Coverage Report

Created: 2025-07-23 07:04

/rust/registry/src/index.crates.io-6f17d22bba15001f/bytes-1.10.1/src/bytes_mut.rs
Line
Count
Source (jump to first uncovered line)
1
use core::iter::FromIterator;
2
use core::mem::{self, ManuallyDrop, MaybeUninit};
3
use core::ops::{Deref, DerefMut};
4
use core::ptr::{self, NonNull};
5
use core::{cmp, fmt, hash, isize, slice, usize};
6
7
use alloc::{
8
    borrow::{Borrow, BorrowMut},
9
    boxed::Box,
10
    string::String,
11
    vec,
12
    vec::Vec,
13
};
14
15
use crate::buf::{IntoIter, UninitSlice};
16
use crate::bytes::Vtable;
17
#[allow(unused)]
18
use crate::loom::sync::atomic::AtomicMut;
19
use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
20
use crate::{offset_from, Buf, BufMut, Bytes, TryGetError};
21
22
/// A unique reference to a contiguous slice of memory.
23
///
24
/// `BytesMut` represents a unique view into a potentially shared memory region.
25
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
26
/// mutate the memory.
27
///
28
/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
29
/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
30
/// same `buf` overlaps with its slice. That guarantee means that a write lock
31
/// is not required.
32
///
33
/// # Growth
34
///
35
/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
36
/// necessary. However, explicitly reserving the required space up-front before
37
/// a series of inserts will be more efficient.
38
///
39
/// # Examples
40
///
41
/// ```
42
/// use bytes::{BytesMut, BufMut};
43
///
44
/// let mut buf = BytesMut::with_capacity(64);
45
///
46
/// buf.put_u8(b'h');
47
/// buf.put_u8(b'e');
48
/// buf.put(&b"llo"[..]);
49
///
50
/// assert_eq!(&buf[..], b"hello");
51
///
52
/// // Freeze the buffer so that it can be shared
53
/// let a = buf.freeze();
54
///
55
/// // This does not allocate, instead `b` points to the same memory.
56
/// let b = a.clone();
57
///
58
/// assert_eq!(&a[..], b"hello");
59
/// assert_eq!(&b[..], b"hello");
60
/// ```
61
pub struct BytesMut {
62
    ptr: NonNull<u8>,
63
    len: usize,
64
    cap: usize,
65
    data: *mut Shared,
66
}
67
68
// Thread-safe reference-counted container for the shared storage. This mostly
69
// the same as `core::sync::Arc` but without the weak counter. The ref counting
70
// fns are based on the ones found in `std`.
71
//
72
// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
73
// up making the overall code simpler and easier to reason about. This is due to
74
// some of the logic around setting `Inner::arc` and other ways the `arc` field
75
// is used. Using `Arc` ended up requiring a number of funky transmutes and
76
// other shenanigans to make it work.
77
struct Shared {
78
    vec: Vec<u8>,
79
    original_capacity_repr: usize,
80
    ref_count: AtomicUsize,
81
}
82
83
// Assert that the alignment of `Shared` is divisible by 2.
84
// This is a necessary invariant since we depend on allocating `Shared` a
85
// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
86
// This flag is set when the LSB is 0.
87
const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
88
89
// Buffer storage strategy flags.
90
const KIND_ARC: usize = 0b0;
91
const KIND_VEC: usize = 0b1;
92
const KIND_MASK: usize = 0b1;
93
94
// The max original capacity value. Any `Bytes` allocated with a greater initial
95
// capacity will default to this.
96
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
97
// The original capacity algorithm will not take effect unless the originally
98
// allocated capacity was at least 1kb in size.
99
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
100
// The original capacity is stored in powers of 2 starting at 1kb to a max of
101
// 64kb. Representing it as such requires only 3 bits of storage.
102
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
103
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
104
105
const VEC_POS_OFFSET: usize = 5;
106
// When the storage is in the `Vec` representation, the pointer can be advanced
107
// at most this value. This is due to the amount of storage available to track
108
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
109
// bits.
110
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
111
const NOT_VEC_POS_MASK: usize = 0b11111;
112
113
#[cfg(target_pointer_width = "64")]
114
const PTR_WIDTH: usize = 64;
115
#[cfg(target_pointer_width = "32")]
116
const PTR_WIDTH: usize = 32;
117
118
/*
119
 *
120
 * ===== BytesMut =====
121
 *
122
 */
123
124
impl BytesMut {
125
    /// Creates a new `BytesMut` with the specified capacity.
126
    ///
127
    /// The returned `BytesMut` will be able to hold at least `capacity` bytes
128
    /// without reallocating.
129
    ///
130
    /// It is important to note that this function does not specify the length
131
    /// of the returned `BytesMut`, but only the capacity.
132
    ///
133
    /// # Examples
134
    ///
135
    /// ```
136
    /// use bytes::{BytesMut, BufMut};
137
    ///
138
    /// let mut bytes = BytesMut::with_capacity(64);
139
    ///
140
    /// // `bytes` contains no data, even though there is capacity
141
    /// assert_eq!(bytes.len(), 0);
142
    ///
143
    /// bytes.put(&b"hello world"[..]);
144
    ///
145
    /// assert_eq!(&bytes[..], b"hello world");
146
    /// ```
147
    #[inline]
148
0
    pub fn with_capacity(capacity: usize) -> BytesMut {
149
0
        BytesMut::from_vec(Vec::with_capacity(capacity))
150
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::with_capacity
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::with_capacity
151
152
    /// Creates a new `BytesMut` with default capacity.
153
    ///
154
    /// Resulting object has length 0 and unspecified capacity.
155
    /// This function does not allocate.
156
    ///
157
    /// # Examples
158
    ///
159
    /// ```
160
    /// use bytes::{BytesMut, BufMut};
161
    ///
162
    /// let mut bytes = BytesMut::new();
163
    ///
164
    /// assert_eq!(0, bytes.len());
165
    ///
166
    /// bytes.reserve(2);
167
    /// bytes.put_slice(b"xy");
168
    ///
169
    /// assert_eq!(&b"xy"[..], &bytes[..]);
170
    /// ```
171
    #[inline]
172
0
    pub fn new() -> BytesMut {
173
0
        BytesMut::with_capacity(0)
174
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::new
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::new
175
176
    /// Returns the number of bytes contained in this `BytesMut`.
177
    ///
178
    /// # Examples
179
    ///
180
    /// ```
181
    /// use bytes::BytesMut;
182
    ///
183
    /// let b = BytesMut::from(&b"hello"[..]);
184
    /// assert_eq!(b.len(), 5);
185
    /// ```
186
    #[inline]
187
0
    pub fn len(&self) -> usize {
188
0
        self.len
189
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::len
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::len
190
191
    /// Returns true if the `BytesMut` has a length of 0.
192
    ///
193
    /// # Examples
194
    ///
195
    /// ```
196
    /// use bytes::BytesMut;
197
    ///
198
    /// let b = BytesMut::with_capacity(64);
199
    /// assert!(b.is_empty());
200
    /// ```
201
    #[inline]
202
0
    pub fn is_empty(&self) -> bool {
203
0
        self.len == 0
204
0
    }
205
206
    /// Returns the number of bytes the `BytesMut` can hold without reallocating.
207
    ///
208
    /// # Examples
209
    ///
210
    /// ```
211
    /// use bytes::BytesMut;
212
    ///
213
    /// let b = BytesMut::with_capacity(64);
214
    /// assert_eq!(b.capacity(), 64);
215
    /// ```
216
    #[inline]
217
0
    pub fn capacity(&self) -> usize {
218
0
        self.cap
219
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::capacity
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::capacity
220
221
    /// Converts `self` into an immutable `Bytes`.
222
    ///
223
    /// The conversion is zero cost and is used to indicate that the slice
224
    /// referenced by the handle will no longer be mutated. Once the conversion
225
    /// is done, the handle can be cloned and shared across threads.
