, QsB, QeB);
2188
           break;
2189
#ifdef TPM_ALG_ECMQV
2190
       case TPM_ALG_ECMQV:
2191
           return C_2_2_MQV(outZ1, curveId, dsA, deA, QsB, QeB);
2192
           break;
2193
#endif
2194
#ifdef TPM_ALG_SM2
2195
       case TPM_ALG_SM2:
2196
           return SM2KeyExchange(outZ1, curveId, dsA, deA, QsB, QeB);
2197
           break;
2198
#endif
2199
       default:
2200
           return CRYPT_SCHEME;
2201
   }
2202
}
2203
#else       //%
2204
//
2205
//       Stub used when the 2-phase key exchange is not defined so that the linker has something to associate
2206
//       with the value in the .def file.
2207
//
2208
LIB_EXPORT CRYPT_RESULT
2209
_cpri__C_2_2_KeyExchange(
2210
    TPMS_ECC_POINT *outZ1,     //   OUT: a computed point
2211
    TPMS_ECC_POINT *outZ2,     //   OUT: and optional second point
2212
    TPM_ECC_CURVE curveId,     //   IN: the curve for the computations
2213
    TPM_ALG_ID scheme,         //   IN: the key exchange scheme
2214
    TPM2B_ECC_PARAMETER *dsA,  //   IN: static private TPM key
2215
    TPM2B_ECC_PARAMETER *deA,  //   IN: ephemeral private TPM key
2216
    TPMS_ECC_POINT *QsB,       //   IN: static public party B key
2217
    TPMS_ECC_POINT *QeB        //   IN: ephemeral public party B key
2218
    )
2219
0
{
2220
0
   return CRYPT_FAIL;
2221
0
}
2222
#endif //% CC_ZGen_2Phase
2223
#endif // TPM_ALG_ECC