226
    ///
227
    /// # Examples
228
    ///
229
    /// ```
230
    /// use bytes::{BytesMut, BufMut};
231
    /// use std::thread;
232
    ///
233
    /// let mut b = BytesMut::with_capacity(64);
234
    /// b.put(&b"hello world"[..]);
235
    /// let b1 = b.freeze();
236
    /// let b2 = b1.clone();
237
    ///
238
    /// let th = thread::spawn(move || {
239
    ///     assert_eq!(&b1[..], b"hello world");
240
    /// });
241
    ///
242
    /// assert_eq!(&b2[..], b"hello world");
243
    /// th.join().unwrap();
244
    /// ```
245
    #[inline]
246
0
    pub fn freeze(self) -> Bytes {
247
0
        let bytes = ManuallyDrop::new(self);
248
0
        if bytes.kind() == KIND_VEC {
249
            // Just re-use `Bytes` internal Vec vtable
250
            unsafe {
251
0
                let off = bytes.get_vec_pos();
252
0
                let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off);
253
0
                let mut b: Bytes = vec.into();
254
0
                b.advance(off);
255
0
                b
256
            }
257
        } else {
258
0
            debug_assert_eq!(bytes.kind(), KIND_ARC);
259
260
0
            let ptr = bytes.ptr.as_ptr();
261
0
            let len = bytes.len;
262
0
            let data = AtomicPtr::new(bytes.data.cast());
263
0
            unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
264
        }
265
0
    }
266
267
    /// Creates a new `BytesMut` containing `len` zeros.
268
    ///
269
    /// The resulting object has a length of `len` and a capacity greater
270
    /// than or equal to `len`. The entire length of the object will be filled
271
    /// with zeros.
272
    ///
273
    /// On some platforms or allocators this function may be faster than
274
    /// a manual implementation.
275
    ///
276
    /// # Examples
277
    ///
278
    /// ```
279
    /// use bytes::BytesMut;
280
    ///
281
    /// let zeros = BytesMut::zeroed(42);
282
    ///
283
    /// assert!(zeros.capacity() >= 42);
284
    /// assert_eq!(zeros.len(), 42);
285
    /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
286
    /// ```
287
0
    pub fn zeroed(len: usize) -> BytesMut {
288
0
        BytesMut::from_vec(vec![0; len])
289
0
    }
290
291
    /// Splits the bytes into two at the given index.
292
    ///
293
    /// Afterwards `self` contains elements `[0, at)`, and the returned
294
    /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the
295
    /// memory does not move, that is, the address of `self` does not change,
296
    /// and the address of the returned slice is `at` bytes after that.
297
    ///
298
    /// This is an `O(1)` operation that just increases the reference count
299
    /// and sets a few indices.
300
    ///
301
    /// # Examples
302
    ///
303
    /// ```
304
    /// use bytes::BytesMut;
305
    ///
306
    /// let mut a = BytesMut::from(&b"hello world"[..]);
307
    /// let mut b = a.split_off(5);
308
    ///
309
    /// a[0] = b'j';
310
    /// b[0] = b'!';
311
    ///
312
    /// assert_eq!(&a[..], b"jello");
313
    /// assert_eq!(&b[..], b"!world");
314
    /// ```
315
    ///
316
    /// # Panics
317
    ///
318
    /// Panics if `at > capacity`.
319
    #[must_use = "consider BytesMut::truncate if you don't need the other half"]
320
0
    pub fn split_off(&mut self, at: usize) -> BytesMut {
321
0
        assert!(
322
0
            at <= self.capacity(),
323
0
            "split_off out of bounds: {:?} <= {:?}",
324
0
            at,
325
0
            self.capacity(),
326
        );
327
        unsafe {
328
0
            let mut other = self.shallow_clone();
329
0
            // SAFETY: We've checked that `at` <= `self.capacity()` above.
330
0
            other.advance_unchecked(at);
331
0
            self.cap = at;
332
0
            self.len = cmp::min(self.len, at);
333
0
            other
334
0
        }
335
0
    }
336
337
    /// Removes the bytes from the current view, returning them in a new
338
    /// `BytesMut` handle.
339
    ///
340
    /// Afterwards, `self` will be empty, but will retain any additional
341
    /// capacity that it had before the operation. This is identical to
342
    /// `self.split_to(self.len())`.
343
    ///
344
    /// This is an `O(1)` operation that just increases the reference count and
345
    /// sets a few indices.
346
    ///
347
    /// # Examples
348
    ///
349
    /// ```
350
    /// use bytes::{BytesMut, BufMut};
351
    ///
352
    /// let mut buf = BytesMut::with_capacity(1024);
353
    /// buf.put(&b"hello world"[..]);
354
    ///
355
    /// let other = buf.split();
356
    ///
357
    /// assert!(buf.is_empty());
358
    /// assert_eq!(1013, buf.capacity());
359
    ///
360
    /// assert_eq!(other, b"hello world"[..]);
361
    /// ```
362
    #[must_use = "consider BytesMut::clear if you don't need the other half"]
363
0
    pub fn split(&mut self) -> BytesMut {
364
0
        let len = self.len();
365
0
        self.split_to(len)
366
0
    }
367
368
    /// Splits the buffer into two at the given index.
369
    ///
370
    /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
371
    /// contains elements `[0, at)`.
372
    ///
373
    /// This is an `O(1)` operation that just increases the reference count and
374
    /// sets a few indices.
375
    ///
376
    /// # Examples
377
    ///
378
    /// ```
379
    /// use bytes::BytesMut;
380
    ///
381
    /// let mut a = BytesMut::from(&b"hello world"[..]);
382
    /// let mut b = a.split_to(5);
383
    ///
384
    /// a[0] = b'!';
385
    /// b[0] = b'j';
386
    ///
387
    /// assert_eq!(&a[..], b"!world");
388
    /// assert_eq!(&b[..], b"jello");
389
    /// ```
390
    ///
391
    /// # Panics
392
    ///
393
    /// Panics if `at > len`.
394
    #[must_use = "consider BytesMut::advance if you don't need the other half"]
395
0
    pub fn split_to(&mut self, at: usize) -> BytesMut {
396
0
        assert!(
397
0
            at <= self.len(),
398
0
            "split_to out of bounds: {:?} <= {:?}",
399
0
            at,
400
0
            self.len(),
401
        );
402
403
        unsafe {
404
0
            let mut other = self.shallow_clone();
405
0
            // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <=
406
0
            // `self.capacity()`.
407
0
            self.advance_unchecked(at);
408
0
            other.cap = at;
409
0
            other.len = at;
410
0
            other
411
0
        }
412
0
    }
413
414
    /// Shortens the buffer, keeping the first `len` bytes and dropping the
415
    /// rest.
416
    ///
417
    /// If `len` is greater than the buffer's current length, this has no
418
    /// effect.
419
    ///
420
    /// Existing underlying capacity is preserved.
421
    ///
422
    /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
423
    /// excess bytes to be returned instead of dropped.
424
    ///
425
    /// # Examples
426
    ///
427
    /// ```
428
    /// use bytes::BytesMut;
429
    ///
430
    /// let mut buf = BytesMut::from(&b"hello world"[..]);
431
    /// buf.truncate(5);
432
    /// assert_eq!(buf, b"hello"[..]);
433
    /// ```
434
0
    pub fn truncate(&mut self, len: usize) {
435
0
        if len <= self.len() {
436
0
            // SAFETY: Shrinking the buffer cannot expose uninitialized bytes.
437
0
            unsafe { self.set_len(len) };
438
0
        }
439
0
    }
440
441
    /// Clears the buffer, removing all data. Existing capacity is preserved.
442
    ///
443
    /// # Examples
444
    ///
445
    /// ```
446
    /// use bytes::BytesMut;
447
    ///
448
    /// let mut buf = BytesMut::from(&b"hello world"[..]);
449
    /// buf.clear();
450
    /// assert!(buf.is_empty());
451
    /// ```
452
0
    pub fn clear(&mut self) {
453
0
        // SAFETY: Setting the length to zero cannot expose uninitialized bytes.
454
0
        unsafe { self.set_len(0) };
455
0
    }
456
457
    /// Resizes the buffer so that `len` is equal to `new_len`.
458
    ///
459
    /// If `new_len` is greater than `len`, the buffer is extended by the
460
    /// difference with each additional byte set to `value`. If `new_len` is
461
    /// less than `len`, the buffer is simply truncated.
462
    ///
463
    /// # Examples
464
    ///
465
    /// ```
466
    /// use bytes::BytesMut;
467
    ///
468
    /// let mut buf = BytesMut::new();
469
    ///
470
    /// buf.resize(3, 0x1);
471
    /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
472
    ///
473
    /// buf.resize(2, 0x2);
474
    /// assert_eq!(&buf[..], &[0x1, 0x1]);
475
    ///
476
    /// buf.resize(4, 0x3);
477
    /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
478
    /// ```
479
0
    pub fn resize(&mut self, new_len: usize, value: u8) {
480
0
        let additional = if let Some(additional) = new_len.checked_sub(self.len()) {
481
0
            additional
482
        } else {
483
0
            self.truncate(new_len);
484
0
            return;
485
        };
486
487
0
        if additional == 0 {
488
0
            return;
489
0
        }
490
0
491
0
        self.reserve(additional);
492
0
        let dst = self.spare_capacity_mut().as_mut_ptr();
493
0
        // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've
494
0
        // reserved enough space to write `additional` bytes.
495
0
        unsafe { ptr::write_bytes(dst, value, additional) };
496
0
497
0
        // SAFETY: There are at least `new_len` initialized bytes in the buffer so no
498
0
        // uninitialized bytes are being exposed.
499
0
        unsafe { self.set_len(new_len) };
500
0
    }
501
502
    /// Sets the length of the buffer.
503
    ///
504
    /// This will explicitly set the size of the buffer without actually
505
    /// modifying the data, so it is up to the caller to ensure that the data
506
    /// has been initialized.
507
    ///
508
    /// # Examples
509
    ///
510
    /// ```
511
    /// use bytes::BytesMut;
512
    ///
513
    /// let mut b = BytesMut::from(&b"hello world"[..]);
514
    ///
515
    /// unsafe {
516
    ///     b.set_len(5);
517
    /// }
518
    ///
519
    /// assert_eq!(&b[..], b"hello");
520
    ///
521
    /// unsafe {
522
    ///     b.set_len(11);
523
    /// }
524
    ///
525
    /// assert_eq!(&b[..], b"hello world");
526
    /// ```
527
    #[inline]
528
0
    pub unsafe fn set_len(&mut self, len: usize) {
529
0
        debug_assert!(len <= self.cap, "set_len out of bounds");
530
0
        self.len = len;
531
0
    }
532
533
    /// Reserves capacity for at least `additional` more bytes to be inserted
534
    /// into the given `BytesMut`.
535
    ///
536
    /// More than `additional` bytes may be reserved in order to avoid frequent
537
    /// reallocations. A call to `reserve` may result in an allocation.
538
    ///
539
    /// Before allocating new buffer space, the function will attempt to reclaim
540
    /// space in the existing buffer. If the current handle references a view
541
    /// into a larger original buffer, and all other handles referencing part
542
    /// of the same original buffer have been dropped, then the current view
543
    /// can be copied/shifted to the front of the buffer and the handle can take
544
    /// ownership of the full buffer, provided that the full buffer is large
545
    /// enough to fit the requested additional capacity.
546
    ///
547
    /// This optimization will only happen if shifting the data from the current
548
    /// view to the front of the buffer is not too expensive in terms of the
549
    /// (amortized) time required. The precise condition is subject to change;
550
    /// as of now, the length of the data being shifted needs to be at least as
551
    /// large as the distance that it's shifted by. If the current view is empty
552
    /// and the original buffer is large enough to fit the requested additional
553
    /// capacity, then reallocations will never happen.
554
    ///
555
    /// # Examples
556
    ///
557
    /// In the following example, a new buffer is allocated.
558
    ///
559
    /// ```
560
    /// use bytes::BytesMut;
561
    ///
562
    /// let mut buf = BytesMut::from(&b"hello"[..]);
563
    /// buf.reserve(64);
564
    /// assert!(buf.capacity() >= 69);
565
    /// ```
566
    ///
567
    /// In the following example, the existing buffer is reclaimed.
568
    ///
569
    /// ```
570
    /// use bytes::{BytesMut, BufMut};
571
    ///
572
    /// let mut buf = BytesMut::with_capacity(128);
573
    /// buf.put(&[0; 64][..]);
574
    ///
575
    /// let ptr = buf.as_ptr();
576
    /// let other = buf.split();
577
    ///
578
    /// assert!(buf.is_empty());
579
    /// assert_eq!(buf.capacity(), 64);
580
    ///
581
    /// drop(other);
582
    /// buf.reserve(128);
583
    ///
584
    /// assert_eq!(buf.capacity(), 128);
585
    /// assert_eq!(buf.as_ptr(), ptr);
586
    /// ```
587
    ///
588
    /// # Panics
589
    ///
590
    /// Panics if the new capacity overflows `usize`.
591
    #[inline]
592
0
    pub fn reserve(&mut self, additional: usize) {
593
0
        let len = self.len();
594
0
        let rem = self.capacity() - len;
595
0
596
0
        if additional <= rem {
597
            // The handle can already store at least `additional` more bytes, so
598
            // there is no further work needed to be done.
599
0
            return;
600
0
        }
601
0
602
0
        // will always succeed
603
0
        let _ = self.reserve_inner(additional, true);
604
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::reserve
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::reserve
605
606
    // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to
607
    // be inline-able. Significantly helps performance. Returns false if it did not succeed.
608
0
    fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool {
609
0
        let len = self.len();
610
0
        let kind = self.kind();
611
0
612
0
        if kind == KIND_VEC {
613
            // If there's enough free space before the start of the buffer, then
614
            // just copy the data backwards and reuse the already-allocated
615
            // space.
616
            //
617
            // Otherwise, since backed by a vector, use `Vec::reserve`
618
            //
619
            // We need to make sure that this optimization does not kill the
620
            // amortized runtimes of BytesMut's operations.
621
            unsafe {
622
0
                let off = self.get_vec_pos();
623
0
624
0
                // Only reuse space if we can satisfy the requested additional space.
625
0
                //
626
0
                // Also check if the value of `off` suggests that enough bytes
627
0
                // have been read to account for the overhead of shifting all
628
0
                // the data (in an amortized analysis).
629
0
                // Hence the condition `off >= self.len()`.
630
0
                //
631
0
                // This condition also already implies that the buffer is going
632
0
                // to be (at least) half-empty in the end; so we do not break
633
0
                // the (amortized) runtime with future resizes of the underlying
634
0
                // `Vec`.
635
0
                //
636
0
                // [For more details check issue #524, and PR #525.]
637
0
                if self.capacity() - self.len() + off >= additional && off >= self.len() {
638
0
                    // There's enough space, and it's not too much overhead:
639
0
                    // reuse the space!
640
0
                    //
641
0
                    // Just move the pointer back to the start after copying
642
0
                    // data back.
643
0
                    let base_ptr = self.ptr.as_ptr().sub(off);
644
0
                    // Since `off >= self.len()`, the two regions don't overlap.
645
0
                    ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
646
0
                    self.ptr = vptr(base_ptr);
647
0
                    self.set_vec_pos(0);
648
0
649
0
                    // Length stays constant, but since we moved backwards we
650
0
                    // can gain capacity back.
651
0
                    self.cap += off;
652
0
                } else {
653
0
                    if !allocate {
654
0
                        return false;
655
0
                    }
656
0
                    // Not enough space, or reusing might be too much overhead:
657
0
                    // allocate more space!
658
0
                    let mut v =
659
0
                        ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
660
0
                    v.reserve(additional);
661
0
662
0
                    // Update the info
663
0
                    self.ptr = vptr(v.as_mut_ptr().add(off));
664
0
                    self.cap = v.capacity() - off;
665
0
                    debug_assert_eq!(self.len, v.len() - off);
666
                }
667
668
0
                return true;
669
            }
670
0
        }
671
0
672
0
        debug_assert_eq!(kind, KIND_ARC);
673
0
        let shared: *mut Shared = self.data;
674
675
        // Reserving involves abandoning the currently shared buffer and
676
        // allocating a new vector with the requested capacity.
677
        //
678
        // Compute the new capacity
679
0
        let mut new_cap = match len.checked_add(additional) {
680
0
            Some(new_cap) => new_cap,
681
0
            None if !allocate => return false,
682
0
            None => panic!("overflow"),
683
        };
684
685
        unsafe {
686
            // First, try to reclaim the buffer. This is possible if the current
687
            // handle is the only outstanding handle pointing to the buffer.
688
0
            if (*shared).is_unique() {
689
                // This is the only handle to the buffer. It can be reclaimed.
690
                // However, before doing the work of copying data, check to make
691
                // sure that the vector has enough capacity.
692
0
                let v = &mut (*shared).vec;
693
0
694
0
                let v_capacity = v.capacity();
695
0
                let ptr = v.as_mut_ptr();
696
0
697
0
                let offset = offset_from(self.ptr.as_ptr(), ptr);
698
0
699
0
                // Compare the condition in the `kind == KIND_VEC` case above
700
0
                // for more details.
701
0
                if v_capacity >= new_cap + offset {
702
0
                    self.cap = new_cap;
703
0
                    // no copy is necessary
704
0
                } else if v_capacity >= new_cap && offset >= len {
705
0
                    // The capacity is sufficient, and copying is not too much
706
0
                    // overhead: reclaim the buffer!
707
0
708
0
                    // `offset >= len` means: no overlap
709
0
                    ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
710
0
711
0
                    self.ptr = vptr(ptr);
712
0
                    self.cap = v.capacity();
713
0
                } else {
714
0
                    if !allocate {
715
0
                        return false;
716
0
                    }
717
0
                    // calculate offset
718
0
                    let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
719
0
720
0
                    // new_cap is calculated in terms of `BytesMut`, not the underlying
721
0
                    // `Vec`, so it does not take the offset into account.
722
0
                    //
723
0
                    // Thus we have to manually add it here.
724
0
                    new_cap = new_cap.checked_add(off).expect("overflow");
725
0
726
0
                    // The vector capacity is not sufficient. The reserve request is
727
0
                    // asking for more than the initial buffer capacity. Allocate more
728
0
                    // than requested if `new_cap` is not much bigger than the current
729
0
                    // capacity.
730
0
                    //
731
0
                    // There are some situations, using `reserve_exact` that the
732
0
                    // buffer capacity could be below `original_capacity`, so do a
733
0
                    // check.
734
0
                    let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
735
0
736
0
                    new_cap = cmp::max(double, new_cap);
737
0
738
0
                    // No space - allocate more
739
0
                    //
740
0
                    // The length field of `Shared::vec` is not used by the `BytesMut`;
741
0
                    // instead we use the `len` field in the `BytesMut` itself. However,
742
0
                    // when calling `reserve`, it doesn't guarantee that data stored in
743
0
                    // the unused capacity of the vector is copied over to the new
744
0
                    // allocation, so we need to ensure that we don't have any data we
745
0
                    // care about in the unused capacity before calling `reserve`.
746
0
                    debug_assert!(off + len <= v.capacity());
747
0
                    v.set_len(off + len);
748
0
                    v.reserve(new_cap - v.len());
749
0
750
0
                    // Update the info
751
0
                    self.ptr = vptr(v.as_mut_ptr().add(off));
752
0
                    self.cap = v.capacity() - off;
753
                }
754
755
0
                return true;
756
0
            }
757
0
        }
758
0
        if !allocate {
759
0
            return false;
760
0
        }
761
0
762
0
        let original_capacity_repr = unsafe { (*shared).original_capacity_repr };
763
0
        let original_capacity = original_capacity_from_repr(original_capacity_repr);
764
0
765
0
        new_cap = cmp::max(new_cap, original_capacity);
766
0
767
0
        // Create a new vector to store the data
768
0
        let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
769
0
770
0
        // Copy the bytes
771
0
        v.extend_from_slice(self.as_ref());
772
0
773
0
        // Release the shared handle. This must be done *after* the bytes are
774
0
        // copied.
775
0
        unsafe { release_shared(shared) };
776
0
777
0
        // Update self
778
0
        let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
779
0
        self.data = invalid_ptr(data);
780
0
        self.ptr = vptr(v.as_mut_ptr());
781
0
        self.cap = v.capacity();
782
0
        debug_assert_eq!(self.len, v.len());
783
0
        return true;
784
0
    }
785
786
    /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more
787
    /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded.
788
    ///
789
    /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage
790
    /// and returns a `bool` indicating whether it was successful in doing so:
791
    ///
792
    /// `try_reclaim` returns false under these conditions:
793
    ///  - The spare capacity left is less than `additional` bytes AND
794
    ///  - The existing allocation cannot be reclaimed cheaply or it was less than
795
    ///    `additional` bytes in size
796
    ///
797
    /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding
798
    /// references through other `BytesMut`s or `Bytes` which point to the same underlying
799
    /// storage.
800
    ///
801
    /// # Examples
802
    ///
803
    /// ```
804
    /// use bytes::BytesMut;
805
    ///
806
    /// let mut buf = BytesMut::with_capacity(64);
807
    /// assert_eq!(true, buf.try_reclaim(64));
808
    /// assert_eq!(64, buf.capacity());
809
    ///
810
    /// buf.extend_from_slice(b"abcd");
811
    /// let mut split = buf.split();
812
    /// assert_eq!(60, buf.capacity());
813
    /// assert_eq!(4, split.capacity());
814
    /// assert_eq!(false, split.try_reclaim(64));
815
    /// assert_eq!(false, buf.try_reclaim(64));
816
    /// // The split buffer is filled with "abcd"
817
    /// assert_eq!(false, split.try_reclaim(4));
818
    /// // buf is empty and has capacity for 60 bytes
819
    /// assert_eq!(true, buf.try_reclaim(60));
820
    ///
821
    /// drop(buf);
822
    /// assert_eq!(false, split.try_reclaim(64));
823
    ///
824
    /// split.clear();
825
    /// assert_eq!(4, split.capacity());
826
    /// assert_eq!(true, split.try_reclaim(64));
827
    /// assert_eq!(64, split.capacity());
828
    /// ```
829
    // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined
830
    // regardless with Rust 1.78.0 so probably not worth it
831
    #[inline]
832
    #[must_use = "consider BytesMut::reserve if you need an infallible reservation"]
833
0
    pub fn try_reclaim(&mut self, additional: usize) -> bool {
834
0
        let len = self.len();
835
0
        let rem = self.capacity() - len;
836
0
837
0
        if additional <= rem {
838
            // The handle can already store at least `additional` more bytes, so
839
            // there is no further work needed to be done.
840
0
            return true;
841
0
        }
842
0
843
0
        self.reserve_inner(additional, false)
844
0
    }
845
846
    /// Appends given bytes to this `BytesMut`.
847
    ///
848
    /// If this `BytesMut` object does not have enough capacity, it is resized
849
    /// first.
850
    ///
851
    /// # Examples
852
    ///
853
    /// ```
854
    /// use bytes::BytesMut;
855
    ///
856
    /// let mut buf = BytesMut::with_capacity(0);
857
    /// buf.extend_from_slice(b"aaabbb");
858
    /// buf.extend_from_slice(b"cccddd");
859
    ///
860
    /// assert_eq!(b"aaabbbcccddd", &buf[..]);
861
    /// ```
862
    #[inline]
863
0
    pub fn extend_from_slice(&mut self, extend: &[u8]) {
864
0
        let cnt = extend.len();
865
0
        self.reserve(cnt);
866
0
867
0
        unsafe {
868
0
            let dst = self.spare_capacity_mut();
869
0
            // Reserved above
870
0
            debug_assert!(dst.len() >= cnt);
871
872
0
            ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
873
0
        }
874
0
875
0
        unsafe {
876
0
            self.advance_mut(cnt);
877
0
        }
878
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::extend_from_slice
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::extend_from_slice
879
880
    /// Absorbs a `BytesMut` that was previously split off.
881
    ///
882
    /// If the two `BytesMut` objects were previously contiguous and not mutated
883
    /// in a way that causes re-allocation i.e., if `other` was created by
884
    /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
885
    /// that just decreases a reference count and sets a few indices.
886
    /// Otherwise this method degenerates to
887
    /// `self.extend_from_slice(other.as_ref())`.
888
    ///
889
    /// # Examples
890
    ///
891
    /// ```
892
    /// use bytes::BytesMut;
893
    ///
894
    /// let mut buf = BytesMut::with_capacity(64);
895
    /// buf.extend_from_slice(b"aaabbbcccddd");
896
    ///
897
    /// let split = buf.split_off(6);
898
    /// assert_eq!(b"aaabbb", &buf[..]);
899
    /// assert_eq!(b"cccddd", &split[..]);
900
    ///
901
    /// buf.unsplit(split);
902
    /// assert_eq!(b"aaabbbcccddd", &buf[..]);
903
    /// ```
904
0
    pub fn unsplit(&mut self, other: BytesMut) {
905
0
        if self.is_empty() {
906
0
            *self = other;
907
0
            return;
908
0
        }
909
910
0
        if let Err(other) = self.try_unsplit(other) {
911
0
            self.extend_from_slice(other.as_ref());
912
0
        }
913
0
    }
914
915
    // private
916
917
    // For now, use a `Vec` to manage the memory for us, but we may want to
918
    // change that in the future to some alternate allocator strategy.
919
    //
920
    // Thus, we don't expose an easy way to construct from a `Vec` since an
921
    // internal change could make a simple pattern (`BytesMut::from(vec)`)
922
    // suddenly a lot more expensive.
923
    #[inline]
924
0
    pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut {
925
0
        let mut vec = ManuallyDrop::new(vec);
926
0
        let ptr = vptr(vec.as_mut_ptr());
927
0
        let len = vec.len();
928
0
        let cap = vec.capacity();
929
0
930
0
        let original_capacity_repr = original_capacity_to_repr(cap);
931
0
        let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
932
0
933
0
        BytesMut {
934
0
            ptr,
935
0
            len,
936
0
            cap,
937
0
            data: invalid_ptr(data),
938
0
        }
939
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::from_vec
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::from_vec
940
941
    #[inline]
942
0
    fn as_slice(&self) -> &[u8] {
943
0
        unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
944
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice
945
946
    #[inline]
947
0
    fn as_slice_mut(&mut self) -> &mut [u8] {
948
0
        unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
949
0
    }
950
951
    /// Advance the buffer without bounds checking.
952
    ///
953
    /// # SAFETY
954
    ///
955
    /// The caller must ensure that `count` <= `self.cap`.
956
0
    pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) {
957
0
        // Setting the start to 0 is a no-op, so return early if this is the
958
0
        // case.
959
0
        if count == 0 {
960
0
            return;
961
0
        }
962
0
963
0
        debug_assert!(count <= self.cap, "internal: set_start out of bounds");
964
965
0
        let kind = self.kind();
966
0
967
0
        if kind == KIND_VEC {
968
            // Setting the start when in vec representation is a little more
969
            // complicated. First, we have to track how far ahead the
970
            // "start" of the byte buffer from the beginning of the vec. We
971
            // also have to ensure that we don't exceed the maximum shift.
972
0
            let pos = self.get_vec_pos() + count;
973
0
974
0
            if pos <= MAX_VEC_POS {
975
0
                self.set_vec_pos(pos);
976
0
            } else {
977
0
                // The repr must be upgraded to ARC. This will never happen
978
0
                // on 64 bit systems and will only happen on 32 bit systems
979
0
                // when shifting past 134,217,727 bytes. As such, we don't
980
0
                // worry too much about performance here.
981
0
                self.promote_to_shared(/*ref_count = */ 1);
982
0
            }
983
0
        }
984
985
        // Updating the start of the view is setting `ptr` to point to the
986
        // new start and updating the `len` field to reflect the new length
987
        // of the view.
988
0
        self.ptr = vptr(self.ptr.as_ptr().add(count));
989
0
        self.len = self.len.checked_sub(count).unwrap_or(0);
990
0
        self.cap -= count;
991
0
    }
992
993
0
    fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
994
0
        if other.capacity() == 0 {
995
0
            return Ok(());
996
0
        }
997
0
998
0
        let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
999
0
        if ptr == other.ptr.as_ptr()
1000
0
            && self.kind() == KIND_ARC
1001
0
            && other.kind() == KIND_ARC
1002
0
            && self.data == other.data
1003
        {
1004
            // Contiguous blocks, just combine directly
1005
0
            self.len += other.len;
1006
0
            self.cap += other.cap;
1007
0
            Ok(())
1008
        } else {
1009
0
            Err(other)
1010
        }
1011
0
    }
1012
1013
    #[inline]
1014
0
    fn kind(&self) -> usize {
1015
0
        self.data as usize & KIND_MASK
1016
0
    }
1017
1018
0
    unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
1019
0
        debug_assert_eq!(self.kind(), KIND_VEC);
1020
0
        debug_assert!(ref_cnt == 1 || ref_cnt == 2);
1021
1022
0
        let original_capacity_repr =
1023
0
            (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
1024
0
1025
0
        // The vec offset cannot be concurrently mutated, so there
1026
0
        // should be no danger reading it.
1027
0
        let off = (self.data as usize) >> VEC_POS_OFFSET;
1028
0
1029
0
        // First, allocate a new `Shared` instance containing the
1030
0
        // `Vec` fields. It's important to note that `ptr`, `len`,
1031
0
        // and `cap` cannot be mutated without having `&mut self`.
1032
0
        // This means that these fields will not be concurrently
1033
0
        // updated and since the buffer hasn't been promoted to an
1034
0
        // `Arc`, those three fields still are the components of the
1035
0
        // vector.
1036
0
        let shared = Box::new(Shared {
1037
0
            vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
1038
0
            original_capacity_repr,
1039
0
            ref_count: AtomicUsize::new(ref_cnt),
1040
0
        });
1041
0
1042
0
        let shared = Box::into_raw(shared);
1043
0
1044
0
        // The pointer should be aligned, so this assert should
1045
0
        // always succeed.
1046
0
        debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
1047
1048
0
        self.data = shared;
1049
0
    }
1050
1051
    /// Makes an exact shallow clone of `self`.
1052
    ///
1053
    /// The kind of `self` doesn't matter, but this is unsafe
1054
    /// because the clone will have the same offsets. You must
1055
    /// be sure the returned value to the user doesn't allow
1056
    /// two views into the same range.
1057
    #[inline]
1058
0
    unsafe fn shallow_clone(&mut self) -> BytesMut {
1059
0
        if self.kind() == KIND_ARC {
1060
0
            increment_shared(self.data);
1061
0
            ptr::read(self)
1062
        } else {
1063
0
            self.promote_to_shared(/*ref_count = */ 2);
1064
0
            ptr::read(self)
1065
        }
1066
0
    }
1067
1068
    #[inline]
1069
0
    unsafe fn get_vec_pos(&self) -> usize {
1070
0
        debug_assert_eq!(self.kind(), KIND_VEC);
1071
1072
0
        self.data as usize >> VEC_POS_OFFSET
1073
0
    }
1074
1075
    #[inline]
1076
0
    unsafe fn set_vec_pos(&mut self, pos: usize) {
1077
0
        debug_assert_eq!(self.kind(), KIND_VEC);
1078
0
        debug_assert!(pos <= MAX_VEC_POS);
1079
1080
0
        self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK));
1081
0
    }
1082
1083
    /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
1084
    ///
1085
    /// The returned slice can be used to fill the buffer with data (e.g. by
1086
    /// reading from a file) before marking the data as initialized using the
1087
    /// [`set_len`] method.
1088
    ///
1089
    /// [`set_len`]: BytesMut::set_len
1090
    ///
1091
    /// # Examples
1092
    ///
1093
    /// ```
1094
    /// use bytes::BytesMut;
1095
    ///
1096
    /// // Allocate buffer big enough for 10 bytes.
1097
    /// let mut buf = BytesMut::with_capacity(10);
1098
    ///
1099
    /// // Fill in the first 3 elements.
1100
    /// let uninit = buf.spare_capacity_mut();
1101
    /// uninit[0].write(0);
1102
    /// uninit[1].write(1);
1103
    /// uninit[2].write(2);
1104
    ///
1105
    /// // Mark the first 3 bytes of the buffer as being initialized.
1106
    /// unsafe {
1107
    ///     buf.set_len(3);
1108
    /// }
1109
    ///
1110
    /// assert_eq!(&buf[..], &[0, 1, 2]);
1111
    /// ```
1112
    #[inline]
1113
0
    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1114
0
        unsafe {
1115
0
            let ptr = self.ptr.as_ptr().add(self.len);
1116
0
            let len = self.cap - self.len;
1117
0
1118
0
            slice::from_raw_parts_mut(ptr.cast(), len)
1119
0
        }
1120
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::spare_capacity_mut
Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::spare_capacity_mut
1121
}
1122
1123
impl Drop for BytesMut {
1124
0
    fn drop(&mut self) {
1125
0
        let kind = self.kind();
1126
0
1127
0
        if kind == KIND_VEC {
1128
0
            unsafe {
1129
0
                let off = self.get_vec_pos();
1130
0
1131
0
                // Vector storage, free the vector
1132
0
                let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
1133
0
            }
1134
0
        } else if kind == KIND_ARC {
1135
0
            unsafe { release_shared(self.data) };
1136
0
        }
1137
0
    }
1138
}
1139
1140
impl Buf for BytesMut {
1141
    #[inline]
1142
0
    fn remaining(&self) -> usize {
1143
0
        self.len()
1144
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_impl::Buf>::remaining
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_impl::Buf>::remaining
1145
1146
    #[inline]
1147
0
    fn chunk(&self) -> &[u8] {
1148
0
        self.as_slice()
1149
0
    }
1150
1151
    #[inline]
1152
0
    fn advance(&mut self, cnt: usize) {
1153
0
        assert!(
1154
0
            cnt <= self.remaining(),
1155
0
            "cannot advance past `remaining`: {:?} <= {:?}",
1156
0
            cnt,
1157
0
            self.remaining(),
1158
        );
1159
0
        unsafe {
1160
0
            // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that
1161
0
            // `self.remaining()` <= `self.cap`.
1162
0
            self.advance_unchecked(cnt);
1163
0
        }
1164
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_impl::Buf>::advance
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_impl::Buf>::advance
1165
1166
0
    fn copy_to_bytes(&mut self, len: usize) -> Bytes {
1167
0
        self.split_to(len).freeze()
1168
0
    }
1169
}
1170
1171
unsafe impl BufMut for BytesMut {
1172
    #[inline]
1173
0
    fn remaining_mut(&self) -> usize {
1174
0
        usize::MAX - self.len()
1175
0
    }
1176
1177
    #[inline]
1178
0
    unsafe fn advance_mut(&mut self, cnt: usize) {
1179
0
        let remaining = self.cap - self.len();
1180
0
        if cnt > remaining {
1181
0
            super::panic_advance(&TryGetError {
1182
0
                requested: cnt,
1183
0
                available: remaining,
1184
0
            });
1185
0
        }
1186
0
        // Addition won't overflow since it is at most `self.cap`.
1187
0
        self.len = self.len() + cnt;
1188
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_mut::BufMut>::advance_mut
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_mut::BufMut>::advance_mut
1189
1190
    #[inline]
1191
0
    fn chunk_mut(&mut self) -> &mut UninitSlice {
1192
0
        if self.capacity() == self.len() {
1193
0
            self.reserve(64);
1194
0
        }
1195
0
        self.spare_capacity_mut().into()
1196
0
    }
1197
1198
    // Specialize these methods so they can skip checking `remaining_mut`
1199
    // and `advance_mut`.
1200
1201
0
    fn put<T: Buf>(&mut self, mut src: T)
1202
0
    where
1203
0
        Self: Sized,
1204
0
    {
1205
0
        while src.has_remaining() {
1206
0
            let s = src.chunk();
1207
0
            let l = s.len();
1208
0
            self.extend_from_slice(s);
1209
0
            src.advance(l);
1210
0
        }
1211
0
    }
1212
1213
0
    fn put_slice(&mut self, src: &[u8]) {
1214
0
        self.extend_from_slice(src);
1215
0
    }
1216
1217
0
    fn put_bytes(&mut self, val: u8, cnt: usize) {
1218
0
        self.reserve(cnt);
1219
0
        unsafe {
1220
0
            let dst = self.spare_capacity_mut();
1221
0
            // Reserved above
1222
0
            debug_assert!(dst.len() >= cnt);
1223
1224
0
            ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
1225
0
1226
0
            self.advance_mut(cnt);
1227
0
        }
1228
0
    }
1229
}
1230
1231
impl AsRef<[u8]> for BytesMut {
1232
    #[inline]
1233
0
    fn as_ref(&self) -> &[u8] {
1234
0
        self.as_slice()
1235
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsRef<[u8]>>::as_ref
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsRef<[u8]>>::as_ref
1236
}
1237
1238
impl Deref for BytesMut {
1239
    type Target = [u8];
1240
1241
    #[inline]
1242
0
    fn deref(&self) -> &[u8] {
1243
0
        self.as_ref()
1244
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::ops::deref::Deref>::deref
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::ops::deref::Deref>::deref
1245
}
1246
1247
impl AsMut<[u8]> for BytesMut {
1248
    #[inline]
1249
0
    fn as_mut(&mut self) -> &mut [u8] {
1250
0
        self.as_slice_mut()
1251
0
    }
1252
}
1253
1254
impl DerefMut for BytesMut {
1255
    #[inline]
1256
0
    fn deref_mut(&mut self) -> &mut [u8] {
1257
0
        self.as_mut()
1258
0
    }
1259
}
1260
1261
impl<'a> From<&'a [u8]> for BytesMut {
1262
0
    fn from(src: &'a [u8]) -> BytesMut {
1263
0
        BytesMut::from_vec(src.to_vec())
1264
0
    }
1265
}
1266
1267
impl<'a> From<&'a str> for BytesMut {
1268
0
    fn from(src: &'a str) -> BytesMut {
1269
0
        BytesMut::from(src.as_bytes())
1270
0
    }
1271
}
1272
1273
impl From<BytesMut> for Bytes {
1274
0
    fn from(src: BytesMut) -> Bytes {
1275
0
        src.freeze()
1276
0
    }
1277
}
1278
1279
impl PartialEq for BytesMut {
1280
0
    fn eq(&self, other: &BytesMut) -> bool {
1281
0
        self.as_slice() == other.as_slice()
1282
0
    }
1283
}
1284
1285
impl PartialOrd for BytesMut {
1286
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1287
0
        self.as_slice().partial_cmp(other.as_slice())
1288
0
    }
1289
}
1290
1291
impl Ord for BytesMut {
1292
0
    fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
1293
0
        self.as_slice().cmp(other.as_slice())
1294
0
    }
1295
}
1296
1297
impl Eq for BytesMut {}
1298
1299
impl Default for BytesMut {
1300
    #[inline]
1301
0
    fn default() -> BytesMut {
1302
0
        BytesMut::new()
1303
0
    }
1304
}
1305
1306
impl hash::Hash for BytesMut {
1307
0
    fn hash<H>(&self, state: &mut H)
1308
0
    where
1309
0
        H: hash::Hasher,
1310
0
    {
1311
0
        let s: &[u8] = self.as_ref();
1312
0
        s.hash(state);
1313
0
    }
1314
}
1315
1316
impl Borrow<[u8]> for BytesMut {
1317
0
    fn borrow(&self) -> &[u8] {
1318
0
        self.as_ref()
1319
0
    }
1320
}
1321
1322
impl BorrowMut<[u8]> for BytesMut {
1323
0
    fn borrow_mut(&mut self) -> &mut [u8] {
1324
0
        self.as_mut()
1325
0
    }
1326
}
1327
1328
impl fmt::Write for BytesMut {
1329
    #[inline]
1330
0
    fn write_str(&mut self, s: &str) -> fmt::Result {
1331
0
        if self.remaining_mut() >= s.len() {
1332
0
            self.put_slice(s.as_bytes());
1333
0
            Ok(())
1334
        } else {
1335
0
            Err(fmt::Error)
1336
        }
1337
0
    }
1338
1339
    #[inline]
1340
0
    fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
1341
0
        fmt::write(self, args)
1342
0
    }
1343
}
1344
1345
impl Clone for BytesMut {
1346
0
    fn clone(&self) -> BytesMut {
1347
0
        BytesMut::from(&self[..])
1348
0
    }
1349
}
1350
1351
impl IntoIterator for BytesMut {
1352
    type Item = u8;
1353
    type IntoIter = IntoIter<BytesMut>;
1354
1355
0
    fn into_iter(self) -> Self::IntoIter {
1356
0
        IntoIter::new(self)
1357
0
    }
1358
}
1359
1360
impl<'a> IntoIterator for &'a BytesMut {
1361
    type Item = &'a u8;
1362
    type IntoIter = core::slice::Iter<'a, u8>;
1363
1364
0
    fn into_iter(self) -> Self::IntoIter {
1365
0
        self.as_ref().iter()
1366
0
    }
1367
}
1368
1369
impl Extend<u8> for BytesMut {
1370
0
    fn extend<T>(&mut self, iter: T)
1371
0
    where
1372
0
        T: IntoIterator<Item = u8>,
1373
0
    {
1374
0
        let iter = iter.into_iter();
1375
0
1376
0
        let (lower, _) = iter.size_hint();
1377
0
        self.reserve(lower);
1378
1379
        // TODO: optimize
1380
        // 1. If self.kind() == KIND_VEC, use Vec::extend
1381
0
        for b in iter {
1382
0
            self.put_u8(b);
1383
0
        }
1384
0
    }
1385
}
1386
1387
impl<'a> Extend<&'a u8> for BytesMut {
1388
0
    fn extend<T>(&mut self, iter: T)
1389
0
    where
1390
0
        T: IntoIterator<Item = &'a u8>,
1391
0
    {
1392
0
        self.extend(iter.into_iter().copied())
1393
0
    }
1394
}
1395
1396
impl Extend<Bytes> for BytesMut {
1397
0
    fn extend<T>(&mut self, iter: T)
1398
0
    where
1399
0
        T: IntoIterator<Item = Bytes>,
1400
0
    {
1401
0
        for bytes in iter {
1402
0
            self.extend_from_slice(&bytes)
1403
        }
1404
0
    }
1405
}
1406
1407
impl FromIterator<u8> for BytesMut {
1408
0
    fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
1409
0
        BytesMut::from_vec(Vec::from_iter(into_iter))
1410
0
    }
1411
}
1412
1413
impl<'a> FromIterator<&'a u8> for BytesMut {
1414
0
    fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
1415
0
        BytesMut::from_iter(into_iter.into_iter().copied())
1416
0
    }
1417
}
1418
1419
/*
1420
 *
1421
 * ===== Inner =====
1422
 *
1423
 */
1424
1425
0
unsafe fn increment_shared(ptr: *mut Shared) {
1426
0
    let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
1427
0
1428
0
    if old_size > isize::MAX as usize {
1429
0
        crate::abort();
1430
0
    }
1431
0
}
1432
1433
0
unsafe fn release_shared(ptr: *mut Shared) {
1434
0
    // `Shared` storage... follow the drop steps from Arc.
1435
0
    if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
1436
0
        return;
1437
0
    }
1438
0
1439
0
    // This fence is needed to prevent reordering of use of the data and
1440
0
    // deletion of the data.  Because it is marked `Release`, the decreasing
1441
0
    // of the reference count synchronizes with this `Acquire` fence. This
1442
0
    // means that use of the data happens before decreasing the reference
1443
0
    // count, which happens before this fence, which happens before the
1444
0
    // deletion of the data.
1445
0
    //
1446
0
    // As explained in the [Boost documentation][1],
1447
0
    //
1448
0
    // > It is important to enforce any possible access to the object in one
1449
0
    // > thread (through an existing reference) to *happen before* deleting
1450
0
    // > the object in a different thread. This is achieved by a "release"
1451
0
    // > operation after dropping a reference (any access to the object
1452
0
    // > through this reference must obviously happened before), and an
1453
0
    // > "acquire" operation before deleting the object.
1454
0
    //
1455
0
    // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1456
0
    //
1457
0
    // Thread sanitizer does not support atomic fences. Use an atomic load
1458
0
    // instead.
1459
0
    (*ptr).ref_count.load(Ordering::Acquire);
1460
0
1461
0
    // Drop the data
1462
0
    drop(Box::from_raw(ptr));
1463
0
}
1464
1465
impl Shared {
1466
0
    fn is_unique(&self) -> bool {
1467
0
        // The goal is to check if the current handle is the only handle
1468
0
        // that currently has access to the buffer. This is done by
1469
0
        // checking if the `ref_count` is currently 1.
1470
0
        //
1471
0
        // The `Acquire` ordering synchronizes with the `Release` as
1472
0
        // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
1473
0
        // operation guarantees that any mutations done in other threads
1474
0
        // are ordered before the `ref_count` is decremented. As such,
1475
0
        // this `Acquire` will guarantee that those mutations are
1476
0
        // visible to the current thread.
1477
0
        self.ref_count.load(Ordering::Acquire) == 1
1478
0
    }
1479
}
1480
1481
#[inline]
1482
0
fn original_capacity_to_repr(cap: usize) -> usize {
1483
0
    let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
1484
0
    cmp::min(
1485
0
        width,
1486
0
        MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
1487
0
    )
1488
0
}
Unexecuted instantiation: bytes::bytes_mut::original_capacity_to_repr
Unexecuted instantiation: bytes::bytes_mut::original_capacity_to_repr
1489
1490
0
fn original_capacity_from_repr(repr: usize) -> usize {
1491
0
    if repr == 0 {
1492
0
        return 0;
1493
0
    }
1494
0
1495
0
    1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
1496
0
}
1497
1498
#[cfg(test)]
1499
mod tests {
1500
    use super::*;
1501
1502
    #[test]
1503
    fn test_original_capacity_to_repr() {
1504
        assert_eq!(original_capacity_to_repr(0), 0);
1505
1506
        let max_width = 32;
1507
1508
        for width in 1..(max_width + 1) {
1509
            let cap = 1 << width - 1;
1510
1511
            let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
1512
                0
1513
            } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
1514
                width - MIN_ORIGINAL_CAPACITY_WIDTH
1515
            } else {
1516
                MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
1517
            };
1518
1519
            assert_eq!(original_capacity_to_repr(cap), expected);
1520
1521
            if width > 1 {
1522
                assert_eq!(original_capacity_to_repr(cap + 1), expected);
1523
            }
1524
1525
            //  MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
1526
            if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
1527
                assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
1528
                assert_eq!(original_capacity_to_repr(cap + 76), expected);
1529
            } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
1530
                assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
1531
                assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
1532
            }
1533
        }
1534
    }
1535
1536
    #[test]
1537
    fn test_original_capacity_from_repr() {
1538
        assert_eq!(0, original_capacity_from_repr(0));
1539
1540
        let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
1541
1542
        assert_eq!(min_cap, original_capacity_from_repr(1));
1543
        assert_eq!(min_cap * 2, original_capacity_from_repr(2));
1544
        assert_eq!(min_cap * 4, original_capacity_from_repr(3));
1545
        assert_eq!(min_cap * 8, original_capacity_from_repr(4));
1546
        assert_eq!(min_cap * 16, original_capacity_from_repr(5));
1547
        assert_eq!(min_cap * 32, original_capacity_from_repr(6));
1548
        assert_eq!(min_cap * 64, original_capacity_from_repr(7));
1549
    }
1550
}
1551
1552
unsafe impl Send for BytesMut {}
1553
unsafe impl Sync for BytesMut {}
1554
1555
/*
1556
 *
1557
 * ===== PartialEq / PartialOrd =====
1558
 *
1559
 */
1560
1561
impl PartialEq<[u8]> for BytesMut {
1562
0
    fn eq(&self, other: &[u8]) -> bool {
1563
0
        &**self == other
1564
0
    }
1565
}
1566
1567
impl PartialOrd<[u8]> for BytesMut {
1568
0
    fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
1569
0
        (**self).partial_cmp(other)
1570
0
    }
1571
}
1572
1573
impl PartialEq<BytesMut> for [u8] {
1574
0
    fn eq(&self, other: &BytesMut) -> bool {
1575
0
        *other == *self
1576
0
    }
1577
}
1578
1579
impl PartialOrd<BytesMut> for [u8] {
1580
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1581
0
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1582
0
    }
1583
}
1584
1585
impl PartialEq<str> for BytesMut {
1586
0
    fn eq(&self, other: &str) -> bool {
1587
0
        &**self == other.as_bytes()
1588
0
    }
1589
}
1590
1591
impl PartialOrd<str> for BytesMut {
1592
0
    fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
1593
0
        (**self).partial_cmp(other.as_bytes())
1594
0
    }
1595
}
1596
1597
impl PartialEq<BytesMut> for str {
1598
0
    fn eq(&self, other: &BytesMut) -> bool {
1599
0
        *other == *self
1600
0
    }
1601
}
1602
1603
impl PartialOrd<BytesMut> for str {
1604
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1605
0
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1606
0
    }
1607
}
1608
1609
impl PartialEq<Vec<u8>> for BytesMut {
1610
0
    fn eq(&self, other: &Vec<u8>) -> bool {
1611
0
        *self == other[..]
1612
0
    }
1613
}
1614
1615
impl PartialOrd<Vec<u8>> for BytesMut {
1616
0
    fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
1617
0
        (**self).partial_cmp(&other[..])
1618
0
    }
1619
}
1620
1621
impl PartialEq<BytesMut> for Vec<u8> {
1622
0
    fn eq(&self, other: &BytesMut) -> bool {
1623
0
        *other == *self
1624
0
    }
1625
}
1626
1627
impl PartialOrd<BytesMut> for Vec<u8> {
1628
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1629
0
        other.partial_cmp(self)
1630
0
    }
1631
}
1632
1633
impl PartialEq<String> for BytesMut {
1634
0
    fn eq(&self, other: &String) -> bool {
1635
0
        *self == other[..]
1636
0
    }
1637
}
1638
1639
impl PartialOrd<String> for BytesMut {
1640
0
    fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
1641
0
        (**self).partial_cmp(other.as_bytes())
1642
0
    }
1643
}
1644
1645
impl PartialEq<BytesMut> for String {
1646
0
    fn eq(&self, other: &BytesMut) -> bool {
1647
0
        *other == *self
1648
0
    }
1649
}
1650
1651
impl PartialOrd<BytesMut> for String {
1652
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1653
0
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1654
0
    }
1655
}
1656
1657
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
1658
where
1659
    BytesMut: PartialEq<T>,
1660
{
1661
0
    fn eq(&self, other: &&'a T) -> bool {
1662
0
        *self == **other
1663
0
    }
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::cmp::PartialEq<&[u8]>>::eq
Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::cmp::PartialEq<&str>>::eq
1664
}
1665
1666
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
1667
where
1668
    BytesMut: PartialOrd<T>,
1669
{
1670
0
    fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
1671
0
        self.partial_cmp(*other)
1672
0
    }
1673
}
1674
1675
impl PartialEq<BytesMut> for &[u8] {
1676
0
    fn eq(&self, other: &BytesMut) -> bool {
1677
0
        *other == *self
1678
0
    }
1679
}
1680
1681
impl PartialOrd<BytesMut> for &[u8] {
1682
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1683
0
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1684
0
    }
1685
}
1686
1687
impl PartialEq<BytesMut> for &str {
1688
0
    fn eq(&self, other: &BytesMut) -> bool {
1689
0
        *other == *self
1690
0
    }
1691
}
1692
1693
impl PartialOrd<BytesMut> for &str {
1694
0
    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1695
0
        other.partial_cmp(self)
1696
0
    }
1697
}
1698
1699
impl PartialEq<BytesMut> for Bytes {
1700
0
    fn eq(&self, other: &BytesMut) -> bool {
1701
0
        other[..] == self[..]
1702
0
    }
1703
}
1704
1705
impl PartialEq<Bytes> for BytesMut {
1706
0
    fn eq(&self, other: &Bytes) -> bool {
1707
0
        other[..] == self[..]
1708
0
    }
1709
}
1710
1711
impl From<BytesMut> for Vec<u8> {
1712
0
    fn from(bytes: BytesMut) -> Self {
1713
0
        let kind = bytes.kind();
1714
0
        let bytes = ManuallyDrop::new(bytes);
1715
1716
0
        let mut vec = if kind == KIND_VEC {
1717
            unsafe {
1718
0
                let off = bytes.get_vec_pos();
1719
0
                rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
1720
            }
1721
        } else {
1722
0
            let shared = bytes.data as *mut Shared;
1723
0
1724
0
            if unsafe { (*shared).is_unique() } {
1725
0
                let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
1726
0
1727
0
                unsafe { release_shared(shared) };
1728
0
1729
0
                vec
1730
            } else {
1731
0
                return ManuallyDrop::into_inner(bytes).deref().to_vec();
1732
            }
1733
        };
1734
1735
0
        let len = bytes.len;
1736
0
1737
0
        unsafe {
1738
0
            ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
1739
0
            vec.set_len(len);
1740
0
        }
1741
0
1742
0
        vec
1743
0
    }
1744
}
1745
1746
#[inline]
1747
0
fn vptr(ptr: *mut u8) -> NonNull<u8> {
1748
0
    if cfg!(debug_assertions) {
1749
0
        NonNull::new(ptr).expect("Vec pointer should be non-null")
1750
    } else {
1751
0
        unsafe { NonNull::new_unchecked(ptr) }
1752
    }
1753
0
}
Unexecuted instantiation: bytes::bytes_mut::vptr
Unexecuted instantiation: bytes::bytes_mut::vptr
1754
1755
/// Returns a dangling pointer with the given address. This is used to store
1756
/// integer data in pointer fields.
1757
///
1758
/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
1759
/// provenance checking is enabled.
1760
#[inline]
1761
0
fn invalid_ptr<T>(addr: usize) -> *mut T {
1762
0
    let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
1763
0
    debug_assert_eq!(ptr as usize, addr);
1764
0
    ptr.cast::<T>()
1765
0
}
1766
1767
0
unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
1768
0
    let ptr = ptr.sub(off);
1769
0
    len += off;
1770
0
    cap += off;
1771
0
1772
0
    Vec::from_raw_parts(ptr, len, cap)
1773
0
}
1774
1775
// ===== impl SharedVtable =====
1776
1777
static SHARED_VTABLE: Vtable = Vtable {
1778
    clone: shared_v_clone,
1779
    to_vec: shared_v_to_vec,
1780
    to_mut: shared_v_to_mut,
1781
    is_unique: shared_v_is_unique,
1782
    drop: shared_v_drop,
1783
};
1784
1785
0
unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
1786
0
    let shared = data.load(Ordering::Relaxed) as *mut Shared;
1787
0
    increment_shared(shared);
1788
0
1789
0
    let data = AtomicPtr::new(shared as *mut ());
1790
0
    Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
1791
0
}
1792
1793
0
unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
1794
0
    let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1795
0
1796
0
    if (*shared).is_unique() {
1797
0
        let shared = &mut *shared;
1798
0
1799
0
        // Drop shared
1800
0
        let mut vec = mem::replace(&mut shared.vec, Vec::new());
1801
0
        release_shared(shared);
1802
0
1803
0
        // Copy back buffer
1804
0
        ptr::copy(ptr, vec.as_mut_ptr(), len);
1805
0
        vec.set_len(len);
1806
0
1807
0
        vec
1808
    } else {
1809
0
        let v = slice::from_raw_parts(ptr, len).to_vec();
1810
0
        release_shared(shared);
1811
0
        v
1812
    }
1813
0
}
1814
1815
0
unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
1816
0
    let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1817
0
1818
0
    if (*shared).is_unique() {
1819
0
        let shared = &mut *shared;
1820
0
1821
0
        // The capacity is always the original capacity of the buffer
1822
0
        // minus the offset from the start of the buffer
1823
0
        let v = &mut shared.vec;
1824
0
        let v_capacity = v.capacity();
1825
0
        let v_ptr = v.as_mut_ptr();
1826
0
        let offset = offset_from(ptr as *mut u8, v_ptr);
1827
0
        let cap = v_capacity - offset;
1828
0
1829
0
        let ptr = vptr(ptr as *mut u8);
1830
0
1831
0
        BytesMut {
1832
0
            ptr,
1833
0
            len,
1834
0
            cap,
1835
0
            data: shared,
1836
0
        }
1837
    } else {
1838
0
        let v = slice::from_raw_parts(ptr, len).to_vec();
1839
0
        release_shared(shared);
1840
0
        BytesMut::from_vec(v)
1841
    }
1842
0
}
1843
1844
0
unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool {
1845
0
    let shared = data.load(Ordering::Acquire);
1846
0
    let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed);
1847
0
    ref_count == 1
1848
0
}
1849
1850
0
unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
1851
0
    data.with_mut(|shared| {
1852
0
        release_shared(*shared as *mut Shared);
1853
0
    });
1854
0
}
1855
1856
// compile-fails
1857
1858
/// ```compile_fail
1859
/// use bytes::BytesMut;
1860
/// #[deny(unused_must_use)]
1861
/// {
1862
///     let mut b1 = BytesMut::from("hello world");
1863
///     b1.split_to(6);
1864
/// }
1865
/// ```
1866
0
fn _split_to_must_use() {}
1867
1868
/// ```compile_fail
1869
/// use bytes::BytesMut;
1870
/// #[deny(unused_must_use)]
1871
/// {
1872
///     let mut b1 = BytesMut::from("hello world");
1873
///     b1.split_off(6);
1874
/// }
1875
/// ```
1876
0
fn _split_off_must_use() {}
1877
1878
/// ```compile_fail
1879
/// use bytes::BytesMut;
1880
/// #[deny(unused_must_use)]
1881
/// {
1882
///     let mut b1 = BytesMut::from("hello world");
1883
///     b1.split();
1884
/// }
1885
/// ```
1886
0
fn _split_must_use() {}
1887
1888
// fuzz tests
1889
#[cfg(all(test, loom))]
1890
mod fuzz {
1891
    use loom::sync::Arc;
1892
    use loom::thread;
1893
1894
    use super::BytesMut;
1895
    use crate::Bytes;
1896
1897
    #[test]
1898
    fn bytes_mut_cloning_frozen() {
1899
        loom::model(|| {
1900
            let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
1901
            let addr = a.as_ptr() as usize;
1902
1903
            // test the Bytes::clone is Sync by putting it in an Arc
1904
            let a1 = Arc::new(a);
1905
            let a2 = a1.clone();
1906
1907
            let t1 = thread::spawn(move || {
1908
                let b: Bytes = (*a1).clone();
1909
                assert_eq!(b.as_ptr() as usize, addr);
1910
            });
1911
1912
            let t2 = thread::spawn(move || {
1913
                let b: Bytes = (*a2).clone();
1914
                assert_eq!(b.as_ptr() as usize, addr);
1915
            });
1916
1917
            t1.join().unwrap();
1918
            t2.join().unwrap();
1919
        });
1920
    }
1921
}